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Preface

In this thesis, we study the stable homotopy category S of spectra. For a
spectrum E, we have the E,-homology theory. Bousfield defined a localization
functor Lg: & — S with respect to a spectrum FE, which classifies spectra by
the F,-homology theory. Furthermore, for a spectrum E, Bousfield defined a
class (E), which is called the Bousfield class of E, such that Ly = Lp if and
only if (E) = (F'). Bousfield also studied the lattice structure of these classes.
Ohkawa showed that these classes form a set, which implies the classes form a
lattice. The lattice is called the Bousfield lattice. We investigate the category
S by the Bousfield localizations and the Bousfield lattice.

In the celebrated paper [5], Miller, Ravenel and Wilson introduced the “chro-
matic” method to study the stable homotopy category S of spectra. For the
nth Johnson-Wilson spectrum E(n), L,, denotes the Bousfield localization func-
tor with respect to E(n). These Bousfield localizations give rise to the “chro-
matic tower”, which is a limit system {L, X},. Hopkins and Ravenel showed
the chromatic convergence theorem, which implies that if X is finite, then the
homotopy groups 7.(X) is isomorphic to lim, 7.(L,X). In particular, the ho-
motopy groups m,(S) of the sphere spectrum S are built from the homotopy
groups (L, S).

The algebraic K-groups of the sphere spectrum are closely related with num-
ber theory, geometric topology and so on. Bokstedt, Hsiang and Madesn defined
the cyclotomic trace map from the algebraic K-groups of a ring spectrum X to
the topological cyclic group of X, which are approximated by the T R-groups
of X. Furthermore the T R-groups of the sphere spectrum are studied by the
stable homotopy groups 7, (5) and the skeleton filtration spectral sequence.

From now on, we give an overview of this thesis.

In Chapter 1, we explain the results in [2]. In the Adams-Novikov spec-
tral sequence converging to 7.(S), we have an element (,/, in the Ej-term

2
E; 22"~ which does not survive to 7« (S). We prove that the element 65 /p i

3
E;p 2271 gurvives to 7, (5) in the Adams-Novikov spectral sequence, and also

give conditions to which a product of elements in the Adams-Novikov Es-term
survives to m.(S). Furthermore, such products are detected in m,(L3S). We
investigate the third Morava stabilizer algebra for showing the result.



In Chapter 2, we look into the details of [1]. Hesselholt determined the
2-primary T R-groups of the sphere spectrum in dimensions less than 6. We
extend the result to dimensions less than 10 by use of the mod 2 Adams spectral
sequence and the skeleton filtration spectral sequence.

In Chapter 3, we study the Adams-Novikov spectral sequence for computing
the homotopy groups of a monochromatic spectrum. The Es-terms of the spec-
tral sequence are the cohomology groups of a monochromatic module, to which
the chromatic spectral sequence converges. In [3], we determined the first line
of an Fi-term of the chromatic spectral sequence for a monochromatic module
whose chromatic level is greater than 3. We look into the details of calculation
for showing the result.

In the last chapter, we consider the works of [4] on a generalized Bousfield
lattice. For a commutative ring R, we define the lattice 5(R), which is called the
Bousfield lattice associated to R. In particular, the original Bousfield lattice is
the Bousfield lattice associated to itself in this sense. We determine the structure
of the lattice B(P/I) for a principal ideal domain P and a nonzero ideal I of
P, on which we show that the retract conjecture holds. As an application, we
determine the structure of the Bousfield lattice of “harmonic” spectra, which
implies that the Bousfield lattice of the category of spectra is uncountable.
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valuable advice. I would also like to thank the faculty and staff of the Kochi
University for their support.
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Chapter 1

Products of Greek letter
elements dug up from the
third Morava stabilizer
algebra

In [2], Oka and Shimomura considered the cohomology of the second Morava
stabilizer algebra to study nontriviality of the products of beta elements of the
stable homotopy groups of spheres. In this chapter, we use the cohomology of
the third Morava stabilizer algebra to find nontrivial products of Greek letters
of the stable homotopy groups of spheres: a1, B2, <a1,a1,6§/p>%51 and
(B1,p,7:) for t with ptt(t?> — 1) for a prime number p > 5. This is a joint work
with Professor Shimomura.

1.1 Introduction

Greek letter elements are well known generators of the stable homotopy groups
of spheres localized at a prime p. Studying products among these elements is
an interesting subject, and studied by several authors. For example, at an odd
prime p, all products of alpha elements are trivial. In [2], we used H*S(2)
to study nontriviality of the product of beta elements. In this chapter, we
use H*S(3) to find relations of Greek letters. The multiplicative structure of
H*S(3) is given by Yamaguchi [5], but unfortunately, it has some typos. So
here, our computation is based on Ravenel’s.

Let f3,/, be the generator of the Es-term Eg’pzq(S) of the Adams-Novikov
spectral sequence converging to the homotopy groups 7. (S) of the sphere spec-
trum S. Hereafter, ¢ = 2p — 2 as usual. A relation given by Toda implies that
Bp/p dies in the Adams-Novikov spectral sequence at a prime p > 2. At the
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prime two, 53/2 = 0 by [1, Prop. 8.22], while at the prime numbers three and
five, Ravenel showed that Bg /p survives to a homotopy element of m,(S) and
alﬂz/p = 0 for the generator a; of my_1(S). Here, we show the following

Theorem 1.1.1. At a primep > 3, ﬁ;’/p survives to m(,s _1yq—2(S5) and alﬁ]’)’/p =
0.

Corollary 1.1.2. At a prime p > 3, the Toda bracket {ay,aq, 7

p/p> is defined.

We notice that at the prime 3, Ravenel showed these in [3].
Let 81, B2 and ; (t > 0) be the generators of Coker J of dimensions pg — 2,
(2p+1)g — 2 and (tp? + (t — 1)p +t — 2)q — 3, respectively.

Theorem 1.1.3. Let p > 5, and t be a positive integer with p{t(t> —1). Then,
the elements a1y, P2Ve, <a1,a1,ﬁﬁ/p>61% and (B1,p, V) generate subgroups of
the stable homotopy groups of spheres isomorphic to Z/p. Besides, even in the
case p|(t + 1), iyt and (B1,p,y:) are generators of order p.

Note that (81,p,v) = (y,p,01). We also notice that if ¢ = 1, then
(71,p, B1) = 0, while f27y; is non-trivial (see section five).
From here on, we assume that the prime number p is greater than three.

1.2 H*S(3) revisited

We begin with recalling some notation from Ravenel’s green book [3]. Let BP
denote the Brown-Peterson spectrum. Then, the pair

(BP*,BP*(BP)) = (Z(p) [1)1,’[)2, .. .],BP*[tl,tQ, .. ])

is a Hopf algebroid. Here, the degrees of v; and t; are 2p’ — 2. The structure
maps act as follows:

(1.2.1)
nr(v1) = wvi+ph
nr(v2) = wvo+ vltﬁ’;r pta  mod (p?,0})
nr(v3) = s+t +uith + pty — pvivh 'ty mod (p?, 0%, 0h)
Alt) = hol+leh
Alts) = @1+t 0t) +1®@ts —v1b1o
Ats) = t3®1+t2®t{’2+t1 @th+1®ts mod (v1,vs)
Aty) = t4®1+t3®t§)3 + 12 ®t§2 +11@th +1®ts—v3biz mod (v1,v2)
for
(1.2.2) bik :% 3 <pi+ )ti @

i=1
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Let K(3), = F,[vs, vy '] have the BP,-module structure given by v;v§ =

viv; = U§+1 if = 3, and = 0 otherwise, and

¥3) = K(3)«®pp, BP.(BP)®pp, K(3).
= K@)t ta,...]/(0st? =o't :i>0) (by [3, 6.1.16])
is the Hopf algebra with structure inherited from BP,(BP). Define the Hopf
algebra S(3) by S(3) = X(3) ®k(s),Fp, where K(3), acts on F}, by vz -1 = 1.
Then,
S(3) = Fylt1,ta, ... ]/(t7 —t; i > 0).

Now we abbreviate Extg sy (Fp, F},) to H*S(3).
Consider integers d; (= ds; in [3, 6.3.1])

4 — 0 1 <0,
" | max(i,pdi_s) i > 0.
Then, there is a unique increasing filtration of the Hopf algebroid S(3) with deg
' = d; for 0<j < 3.

Theorem 1.2.3. (Ravenel[3, 6.3.2]) The associated Hopf algebra E°S(3) is

isomorphic to the truncated polynomial algebra of height p on the elements tfj
fori>0 and j € Z/3, with coproduct defined by

; j ket )
Ay - [Sieotd 0 i<,
i — J J .
! tf ®R1+1® tf + bi_g,j_;,_g 1> 3.
Let L(3) be the Lie algebra without restriction with basis z; ; for ¢ > 0 and

J € Z/3 and bracket given by

(2 ] = 5£+jxi+k’j — 5i+l:ﬂi+k,l for ¢ + k < 3,
7, A= .
77 0 otherwise,

where 65 = 1 if i = j mod 3 and 0 otherwise, and L(3,k) the quotient of L(3)
obtained by setting «; ; = 0 for 4 > k. Then, Ravenel noticed in [3, 6.3.8]:

Theorem 1.2.4. H*(L(3,k)) for k < 3 is the cohomology of the exterior com-
plex E(h; j)on one-dimensional generators h; j with i < k and j € Z/3, with
coboundary

1—1
d(hij) = hejhi-csts.
s=1

From now on, we abbreviate h; ; to hs;, and hy; to h;.
Under the above filtration, Ravenel constructed the May spectral sequences

Theorem 1.2.5. (Ravenel [3, 6.3.4, 6.3.5]) There are spectral sequences
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(a) By = H*(L(3,3)) = H*(EoS(3)) and
(b) E2 = H*(EoS(3)) = H*(5(3)).

Since these spectral sequences collapse, H*S(3) is additively isomorphic to
H*L(3,3). Therefore, we have a projection

(1.2.6) 7: H*S(3) — E°H*S(3) = H*(EyS(3)) = H*L(3,3).
Note that the Massey product (h;, h;y1,hiy2, h;) is homologous to v§2_p)pi biio

represented by v§2_p)pib17i+2 of (1.2.2), and 7 assigns the Massey product to
bir2 € H*L(3,3). Ravenel determined in [3, 6.3.34] the additive structure of
H*L(3,3). In particular, we have the following:

Theorem 1.2.7. H*L(3,3) contains submodules generated by:
hikiCs,  boki(s, hol, kol, hobob2l and hil.

Moreover hll 7é hlk‘lgg. Here, [ = h2h21h30, k‘z = hi+1h2i (Z = 0,1), bo =
hihza + hoi1hoo 4 hathi, ba = hohsi 4 haohoa + haoho and (3 = hzg + ha1 + haa.

Proof. In the table of [3, 6.3.34], we find the elements
ho, hi, ko, bo, b2, I, U'=hohyhs and

as well as the first element hqk;(3 of the theorem. We also have the element
hiki1hsg = h1hohaihsg in the table, which is the last element hql of the theorem.
These also imply hil # h1k1(3.

The element hgbgb2l(3 is computed as

hohahaihso(h1hsa + hoihoo + hai1hi)(hohst + haohas + haoho) (hso + ka1 + hs2)
= —2hohihahaohaihaohsohsihsa.

Therefore, hobgbsl is the dual of the generator —%(:3, and the elements hgbgbal
and hgl are generators. Similarly, a computation

koll'Cs = hihaohaohaihsohohoohsi(hso + ha1 + hsa)
= —hohihahaohoihazhsohsihso

shows that kol is the dual of the generator —I'(s. O
Lemma 1.2.8. In H*L(3,3), hok1 = 0 and koks = 0.

Proof. From the proof of [3, 6.3.34], we read off the relations hok; = ezphz2 and
kok1 = esogr in H*L(3,2). Since ezg cobounds hgp in H*L(3,3), the lemma
follows. O
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1.3 Greek letter elements

Let E3%(X) denote the E,-term of the Adams-Novikov spectral sequence con-
verging to the homotopy group m;—s(X) of a spectrum X. Then the Ea-term is
Extpp, (p)(BPs, BP.(X)). We here consider the Ext-group Extgp, gp)(BPx, M)
for a BP,(BP)-comodule M as the cohomology of the cobar complex Q7% 5, srM
(¢f. [1]). Consider a sequence A = (ag,ay,...,a,) of non-negative integers so
that the sequence p®,v{', ..., v%" is invariant and regular. For such a sequence

r n (n)

A, Miller, Ravenel and Wilson introduced in [1] n-th Greek letter elements 7, A)
in the Adams-Novikov Es-term Eg’t(A)(S) by

(1.3.1) W = San-Sanvin) € Byt ™(s)

)

for vin € Ext%zPa*’Eg);;l)(BP*, BP,/I(A,n)). Here, s(A) = an/an-1,an—2," - ,ao
and t(A) = 2a,(p" — 1) — 2 Z?;ol a;(pt — 1), I(A, k) denotes the ideal of BP,
generated by p®,v{',...,v;*7", and 64 41 is the connecting homomorphism

associated to the short exact sequence

’Uak
0 — BP,/I(A,k) = BP,/I(A,k) — BP,/I(A,k+1) — 0.
In particular, we write a = (), 8 = 7 and v = n®. So far, only when
n < 3, we know a condition whether or not Greek letter elements survive to
homotopy elements. We abbreviate 77?81) to néﬁ) if A=(1,...,1,a,) as usual.

For example, we consider S-elements defined by

By =0 a(8)) € BY(S)
s 1,6(1,1,s
(1.3.2) for B = d(1,1),2(v5) € By (V(0)), and

pri/p" = Bp'i/pf‘,l = 5(1»177‘),16(1,17"),2(01)1) € Eit(lm ? )(S)~

At the prime p greater than three, we have the Smith-Toda spectrum V' (k)
for £k = 0,1,2 defined by the cofiber sequences

S2 8L vo) L s,
(1.3.3) D9V (0) % V(0) 25 V(1) L% 291V (0)  and
E(p+l)qv(1) LN V(1) KEN V(2) J2, Z(p+1)q+1v(1)_

Here, o € [V(0),V(0)], is the Adams map and 3 € [V(1),V(1)](p+1)q is the
vo-periodic element due to L. Smith. Note that the BP,-homology of these
spectra are BP,(V (k)) = BP./I1 for the ideal Ij, of BP, generated by v; for
0 < i < k with vg = p. We consider the Bousfield-Ravenel localization functor
Ly with respect to vz ' BP. The Ex-term Ej(L3V(2)) of L3V (2) is isomorphic
to K (3).® H*S(3), whose structure is given in [3] (see also [5]), and we consider
the composite

r: E5(S) 2 E3(V(2) B E3(LsV(2) & H*(S(3)) = H*L(3,3).
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Here the first map is induced from the inclusion ¢: S — V(2) to the bottom cell,
the second is from the localization map, the third is obtained by setting vs =1
and the last is the projection (1.2.6).

Lemma 1.3.4. The map r assigns the Greek letter elements as follows:

rlar) = ho, 7r(B1) = —bo, r(B2) = —2ko,

r(v) = t—=Dl—t{t—1)ki¢s and r(B,) = —bi.
We also have B = hi—vP " hg € EyPI(V(0)) for the generators h; ofEé’piq(V(O))
represented by V.

Proof. First we consider the images of the Greek letter elements under the

map t,: E3(S) = E3(V(2)). In the cobar complex Qpp (5p)BPs, by (1.2.1),

d(vy) = pty, d(vh ) = vflt’fl+1 mod (p, v{fH) for i > 0, d(v3) = 2v vat? + v33P
2 2

mod (p,v}), and d(v) = tvovl 't} + (%) v20i 237" mod (p, vy, v3), which imply

1

dya(v1) = [ti], danyalve) = [t7 —of "t
2 2
61,1,2(v3) = [202#1)4-211175?‘*‘”%@]7 3(1,;;),2(03) = [tﬁ —ovf “PtY] and
Saanay) = [Bo5 7 + (Quavs 207 + (v + i) = 7,

for cochains y € Q}BP*(BP)BP*/(p) and z € Q}BP*(BP)BP*/(p, v1). Here, [z]
denotes a cohomology class represented by a cocycle x. The first one shows
a1 = hg, and the second gives the last statement of the lemma. We further see

that d(tlfk) = —pby x—1 for k > 1 and d(vy) = pty, mod I((2,1,1),k) for k =2,3

by (1.2.1) in € QEP*(BP)BP*. Moreover, [b1,]’s are assigned to by in H*L(3, 3)
under the projection 7, and we obtain
k k—1
r6(17pk71)71(hk — ’Uf P hk—l) = *bk—l for k = 1,2,
7“5(1,1),1([21}27,‘119 + Uﬂf%p}) = —2kg,

S (F) = [t -0 @f +2 = 5 and
7"5(171,1)’1(’72) = t(t — 1)(t — 2)h30k1 + t(t - 1)7"(5(17171)71(]51).

Here, z is a linear combination of terms in the ideal (v, v2)? and of the form
k 1 2

vex @y for e € {1,2} and 2,y € {t] ¢} 715:;)17 4,4,k 0 € {1,2}}. Thus the

relations other than r(+;) follows. Note that by = hahso+ hasha1 + hgahe. Since

70(1,1,1),1(k1) = (ha1hso + h3iha1)ha — ha1by = 31 — k1(3, we obtain the relation

on (). O

Recall the cofiber sequences (1.3.3) and the vz-periodic element y € [V (2), V(2)],
(g3 = (p?>+p+1)q) due to H. Toda. Then, the Greek letter elements in homotopy
are defined by
(1.3.5)

ap = jali, By = jB for fi = jifini and vy = jiijertizini

3

for ¢ > 0, and the Greek elements in the Fs-term survives to the same named
one in homotopy by the Geometric Boundary Theorem (cf. [3]).
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Proof of Theorem 3.1.10. We begin with noticing that the element b; in H*L(3, 3)
is the image of the Massey product (h;, hit1, hit2, h;) under 7, which is homolo-
gous to b; represented by b1 ; in (1.2.2). We further note that the Toda brackets
<o¢1,a1,ﬁg/p> and (B1,p,v:) are detected by a1bs and hiy: of E3(S), respec-
tively. Indeed, in the first bracket, dap_1(b2) = aq ﬁg /o by Corollary 1.4.4 below,
and in the second bracket, (51,p,7:) = 7{B1,p, 7). Under the condition on ¢,
Lemmas 1.3.4, 1.2.7 and 1.2.8 imply that each element of a;7v¢, Bove, a1bayef1
and hyvy:, as well as 31:, generates a submodule isomorphic to Z/p of the Fs-
term E3(S). These are, of course, permanent cycles, and nothing kills them in
the Adams-Novikov spectral sequence since each element has a filtration degree
less than 2p — 1. O

1.4 ﬁﬁ /p in the homotopy of spheres
Let X and X be the (p — 1)g- and (p — 2)g-skeletons of the Brown-Peterson
spectrum BP. Then, we have the cofiber sequences

(1.4.1) SLHX E5HYX NS and X 5 X % se-be Xy vy

Then,
BP,(X) = BP.[z]/(z) and BP,(X)= BP.[z]/(z""!)

as subcomodules of BP,(BP), where x corresponds to ¢;. From [3, Chap.7], we
read off the following:

(1.42) ¥ =0¢€ E;p’pgq(X), which implies

EFTOM(X)=0 ifs>pandt < (s—1)p*+(s+1+e)p.
Lemma 1.4.3. by: E3*TM(S) — E228+2+e’(t+p)q(5) is monomorphic if s > p
and t < (s —1)p> + (s + e)p.

Proof. Note that by = AN, and the lemma follows from (1.4.2) and the exact
sequences

E;s-{—e,(t—i—p—l)q(X) n_’)Egs+e,tq(S) /\_’> E§s+1+e,(t+p—1)q(y)
2s+e+1,(t+ r 2s+e+1,(t+p—1 <\ A 2s+2+e,(t+
E; ( P)Q(X) L E; (t+p )Q(X) X B ( P)Q(S)

induced from the cofiber sequences in (1.4.1). O

Ravenel showed that do,—1(Bp2/p2) = alﬁg /o mod Ker 87 in the Adams-

Novikov spectral sequence for m,(S) (c¢f. [3, 6.4.1]). Here, the mapping 37 on

E§p+1’(p3+1)q(5) is a monomorphism by Lemma 1.4.3:
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Corollary 1.4.4. In the Adams-Novikov spectral sequence for m.(S), dap—1(Bp2 /p2) =
2p+1,(p3+1 2p+1,(p3+1
o, € Eyb PP HDi(g) = pirtttla(g),

Proof of Theorem 1.1.1. Consider the first cofiber sequence in (1.4.1). Since
3
the Adams-Novikov FEs-term E;q+3’(p +s)q(X) vanishes for s > 0 by (1.4.2),

3
the element ¢.(By2/p2) € E2P (X)) survives to a homotopy element XBp2/p2 €
7 (X). In general, we see that

(1.4.5) Leti: S — X denote the inclusion to the bottom cell. Then, \.i(z) =
aqx for x € E3(S).
Put B, = T.(Bp/p) € EP (X)), and we see that )\*(Bz/p) = alﬂg/p, and so

3P

we see that detects an essential homotopy element £, (¥, /p2) € T (X)

p/p
by Corollary 1.4.4, which we also denote by 72 /p-

Now turn to the second cofiber sequence in (1.4.1). The relation v} = 0 of
(1.4.2) yields a cochain y = Y7— ) z'y; € O*"'BP,(X) such that d(y) = b,
where y; € Q*71BP,. It follows that d(y) = b — d(2P~!)y,—1 € Q* BP.(X)
for g = S20-2 z'y; € O~ BP,(X). In particular d(y, 1) = 0 € Q*~'BP, and
d(yp—2) = (1 = p)t1 ® yp—1. By definition, these imply X, (y,—1) = b}. Consider
the exact sequence obtained by applying the homotopy groups to the second
cofiber sequence. Then, ¢/, (Bg/p) = 0 by (1.4.2), and so 72/10 must be pulled
back to an element & € m,(S) detected by y,_1. Since by = AN, boy,—1 = hobY,
and (ho, ..., ho)yp—1 = holho, ..., ho,Yp—1), We see that

b = (ho, ..., ho,yp—1) Z0 € Eip’p?’q(S) mod ker hq.

Put by = (ho, ..., ho,yp—1) +cfor c € ker hy C Egp’p?’q(S). Then, b} — ¢ survives
to 37, € m(S).

The element a1 /3], is detected by ho(b] — c) = hobY in the Adams-Novikov
Es-term, which is killed by by by Corollary 1.4.4. O

1.5 Remarks

1.5.1 A relation on Toda bracket

The relation (Bs,p, ) = (1, p, Bs) follows immediately from results of Toda:
By definition, (Bs,p, V) = 785wyt and (v, p, Bs) = V(1) B(s)t for Bsy = j18%1
and () = j1j27"i2i1. Since V/(2) and V(3) are V(0)-module spectra, 6(5) = 0
and 0(y) = 0 by [4, Lemma 2.3]. Similarly, 6(ix) = 0 and 6(ji) = 0 for k = 1, 2.
Therefore, [4, Lemma 2.2] implies 0(3(5)) = 0 and 6(vy)) = 0. Therefore,
BsyVt) = Yy B(s) by [4, Cor. 2.7] as desired.
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1.5.2 On the action of v,

Note that 74 = a18p—1. Then, a1y = aif,—1 = 0, <a1,041,ﬁ5/p>ﬁ171 =

—ai{or, a1, B8] ) B1Bp—1 = — (a1, a1,01)B), B1Bp—1 = 0 since (o, o1, 1) = 0,
and (y1,p, B1) = Bp—1{a1,p, f1) = Bp—1jaj1Biri = 0.
For t > 2,
By = (5(1’1)’1(5(1,1),2(1}5) = 5(1’1)’1([1‘,1};_1751194— (;)vlvé_Qt%p—&—v%x])

[t(t — )bt @ 8] — toh 7 bo + (D) vt @ t77] mod (p,v1)
t(t — 1)l ?ko — tol " tby  mod (p,v1)

and a1 828,-1 € E3(S°) is projected to ho(2ko — 21}2b0)(2v§73k0 + vé’*zbo) =
—208 % hokobo — 2hovE ™ 'b2 in E5(V(2)) under the induced map i, from the
inclusion i: S® — V/(2) to the bottom cell. Here, ko = [t2 @t} + 1t; @ t7¥].
Then, this element is detected by —2vE %k € E? = E;’(szrp_l)q(X AV (2)) in
the small descent spectral sequence. The Kkiller of this element, if any, stays in
the Ey-terms E? = EX® P9(X A V(2)), B} = EX® 7D x A V(2)) and
2

EY = By W 29X AV(2)). These are zero, and we see that the product is not
zero.
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Chapter 2

The T R-groups of the
sphere spectrum at the
prime two

For the multiplicative group S', the circle, we have the topological Hochschild
Sl-spectrum T'(S) of the sphere spectrum S. For the finite cyclic group C,. (C
S1) of order 7, the T R-groups of S at 2 are defined by the equivariant homotopy
groups TR} (S;2) = [S¥ A (81/Cyn-1)4,T(S)]s: for k > 0 and n > 1. By the
“trace method”, the groups are closely related with the algebraic K-groups of
S. In [1], Hesselholt determined the T'R-groups for 0 < k < 5, in order to obtain
the homotopy groups of the topological Whitehead spectrum of the circle in
dimensions less than 4. In this chapter, we extend his result for the T'R-groups
to k < 9 by the mod 2 Adams spectral sequence as well as the Atiyah-Hirzebruch
spectral sequence.

2.1 Introduction

Throughout this chapter, we fix a prime p = 2 and denote by C,. the finite
cyclic subgroup of the circle S of order r. Let T(X) denote the topological
Hochschild homology spectrum of a ring spectrum X. Since T'(X) is an S*-
spectrum, we define the T R-spectrum TR"™(X;2) of level n as the fixed point
spectrum T'(X )21 for n > 1. The spectrum TR(X;?2) is given by
TR(X;2) = holim, TR"(X;2),
the homotopy limit of the system {R: TR"(X;2) — TR" (X;2)}, of the
restriction maps. The Frobenius maps F': TR"(X;2) — TR"1(X;2) induce
a map F: TR(X;2) - TR(X;2), and TC(X;2) is a spectrum fitting in the
cofiber sequence
TC(X:2) 5 TR(X;2) =5 TR(X;2) & STC(X;2).

15
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Consider the algebraic K-theory spectrum K (X) of a ring spectrum X, and the
cyclotomic trace map tre: K(X) — TC(X;2). The “trace method” is to study
K (X) through the composite

tro: K(X) 25 TC(X;2) & TR(X;2) — TR"(X;2).

We call the homotopy groups TR? (X;2) = m.(TR"(X;2)) the (2-primary) TR-
groups of X of level n.

Let S denote the sphere spectrum localized at the prime two. In this chapter,
we consider the T R-groups TR} (S;2). We have the Segal-tom Dieck splitting
TR (S;2) & 72((BCon-1)y) ® TR?1(S;2) ([1, p. 137, p. 148, p. 155]), where
BCyn-1 denotes the classifying space of Cyn-1. By definition, TRL(S;2) =
7« (T'(S)), which is isomorphic to 7. (S) ([1, p. 147]). These show an isomorphism

(2.1.1) TRI(S:2) = 7.(S) & @) cpcr 75 (BCo)).
Hesselholt studied the Atiyah-Hirzebruch spectral sequence
(21.2)  E2,(n) = Hy(Con, m(S)) = 75((BCan)1) 2 m.(S) @ 75 (BCan),

which is called the skeleton spectral sequence in [1, p. 148], to show the following
theorem.

Theorem 2.1.3 (Hesselholt [1, Theorem 11]). The TR-groups TR} (S;2) for
k <5 are given by

TRy(S;2) = Z),

TRy(S;2) = Z/2°"e®,.,.,2/2"

TR5(S;2) = Z/2°" & @, ,2/2,

TR;(S;2) = Z/8%" o @, 2/2"*C N o @, ,2/2
TRE(S;2) = @)oo, 2/2705),

TR?(& 2) = @2§s<n Z/zs D ®3§s<n 2/2-

Liulevicius determined the stable homotopy groups 73 (BC2) for k < 9 ([3,
Theorem I1.6]). We consider 77 (BCan) for n > 1 and k < 9 in this chap-
ter. In section 2, we determine the stable homotopy group 7§ (BCyx) by the
Atiyah-Hirzebruch spectral sequence, and in section 3, we determine the stable
homotopy groups 7% (BCsx) in dimensions 7, 8 and 9 by the mod 2 Adams
spectral sequence as well as the results in section 2. The following theorem
summarizes Corollary 2.2.10 and Propositions 2.3.12, 2.3.14 and 2.3.16.

Theorem 2.1.4. The TR-groups TR} (S;2) for 6 <k <9 are given by

TRy (S;2) = Z/2°"© D cyen Z/2,

TR}(S;2) =2 Z/16%" & @, Z/2B Dcyen 227N o @, Z/2,
TRy(S;2) = Z/2°e@,.,.,2/2"" T e d, ., ., 2/2%, -

TRy(S;2) = Z/2%" e @, ., 2/2%° & D, 2/2"" Y o P, ., Z/2°7.



CHAPTER 2. THE TR-GROUPS OF THE SPHERE SPECTRUM 17

2.2 The Atiyah-Hirzebruch spectral sequences

In this section, £ ,(n) denotes an E"-term of the Atiyah-Hirzebruch spectral se-
quence (2.1.2), and E*(n) stands for the spectral sequence. Since the Can-action
on the homotopy groups m.(S) is trivial ([1, p. 145]), the standard resolution
gives rise to isomorphisms

Wt(S) s = O,
(2.2.1) E2,(n) = Hy(Con,m(S)) = S m(S)/(2") s : odd > 0,
m(S)[2"] s :even >0,

of groups, where m;(S)[2"] denotes the kernel of m:(S) z, 7 (S).

Theorem 2.2.2 (¢f. Toda [5, p. 189-190]). The homotopy groups i (S) for
k <10 are given by

k 0 1 2 3 [4[5] 6 7 8 9 10
m(S) | Zy | Z2/2 | Z/2 | Z/8 |0 | 0| Z/2 | Z/16 | Z/2%% | Z/2%° | 7Z/2
gen. |« [ m | v [ v v | o | mo,e [ ne, p P np

The generators satisfy the relations n° = 4v, n?c = ne + v> and vo = 0.

We notice that the spectral sequence (2.1.2) splits into the direct sum of two
spectral sequences

Eg*(n) = m(S) and @821 Ef*(n) = Wf(BC'Qn)

(1, p. 148]). We study the latter spectral sequence.
First we consider the case for n = 1. By (2.2.1) and Theorem 2.2.2, the
E?-terms EZ (1) for s > 1 and s + ¢ < 10 are given by

S
10 0
9 72  Z)2
8 0 Z/2 Z)2
7 Z/2 Z]2 ZJ]2 @ Z]2
6 0 Z/2 Z/2 4Z/8 0
5 Z/2 Z]2 ZJ2 Z/2 0 0
4 0 Z/2 Z/2 4Z/8 O 0 Z/2
3 Z/2 Z)2 Z/2 Z/2 O 0 Z/2 Z)2
2 0 Z/2 Z/2 |4Z/8| O 0 Z/2 8Z/16 Z7/2%2
1|2/2 Z)2 Z)2 72 0 0 Z/2 ZJ2 7292 7)2%3
1 2 3 4 5 6 7 8 9 10 s+t

Hereafter 297/2% denotes the subgroup of Z/2° generated by 2¢, which is iso-
morphic to Z/2°~% if a < b, and zero otherwise. For example, in the above
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chart, the boxed 4Z/8 at (s,t) = (2, 3) is the subgroup of Z/8 - v generated by
4.
We deduce

2 xn 4<s=0,1mod (4),
(2.2.3) (E2,(n) — EZ ,,,,(n) = , )
0 otherwise,

from [1, p. 148]. This implies that the E3-terms have a periodicity:

2.2.4 The E*-term E2 (n) is isomorphic to E3,, (n) if s > 2.
We obtain the E*-terms E2 (1) for s > 1 and s+t < 9 as follows by (2.2.3)
and (2.2.4).

S

0
Z/2 0 Z/2 0 0 7Z/2
0 Z/2 0

7/2 7)2 )2 72

1 2 3 4

0 0 Z/2 8Z/16
0 Z/2 7Z/2 Z/2%?
6 7 8 9 s+t

9 0
8 0 0
7 7Z/2 0 0
6 0 7Z/2 0 0
5 0 Z/2 Z/2 0
4 0 47Z/8 0 0
3
2
1

O OO OO

Theorem 2.2.5 (Liulevicius [3, Theorem I1.6]). The stable homotopy groups of
BC5 = RP®, the infinite real projective space, in dimensions less than 10 are
given by

k 1 2 3 4 5 6 7 8 9

mS(RP®) | Z]2 | ZJ2 | ZJ8 | Z]2 | 0 | Z]2 | Z]16 & Z/2 | Z./2%3 | Z./2%

Corollary 2.2.6. The spectral sequence E*(1) collapses at E® for s+t < 9.

We turn to the case for n > 2. By (2.2.3) and (2.2.4), we have the following
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chart of E3-terms of E*(n) for s > 1 and s+t < 10:

S
10 0
9 27,/2" 0
8 0 0 0
7 Z/2" 0 0 7./4
6 0 0 Ksn, 0
5 27./2" 0 Zn  Csn 0 0
4 0 0 0 Ks, 0 0 7.)2
3 Z/2" 0 0 Z/4| 0 0 7.2 Crm
2 0 7Z/2 0 Ks, 0 0 Z/2 Kr, Ksn
1|z/2" z)2 7)2 Cs, O 0 Z/)2 Cr, |7/2%?| 7,)293
1 2 3 1 5 6 7 8 9 10 s+t

Here, K = m(S)[2"], Kt = Kin/(0), Cin = m(S)/2" and Z,, = ker(Cy.,,
Cgﬁn), whose structures are:

K37n ~ 2max{3—n,0}Z/& K’Ln o~ 2max{4—n,0}z/167 I?gm o~ 2max{3—n,0}z/47
Ks , =2 Z/2 except for Kgo = Kg3 = 7./292 O3 Z/Qmin{n,g}7
Crp 2720004 and  Z,, = 0 except for Zy = Z,/2.

Lemma 2.2.7 ([1, p. 145, Lemma 6, p. 148]). The Verschiebung map V : w5 ((BCyn-1)4) —
7 ((BOgn)y) induces a map V: E*(n — 1) — E*(n) of spectral sequences. Let

{x}n denote an element of EZ (n) represented by x € m(S). If s is even, then
V({x}n_1) = {a}n for the map V: E2 (n—1) — EZ,(n) of the Ey-terms.

3 3
Since the differentials £ (1) LN E35(1) and Ef 4(1) LN E} (1) are trivial

by Corollary 2.2.6, the differentials Ef , (n) LiN E3 3(n) and E3 4(n) <, E} g(n)
for n > 2 are trivial by Lemma 2.2.7.
Recall [1, Lemma 8] that

xv 4<s=0,1,2,3,8,9,10,11 mod (16),
2.2.8 (B, (n) D EL, ,,4(n) = { x2v 4<s=6,7,12,13 mod (16),

0 otherwise,
for n > 1. We then obtain the following chart of the E°-terms for n > 2, except
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for the underlined group E? 5(n).

S

10 0
9 8Z/2™| 0
8 0 0 0
7 27/2" 0 0 0
6 0 Z/2 0 Ksn.| O
5 27./2" 0 Zn 7.2 0 0
4 0 0 0 Ks, 0 0 ?
3 Z/2" 0 0 Z/2 0 0 zZ)2 7
2 0 7/2 0 Kz, 0 0 7)2| Kq, 7
1|Z/i2" Z)2 Z/2 Cs, 0 0 72 |Crn| 7292 7

1 2 3 4 5 6 7 8 9 10 s+¢

By (2.2.1) and Theorem 2.2.2, we see that E}, o(n) = Z/2" -1, and that E7 5(n)
is a quotient of E? 3(n) = Z/4 - v. Thus, we deduce from (2.2.8) that the group
E? 5(n) is zero.

Lemma 2.2.9. On E{,(n) forn>2 and r > 5, the only possibly nonzero dif-

ferentials are Egj(n) i E1577(n),Eg’0(n) i) E;G(n) and ES’O(n) ﬂ E%7(n)
for s+t <10.

Corollary 2.2.10. Forn > 2, the stable homotopy groups 72 (BCan) in dimen-
stons from 6 to 9 satisfy the following relations:

Wg(BCQH) = Z/Q,
wS (B = 2,
|7T8S(B02n)| < 2min{n+2,6}’
|7TQS(BCQ71) < 2min{2n+2,n+6}.

2.3 The mod 2 Adams spectral sequence
In this section, we consider the mod 2 Adams spectral sequence
E3'(X) = Ext3{ (H*(X), 2/2) = 7 (X)

for a space X. Here H* (X) denotes a reduced cohomology of X with coefficients
Z/2, and A denotes the Steenrod algebra. We assume that n > 2, and determine
the stable homotopy groups 72 (BCs.) in dimensions less than 10 by the mod
2 Adams spectral sequence for BCon.
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Proposition 2.3.1. The Ez-term Ey”(BCan) is isomorphic to zEy"(S°) @
E%"*((CP‘X’) @ zEy"(CP>®) as a graded Ey*(S%)-module for a generator x €
Ey°(BCya). Here SO and CP> denote the 0-dimensional sphere and the infinite
complex projective space, respectively.

Proof. We claim that there exists a generator z € H*(BCs») such that
(2.3.2) H*(BCyn) = Z)2 - 2 & H*(CP>®) & zH* (CP>)

as a graded A-algebra. Indeed, the unreduced cohomology H*(BCan,Z/2) is
isomorphic to the group cohomology H*(Can,Z/2) = E(z) ® P(y) with |z| =1
and |y| = 2. Here E(—) and P(—) denote the exterior and the polynomial
algebras, respectively. Furthermore, we see that the action of A on the gener-
ators z and y is trivial except for Sq¢?(y) = y? by the fundamental properties
of the Steenrod squares, other than Sq'(y) = 0. Note that Sq' fits in the exact
sequence

HY(BCyn,7)2) 2Ls H2(BCan,7,/2) — H2(BCan,7,/4)
— H%(BCyn,7)2) 255 H3(BCyn,7,/2)

associated to the short exact sequence 0 — Z/2 — Z/4 — 7Z/2 — 0. In the
exact sequence, H?(BCyn,Z/2%) = 7,/2¢ by the standard resolution. The first

Sq* is zero, and so is the second Sg! as desired. We note that H*(S°) & Z/2

and H*(CP>) = P(y) as graded A-algebras for the augmented ideal P(y) of
P(y). Thus, the claim (2.3.2) is verified and hence the proposition follows. O

The Fo-terms Ejy*(S°) are well known as follows ([4, Theorem 3.2.11]):

5[ A3 Phy
4 hé h%hg h100
3 h3 h3 = hZhy h2hy | co | I3 = hZhg
2 [ 12 B2 hohs K2 | hohs | hihs
1 h,o hl hQ h3
0 1
[ ffoftf2] 3 [4[5[6] 7 [ 8 | 9 |

The generators satisfy the relations: PR

hihi+1 =0 for 7 Z 0, h? = hghg, hoh% = O, hg = h%hg,

(2.3.3) hihs =0, hoco =0, h3co=0 and hoPh;=0.

We see the following fact immediately.

2.3.4 The mod 2 Adams spectral sequence for SO collapses at Ey for t — s < 10.
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The Eo-terms Ejy*(CP>) are determined in [3, Prop. 11.3] as follows:
s 4
5 h8€2 h§e4 h866 h%eg hgelo
4 héeg h8€4 héeg hoeg hghgeg hgelo
3 h%ez h3€4 h(3)66 €8 h%hg@Q hoelo
2 h(2)62 h064 h0h2€2 h%(’,ﬁ h%(’,ﬁ h0h3€2 €10
1 hoea ey haes | hoes | hieg hzes
0 €2 €6
(0[] 2 [3[ ] 5 [6 [ 78] 9 [10]
t— s'

Remark 2.3.5. In [3], the generators hg, h;(i > 0), €2, €4, €6, €5 and ejq here are
denoted by go, hi—la €0,2,€1,5,€0,6,€3,11 and €212, respectively.

Therefore, we obtain the following chart of E5*(BC2n) by Proposition 2.3.1.

Recall a well known fact (¢f. [4, Lemma 3.1.3]):

6 a:hg hgez whgeg hge4 whge4 thG whgeg hgeg whgeg héelo
P
5 zhg hgeg xhgeg hée4 :Eh384 hgeg mhgeg hgeg zhgeg dehl
0€10
zhic
3 h Thico
4 zhé h%ez mhéeg hge4 whge4 hgeg mhgeg zhihs 13 08 mhghgeg
hoes hghsez 2
hgelo
3
2 22 e xhy
3 zhd | hies | xhies m:20h'2 zhies hies zhies a’heth zes zhihszes
064 8 hihses hoeio
9 2h2 hZe th zhoho zhoey zhohoes xhg zhohs ";;“2}:3 zhohses
0 0€2 2 2 2 2 Thiee
zh{es hoey hohseo hges zhgee hieg hohses €10
xhy xho Tey xhoeo xhoeg xhs
! ho hoez whoes eq hoes hoeg hieg zhieg hsez zhsez
0 es xes [ xee
[ 0] [ 2 ] 3 [ 4 [ 5 [ 6 7 [ 8 9 [ 10
—_—
t—s

2.3.6 If « € 73 (BCyn) is detected by an element a in Ey*(BCyn), then 2« is
detected by ahg.

Since BCsq» is a Hopf space (¢f. [2]), the following holds (¢f. [4, Theorem

2.3.3)).

2.3.7 The differentials of the mod 2 Adams spectral sequence for BCan are deriva-

tions.
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By (2.1.1) and Theorem 2.2.2, the T'R-groups in Theorem 2.1.3 give rise to
the stable homotopy groups 73 (BC2n) for k < 5 as follows:

Wf(BCQn) = Z/Qn,
75 (BCyn) = 72,
(2.3.8) 75 (BCyn) = ZJ2@®Z/2"F,
7.(.215' (BCQn) o Z/Qmin{&n}7
775 (BCQn) o~ Z/Q@ min{1l,n—2} ey Z/Qn

We obtain the following lemma from (2.3.8).

Lemma 2.3.9. In the mod 2 Adams spectral sequence for BCan, the elements
x, xeg and xey are permanent cycles,

hohses + xhoey n =2,

dn(e2) = xhyl, dy(es) = xhi ey and dy(e) = {h0h262 n> 2.

Furthermore, da(hoes) = xh%hg if n =2, and hoes is a permanent cycle other-
wise.

Lemma 2.3.10. The elements hieg and xzhoeg of Eé’S(BCQn) are permanent
cycles.

Proof. We note that 75 (BCan) = Z/2 by Corollary 2.2.10. Since xhges is a
permanent cycle by Lemma 2.3.9, it detects a generator of 75 (BCan ), and so
hoes supports a nonzero differential. We deduce d,,(hoes) = xh{es from the
structure of 75 (BCyx) in (2.3.8). Therefore hieg for i > 1 cannot be a target
of any differential. O

Lemma 2.3.11. d,(es) = a:hg+3eg.

Proof. By (2.3.4), (2.3.7), Lemmas 2.3.9 and 2.3.10, the elements xhoeg, hieg
and zh3 (resp. zhies, xhs and h?eg) detect generators of 75 (BCyn) (resp.
75 (BCyn)). Since |75 (BCyn)| = 2"+ by Corollary 2.2.10, and the elements
hieg and xh% generate the Z/2-summands, the element detected by xh6‘+366 is
zero in the homotopy. O

Proposition 2.3.12. 77 (BCqn) = Z/29%2 @ 7/2"+2. The generators of sum-
mands are detected by xh3, hieg and xhoeg, Tespectively.

Lemma 2.3.13. The element hzey € E%’lO(BCQn) s a permanent cycle if
n > 3, and dn(hge2) = xhihs if n = 2,3. The element xes is a permanent
cycle.

Proof. Since dy(e2) = zh{ by Lemma 2.3.9, we have d,,(hsez) = xh{hs by
(2.3.7), which is not zero if n = 2,3, and zero if n > 3. By (2.3.7) and Lemma
2.3.11, hies supports a nontrivial differential, and so it cannot be a target of an
Adams differential. Therefore d,.(hges) = 0 for r > n in the case for n > 3.
Since d,,(zeg) = 0 by Lemma 2.3.11, we see that d.(zeg) = 0 for r > n
similarly. O
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This together with Lemma 2.3.10 implies the following result.

Proposition 2.3.14. 75 (BCy.) = 7/29% @ 7/2m{n4t - The generators of
summands are detected by xhyeg, h%e@- and xhg, respectively.

Lemma 2.3.15. |75 (BCon)| = 2min{2n42n+6}

Proof. Proposition 2.3.14 shows that |75 (BCon)| = 2™n{n+2.6} which implies
that the undetermined differentials in Lemma 2.2.9 turn out to be trivial. We
now see the lemma by the same argument as the proof of Corollary 2.2.10. [

Proposition 2.3.16. 75 (BCyn) = 7,/2%9% @ 7./2™Mn4} ¢ 7,/2"=1. The gener-
ators of summands are detected by xco, vh3eq, xhihs, hgnax{4_n’0}h362 and xeg,
respectively.

Proof. Since da(xhsez) = 0 by Lemma 2.3.13, we see that xcy and zhihs gen-
erate Z/2-summands by (2.3.4) and (2.3.7). The element zh?es detects a gen-
erator of the other Z/2 summand by Lemma 2.3.10. Lemma 2.3.13 shows that
hglax{zl*n‘o}hgeg generates the summand Z/?min{”"l}. Lemmas 2.3.13 and 2.3.15
imply that zeg generates the summand 7 /2"~ 1. O

Remark 2.3.17. This also implies a differential d,,(e19) = xhg_leg for n > 2,
and dz(elo) = thoeg mod (h8h3€2) for n = 2.
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Chapter 3

The first line of the
Bockstein spectral sequence
on a monochromatic
spectrum at an odd prime

The chromatic spectral sequence is introduced in [8] to compute the FEs-term
of the Adams-Novikov spectral sequence for computing the stable homotopy
groups of spheres. The FEj-term Eff(k‘) of the spectral sequence is an Ext
group of BP, BP-comodules. There are a sequence of Ext groups E7 *(n—s) for
non-negative integers n with Ef’t(()) = FEj " and Bockstein spectral sequences
computing a module ES*(n—s) from ES~"*(n—s+1). So far, a small number of
the F-terms are determined. Here, we determine the Elll(n —1) =Ext'M} |
for p > 2 and n > 3 by computing the Bockstein spectral sequence with E1-term
E? *(n) for s = 1,2. As an application, we study the non-triviality of the action
of a7 and f; in the homotopy groups of the second Smith-Toda spectrum V(2).

This is a joint work with Professor Shimomura.

3.1 Introduction

Let p be a prime number, S, the stable homotopy category of p-local spectra,
and S the sphere spectrum localized at p. Understanding homotopy groups
7« (S) of S is one of the principal problems in stable homotopy theory. The
main vehicle for computing 7. (.9) is the Adams-Novikov spectral sequence based
on the Brown-Peterson spectrum BP. BP is the p-typical component of MU,
the complex cobordism spectrum, and that it has homotopy groups BP. =
T(BP) = Zp)[v1, va, - - -] where v, is a canonical generator of degree 2p™ —2. In
order to study the Fs-term of the Adams-Novikov spectral sequence, H. Miller,
D. Ravenel and S. Wilson [8] introduced the chromatic spectral sequence. Tt

26
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was designed to compute the Fo-term, but has the following deeper connotation.
Let L, : S, = S, denote the Bousfield-Ravenel localization functor with respect
to v, ' BP (cf. [12]). It gives rise the chromatic filtration S, — -+ — L,S, —
Lp 1Sy, = -+ = LoSp of the stable homotopy category of spectra, which is
a powerful tool for understanding the category. The chromatic nth layer of
the spectrum S can be determined from the homotopy groups of Lg S, the
Bousfield localization of S with respect to the nth Morava K-theory K(n) that
it has homotopy groups K(n). = v, *Z/p[v,] for n > 0 and K(0), = Q. By the
chromatic convergence theorem of Hopkins-Ravenel [13], S is the inverse limit
of the L,,S. Let E(n) be the nth Johnson-Wilson spectrum E(n) with E(n). =
Oy gy lv1, -+ vp] for n > 0 and E(0) = K(0). It is Boufield equivalent to
v, 'BP and also to K(0) V ---V K(n), i.e. Lgm) = Ly = Li©)v..vk(n)- We
notice that E(0) = HQ, the rational Eilenberg-MacLane spectrum, and E(1)
is the p-local Adams summand of periodic complex K-theory. Futhermore,
E(2) is closely related to elliptic cohomology. So far, we have no geometric
interpretation of homology theories K(n) or E(n) when n > 2.

From now on, we assume that the prime p is odd. We explain the E;-term
of the chromatic spectral sequence. The Brown-Peterson spectrum BP is a ring
spectrum that induces the Hopf algebroid (BP., BP.(BP)) = (BP., BP,[t1,
ta,...]) in the standard way [14], and we have an induced Hopf algebroid

(E(n)+, E(n)«(E(n))) = (E(n)«, E(n)« ®pp, BP.(BP) ®@pp. E(n).)

where E(n). is considered to be a BP,-module by sending vy, to zero for k > n.
Then, the F;-term is given by

Eigyt(n - 5) = EXttE(n)*(E(n))(E(n)*, MTSL—S)'

Here, M; _, denotes the E(n),(E(n))-comodule E(n)./(In—s+(v5 o, U5 o 15---
v2° 1)), in which I, denotes the ideal of E(n). generated by v; for 0 < i < k
(vo = p), and M/(w*>) for w € E(n), and an E(n).-module M denotes the
cokernel of the localization map M — w™!M. In order to study the sta-
ble homotopy groups 7. (L n)S), we study here the homotopy groups of the
monochromatic component M, S of S (see [12]). Then, the Ey-term E3*(M,S)
of the Adams-Novikov spectral sequence for computing . (M,,S) is the E;-term
E7"?(0) of the chromatic spectral sequence. In [8], the authors also introduced
the v,,_s-Bockstein spectral sequence B~V (n— s +1) = E'(n — s) associ-
ated to a short exact sequence
0— Ml B M —=5% M —0

S n—s

of E(n),(E(n))-comodules, where ¢(x) = x/v,_,. So far, the Ej-term E"*(n —
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s) is determined in the following cases (cf. [14]):

(s,t,n) = (0,t,n) for (a) n <2, (b) n=3,p>3, (c)t<2Dby Ravenel [11],
(Henn [2] for n = 2 and p = 3),
= (1,0,n) for n > 0 by Miller, Ravenel and Wilson [§],
= (s,t,n) for n <2 by Shimomura and his colaborators: Arita [1],
Tamura [20], Yabe [21] and Wang [22], ([15], [18], [19]),
= (1,1,3) by Shimomura [16], Hirata and Shimomura [3],
= (2,0,n) for n > 3 by Shimomura [17], for n = 3 by Nakai [9], [10].

In this chapter, we determine the structure of E11 ’1(n —1) for n > 3. The case
n = 3, which is special, is treated in [16] and [3]. The result is the first step to
understand 7, (L g (n)S) for n > 3 as explained above. We proceed to state the
result.
In this chapter, we consider only the cases s = 0 and s = 1, and, hereafter,
put
v=uv, and u=1v,_1.

Furthermore, we put
F=17]p,

and consider the coefficient ring K(n), = F[vr!] = Flo*] = E(n)./I,,
A = E(n)./I,-1 and B = M}

n—1

= A/(u*®) = Coker (A — u~1A).

Since the ideal I,_; is invariant, (A,T") = (A4, E(n)«(E(n))/I,—1) is a Hopf
algebroid, and we use the abbreviation

Ext°M = Ext.(A, M)
for a I'-comodule M. Then, the chromatic E4-terms are
EY(n) = Ext'K(n), and E}'(n—1)=Ext‘B.
We have the u-Bockstein spectral sequence
(3.1.1) E; =Ext*K(n). = Ext*B
associated to the short exact sequence
(3.1.2) 05 (n), & B4 B0,

where ¢ is a homomorphism defined by ¢(x) = z/u.

Let R be a ring, and let R{g) denote the R-module generated by g. The
E4-term of the u-Bockstein spectral sequence was determined by Ravenel [11]
as follows:

Theorem 3.1.3. Ext’K(n), = K(n), and

Ext'K(n), = K(0n)«(hi,Cn:0<i<n),
Ext’K(n), = K(n)«(Cahisbi,giskihjhy:0<i<n, 0<j<k—1<n-—1).
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In the theorem, the generators h; and b; are represented by tzlf and ZZ;; %(Z) tlfp '®

t:(Lp ~MP" 6f the cobar complex Qf K (n),, respectively, and g; and k; are given by

the Massey products
(314) g = <hi,hi,hi+1> and k‘i = <hi,hi+1,hi+1>.

In order to determine the module Ext’ B, Miller, Ravenel and Wilson [8] intro-
duced elements z; and integers a; in [8, (5.11) and (5.13)], where they denoted
them by z,; and ay;, such that x; = vP" mod I,, with the action of the con-
necting homomorphism ¢ given in [8, (5.18)]:

i—1

(3.1.5) 6(v°/u) = sv° ‘h,_1 and &z u®) = svlP~ P iy fori > 1.

Hereafter, we let
[i] € {0,1,...,n — 2}

be the principal representative of the integer ¢ module n — 1. The elements x;
and the integers a; are defined inductively by xg = v and ag = 1, and for i > 0,

ety for i =1 or [i] # 1,
(3.16) o= 2P | —ubri? P for i > 1 and [i] = 1, and
~ Jpaia fori=1or [i] #1,
4= pa,_1+p—1 fori>1and[i=1.

Here, by, k(n-1)4+1 = (p" — 1)(pF"~Y —1)/(p"~! — 1). The result (3.1.5) deter-
mines the differentials of the Bockstein spectral sequence, which implies:

Theorem 3.1.7. ([8, Th. 5.10]) As a k.-module,
Ext’B = Lo, @ @ Lo, (7).
pts,i>0
Here, k. = k(n — 1), = Flu], L; = k./(u*) and Lo = k./(u®®) = colim; L;.
This theorem together with (3.1.5) implies the following;:

Corollary 3.1.8. The cokernel of 6: Ext°B — Ext'K(n), is the F-module
generated by

viCn, v h, 4, h; for0<j<n-—1, and
vsz’khj for 0 <j<n—1, where [k] # [j], s Z —1 (p), or s = —1 (p?),

for integers s and t with pt s.

By Theorem 3.1.3, the module Ext* K (n), is the direct sum of ¢, Ext® K (n), =
(oK (n)y, F(h;) for j € Z/(n — 1) and the modules

‘/(i’j7s) = F</U'Spl h]>
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for (i,7,s) € NXZ/n x 7. Here, N denotes the set of non-negative integers, and
Z =7\ pZ. We partition N x Z/n as follows:

Jhy
A
n — 14 Tm 5
n— 24
H H
(H]
H H
1 i: P
GB}GlQ n—lln 2n'— 2 -
More precisely,
H = {(0,j):1<j<n-2}
U{(é,7) : >0, [i] #n—3,n—2, 2+ [i] <j<n-—2}
U{(4,4) 14 >0, [ #0,1, 0 <j <[i] -2},
GB = {(3[i]):i >0},
K = {([i]—-1):i>0, [i] #0} and
[2]

1
G = {(6,[i]-2):i>1, []]#0,1}.

We introduce notation

Viom-2) = D,z Viom—2)
Vion-1) = @tez Voon-1,4p—1) = F[Uip} (V" 1),
Cx = @(i,j)eX, sz Vii,j,s) forasubset X C N xZ/n,

éGB = @(l,j)EGB ((@Sei ‘/(i7jas)> ® (@tEZ ‘/(iﬂlatpz*l)))
i+2,, i
= D 0eas Vs & Biso Flv™ [ hym) and
Co = F(0,hj:jeZ/(n—1)).
Here, for e(i) = (p' —1)/(p—1), 0 = v~ h, o,

!

Z' = Z\{e(n-2)}, Z = {neZ:pt(s+1)} and
GB = {(i,]i],s):s €Z}.

We also consider the subset T of N x Z/n x Z defined by

T = {(i,j,8) ENXZ/nxZ: pf(s+1)orp?|(s+1)if [i] =7,
Pl (5+1)if (i,5) = (0,n— 1), and s # e(n — 2) if (i, ) = (0,n — 2)}.
In this notation, the cokernel of § in Corollary 3.1.8 is given by
(3.1.9)
Coker § = CnK(n)* e Co ® ®(i,j,s)€T V(i,j,s) B
= (K (1)« ®Co ® Vign-2) ® Vion-1)®Cn & Ck & Cs ® Cgp
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Finally, we consider the k,-modules:

Wiis) = Lagjs(xihs),

Wion-2 = sc7 Wion—2,s)
Won-1) = tez Wo,n—1,tp—1);
Bx = @(i,j)eX’ scz Wiij,s) for asubset X C N x Z/n,
Baz = @jean ((Boz Wiio) ® (Brez Wesape-1))  and
Coo = (K(n—1).Jk) {8,k :j € Z/(n—1).

Here, a(i,j,s) denotes an integer defined as follows: for (i,j5) = (0,n — 2),
a(0,n—2,8)=2if pts(s—1), and

a pit, 1 >0, [I] #0,n—2,
a(0,n—2,8) = Ca+e(n—2)+p" 2 ptt, >0, [[|=n—2,
a;+1 ptt, 1>0,[1]=0

if s =tp! +e(n —2); for (i,5) € {(0,n - 1)} UHUK UG UGB,

p—1 (i,5) = (0,n — 1),
Q; (i,§) € H,
a(i,j,s) = Sai+ai-1  (i,j) € KUG,
2a; (i,j,s) € GB,
(p = Dais1 (4,5) € GB, p* | (s +1).

Theorem 3.1.10. The chromatic Ey-term Ext' B = Ext'M! | is canonically
isomorphic to the k,-module

CExt’B @ Coo ® Wig,n—2) & W(o,n—1) ® Bu ® B @ Bg & Bgp.

Let V(n) be the nth Smith-Toda spectrum defined by BP,(V(n)) = BP,/I,11.
As an application of the theorem, we study the action of oy and [ on the el-
ements u’ (¢ > 0) in the Adams-Novikov Fa-term E3(V(n)) in section 6. In
particular, it leads us an geometric result for n = 4. In [23], Toda constructed
the self map v on V(2) to show the existence of V(3) for the prime p > 5. We
notice that v'i € m,.(V(2)) for the inclusion i: S — V(2) to the bottom cell is
detected by u' = v§ € BP,(V(2)) in the Adams-Novikov spectral sequence.

Theorem 3.1.11. Let p > 5. Then v'iay and v'if1 are nontrivial in m.(V (2))
fort > 0.

3.2 Bockstein spectral sequence

We compute the Bockstein spectral sequence by use of the following lemma.
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Lemma 3.2.1. Let§: Ext®B — Ext®™ K (n), be the connecting homomorphism
assoctated to the short exact sequence (3.1.2). Suppose that Coker § = @, Vi C
Ext'K(n). and @, Uy, C Ext’K(n). for F-modules Vi, and Uy, and there exist
u-torsion k,-modules Wy, fitting in a commutative diagram

00— Vi 2% we —/ w, 2% U

Y

0 — Coker § —2— Ext'B —“— Ext'B —%— Ext’K(n),

of exact sequences. Then, Ext'B = D, Wi.

This follows immediately from [8, Remark 3.11].
Let 6 be an element of Corollary 3.5.8. Then, 6/u* and h; /u* for j € Z/(n—
1) belong to Ext'B, and we define the map f: Co, — Ext' B by f((u=*)0) =

0/u* and f((u=*)h;) = h;/u* for (u=%) € K(n—1),/ks, so that the short exact
sequence

(3.2.2) 0= Co L% 0 ™ O 0

yields a summand of Lemma 3.2.1.
Note that if a cocycle z represents (,, then so does zP. Therefore, we have
Cn/u’ € Ext'B represented by 27’ /u’. The exact sequence (3.1.2) induces the

exact sequence 0 — Ext°K(n), 2% Ext'B % Ext’B AN Ext'K(n),, and we
have an exact sequence

(323) 0= GExt°K(n), 25 GExt’B % (Ext’B % ¢, Ext' K (n),,

which is a summand of Lemma 3.2.1. Together with (3.2.2) and (3.2.3), Theorem
3.1.10 follows from Lemma 3.2.1 if the following sequence is exact for each
(i,7,8) € T:

©, o
(3.2.4) 0= Viigs) = Wiigs) = Wiigs) = Uig,s),
where U(; j ) denotes an F-module generated by a single generator as follows:

for (17]) = (Oa n— 2)v U(O,n—Q,s) = FpU872kn—2 lfp Jf 5(5 - ]-)a

Foo" P " hy_yjhn—o ptt, 1>0, [I] #0,n—2,
U(O,n—2,s) = ]vas_plilen—5 p T ta > 07 [l] =n-—- 2a
vas_plfl_lgn_g ptt, 1>0, [[]=0;
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if s =tp! +e(n —2); for (i,5) € {(0,n - 1)} UHUK UG UGB,

Fpvs~PHp, 4 (i,7) = (0,n — 1),
F<U(3p_1)piilh[i—1]hj> (i,j) € H
Fpols= 2Pk, (4,7) = ( 0) € K,

U . IFPU(SpQ*p*l)pl._Qk[i_g] (Z,j) eK,i>1,

(4,5,8) = ]F*p,u(sp27p71)p172g[i_2] (i,7) €

Fpvs =P lg, 4 (i,7,8) € GB, i=0,
F, p(sP=2)p"" 1g[i,1} (i,7,8) € Cr?\é 1> 0,
Fu(H=rPp)) (i,5) € GB, p* | (s +1).

Since the mapping T — {U(; ;¢ : (i,7,5) € T} assigning (4,7, s) to Uy j )
is an injection, we see the following:

Lemma 3.2.5. The direct sum of ¢, Ext' K(n), and Ugi,j,s) for (i,7,s) € T is
a sub-F-module of Ext>K (n)..

The homomorphism fy in Lemma 3.2.1 on Wy, ; , for (i, j, s) € T is explicitly
given by N
fio)(@) = wut63).
It follows that the homomorphism &’ on it is given by the composite §(1/u®(7)),
Hereafter we denote it by d(; ; ), that is, &(; ; . = §(1/u@32)) and consider a

(4,4,5)
condition:

(3.2.6)(4,5,5) 5217j7s) (x) =y for the generators x € W(; ; oy and y € Uy j 5.
Note that ¢’ (%) = u®(7*) =1z for the generators T € Viij,s) and x € W(, 5 4),
since frpl(ZT) = p«(T) = z/u. Then,

Lemma 3.2.7. For each (i,j,5) € T, if the condition (3.2.6); ; s holds, then
(3.2.4) for (i,7,8) is exact and yields a summand of Lemma 3.2.1.

The relations in (3.1.5) show immediately
(3.2.8) The condition (3.2.6)(; ;s holds for (i,j) € H.

Proof of Theorem 3.1.10. The theorem follows from Lemmas 3.2.1, 3.2.5 and
3.2.7 together with (3.2.2), (3.2.3), (3.2.8), Lemmas 3.3.7, 3.3.8, 3.4.1 and 3.5.9,
in which the lemmas are proved below. Indeed, the direct sum of ¢, Ext®K (n),
Co and V(; j ) for (i, j,s) € T is the cokernel of § by (3.1.9). O
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3.3 The summands on V|, ,_;) and Caon

We begin with stating some formulae on the Hopf algebroid (4,T"):
(3.3.1)

0 = ot? + utg:ll — P Mty — timr(WP") €T for k < n,
nr(u) = u, nr(v) = v —|—ut71’"71 — uPty,
Aty) = Z?:o t; ® tzlﬂ- for k < n, and
Alty) = S oti @t —ub, .

Then the connecting homomorphism 6: Ext' B — Ext?K (n)« is computed
by the differential d: QLA — Q2 A of the cobar complex modulo an ideal, which
is defined by

(3.3.2) dz)=1@z—-Alx) +z® 1.

We also use the differential d: Q%A — QLA defined by d(w) = nr(w) — 1 (w).
For w,w’ € Q%A and z € Q} A, these differentials satisfy
(3.3.3)
dlww") = dw)ng(w')+ wd(w'), dlwz) = d(w)® x + wd(z), and
d(znr(w)) = d@)nr(w) -z @ d(w).

We also use the Steenrod operations PY and SP° on Ext*C(j) for j > 1 and
Ext*B (cf. [6], [14]). Here, C(j) denotes the comodule A/(u?), and we notice
that C(1) = K(n),. Let QM = Qp(n). (Bn)M for an E(n)«(E(n))-comodule
M. Given a cocycle z(j) of Q°C(j), Z(j) denotes a cochain of Q°E(n), such
that 7;(z(j)) = x(j) for the projection =;: QE(n), — Q°C(j). Since z(j) is
a cocycle, d(F(§)P) = py; + S0 Pz + uPz;, 1 for some elements y; and
zj; € Q*+*1E(n),. Under this situation, the Steenrod operations are defined by

PO([z(j)]) = [2(j)"] and  BP([z(j)]) = [y;] € Ext*C(jp), and
PO([2(j)/w']) = [x(j)?/w'?] and  BP°([z(j)/w']) = [y;/w'P] € Ext"B.

Here, [z] denotes the homology class represented by a cocycle . In particular,
the operation acts on our elements as follows:

Upilhn—l/upi1 1=0,

2 in Ext'B;
e hyg /uP b >0,

(3.3.4) BPY(x;/u%) = {

(3.3.5)
PO(xihyp/ul) = i1 by /u? k#n-2,
! xfﬂho/uﬂ’*”l k=n—2
BPO(xsihy) = xi by in ExtQK(n)*.

in Ext! B; and

The following is a folklore (cf. [14, Corollary A1.5.5]):

(3.3.6) P% =6P° and BP% = —6BP° in Ext*K(n),.
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Lemma 3.3.7. The condition (3.2.6)¢; ;s holds for each (i,j,s) € {(0,n —
17tp_ 1)7 (iajatPQ - 1) S Z7 (27.7) € GB}

Proof. For k > —1, consider a generator x(k,t) = xzﬁ_lh[k] for k > 0 and
w(—1) = 2?7 'h,_y, and (k,t) denotes a triple (k,[k],tp> — 1) if k > 0 and
(0,n—1,tp— 1) if k = —1. Then, (1/u®®D)(x(k,t)) = 2} L8P (wpq1/u+)

for k > —1 by (3.3.4). Now, 62’@ - ( (k,t)) equals

2 h0(BP (s fu™ ) = = h(BP (e} b)) =~ by

by (3.3.6), (3.1.5) and (3.3.5). Here, (v(t),[k]) = (tp — 1,[k]) if & > 0 and
=((t—-1p,n—1)ifk=-1. O

Lemma 3.3.8. The condition (3.2.6); [;),s) holds for (i,[i], s) € GB.

Proof. We prove this by induction on . By (3.3.1) and (3.3.2), we compute
mod (u?)

d(vs+1*ptfn) = (s+ l)uvsfptlfnil ® t’l’n + (Sgl)u%‘g*p*lt?nil ® tfu
n—1 n—1 n—1 n—1 n
d((s+ Duv*=Pth ) = s(s+ w2 P4 @th  —(s+DwPt) @]

to obtain d(vhg/u?) = s(s + 1)v* P~ lg, 1 and so
20,0,5)(”%0) = s(s+1)v° P g, 4.
Apply PV to it, and we obtain

(11,5 (VPh1) = O(P°(v*ho/u?)) = P°3(v°ho/u?) = s(s+1)P°(v* P 1g,1)
= s(s+ DoP P Pg, = s(s+ 1)oP 2.

Here, we notice that g, = v *Hp- 290 in Ext K(n). by (3.3.1). Suppose induc-
tively that d, , S)(x hy) = s(s+1)wEP=2P"" g for [i] = 1, which is (3.2. 6)(i1,9)-
Note that a;+; = pa;1;—1 if 0 < j < n — 2, and we see that Poé(ws) =
6EZ+1 ts) P by (3.3.6). Therefore, (P°)7 for j < n — 2 yields the equation
for 67, ;i1 @i his). At @ =i4+n =2, fort = (i',0,s), 6i(zjho) =
SPO(x5 By Jucl =1n=25)) (hy (3.3.5)) = s(s+1)oP=2P"" g by (3.3.6)
and inductive hypothesis.

Note that a;1n,—1 = p"~ta; + p — 1. Consider the connecting homomor-
phism §;: Ext' M}, — Ext®C(j) associated to the short exact sequence 0 —

c@y) — 1/u M, “, M}_; — 0. Then, w/~16 = §;u/~!. Besides, 6;(P°)* =

(PYY%s if p* > j. Now in Ext?’C(p® + p — 1), up2+p_2(5£i+n71 1.9 (@1 l1)
equals

w2623, fu” T R = S (PO (a2 hy fu)

= (PO (sl + 1)l go) = (s 1l g
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for a = a(i, [i], s), which equals s(s + 1)u?”+P=2p(sP=2P""""* g0 by the relation

uP*2g, 1 = uP’+2Pg,. This relation follows from (3.1.4) and uh,_1 = uPhg
given by d(v). O

3.4 The summands C; and Ck

We study the action of the connecting homomorphism § by use of the Massey
product. We notice that this is also shown by use of P%-operation considered in
the previous section, but we use the Massey product for the sake of simplicity.

Lemma 3.4.1. The condition (3.2.6); j 5 holds for (i,j) € GUK.

Proof. We consider the element (1/u®7*))(x$h;) the Massey product (sziP 7t futi-, hi—1y, hy).

Then, 6(; ; (zh;) = 6<sxf311/u“i*1,h[i,l},hj) = (sé(xf’izl/u“ifl),h[i,”, h;),

which equals —(sv*?~2h,,_1, ho, ho) = —sv®~2Pk, _,ifi = 1, and —(sv(sl’zfp*l)pidh[i_g],h[i_l], hj) =
,Sv(8p2*p*1)pi’2kj_l j=1li—1]
_251)(5?2*P*1)Pi_29j j=1[i—2]

2g;. O

" otherwise. Here, we note that (h;, i1, hi) =

3.5 The summand Vg, o

Consider the elements ¢; = uP' hn—14; and ¢, = ulehi of Ext' A. The elements
/

have internal degrees |c;| = |ci| = p'e(n)q for ¢ = 2p — 2, and satisfy

k2

/ /
C; = Cy, CiCi+1 = 0, hn—i—ici =0 and hi—i—lci = hi+1ci =0.

n—1
We consider the cochains wy = u**~Vet?  of the cobar complex QLA.
Then,

(351) Ek = _EZ7177R('U) —+ upe(k—Q),Upkilctk_l + ul)k-‘rpe(k’—Q)ctk

for kK > 1 by (3.3.1). Let wy be a cochain of the cobar complex QLA defined
inductively by:

3.5.2 w = tll)n_l —uP~t) = —w; +uP"let; and
( o ) = P _1\k,pe(k—2),p" !
w = wp_Mr(v) + (=1)"u vP ctpq
and put
k—1 i pi—l  pt _
sy M = R OO el e
m = uP w3 (1) e e,

Lemma 3.5.4. d(v*®)) =my,. Besides, d(wy) = m}, if k <n.
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Proof. We prove the lemma inductively. Since d(v) = uwy = mq, we see the
case for k = 1. Indeed, m)} = 0. Suppose that the equalities hold for & — 1.
Then, we compute by (3.3.3), (3.5.1) and (3.5.2),

d(v') = d(vpe(kfl))mz( ) + v Dd(v)
= (uT’IP wh_ 4+ SRR ()it e 1 )nR(v) — wvret=D (wy — uP~lety)
k—1

=uP (wk — (-1 kqpe(k—2)p"~ ctk_l) — yoPetk=1) (@1 — up_lctl)
+Z ( ) up ,Up te(k—1—1) (*Ei+1 + (upe(ifl)vpicti + upi+1+pe(i71)cti+l)> ,
which equals my, and similarly,
i it1
dlwg) = - Zz 2( D' wy_ —i ®E§)77R(U) +uwy_y ® (W —uP~tety)
k—1 —
+(— 1)kupe(k 2) ( wfl’ ® ctp_1 _|_Upk 1d(Ctk—1))
- Zf:f(_l)luplwzjll—i ® <_Ei+1 +uP Dyl et + Upiﬂwe(i*l)‘?twl)

tuw) | @ (W —uP"lcty)
— k—1 —
+(—1)kyetk=2) (upk lw’f ® ctp_y + 0P ld(ctk,l)) = mj,

Here, the underlined terms cancel each other if £ < n by (3.5.2) and (3.3.1) with
the relation A(cx) = T(c ® ¢)A(x) for the switching map T: T @' - T @I

O
We also introduce an element
en = hpin_1 — u® P by € Ext' A
Corollary 3.5.5. Foreach0 < k < n, the Massey products p, = <u”k,6k, Ch—15Chk—2,-++,C1,C0)
and ), = (Ck, Ck—1,Ck—2, - .,C1,¢o) are defined. In fact, the cocycles my41 and

my,, represent elements of the Massey products py, and pj;, respectively.
In particular, we have

Corollary 3.5.6. The Massey product <u1’n_3,6n_3,cn_4,...,co> C Ext'A is
defined and contains zero.

Lemma 3.5.7. The Massey product (¢,_3,Cn—a,-..,C0,hn—2) C Ext?A con-
tains zero.

Corollary 3.5.8. The Massey product j = (upn%,én_g, Cr—dy -3 C0y Rpn—2) 18
defined and contain an element whose leading term is v =2 h, _,.

Lemma 3.5.9. The condition (3.2.6); j 5 holds for (i,j) = (0,n —2).

(i.4,s
Proof. If pt s(s — 1), it follows from the computation

divst?" ) = s=14P" 7 o P T L )0202P" T o " hod (B

(st ) = swly @+ (5)uty ®ty  mod (u’)

—2

d(suvs=tet] ) = s(s— 1)u2t’1"n71 ® ctQH - suvs’ltf’fni1 ®t113n72 mod (u?).
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Suppose s = tp! + e(n — 2) with p{¢ and [ > 0. Let 6 denote an element of

Corollary 3.5.8. We take a generator corresponding to v*h,_s to be ps—e(n=2)g,

e(n—2)t111"72

We denote a representative of ] by m, which is congruent to v
ne )
uvpe(n—S)Ctgz) 2 m([)l(ilﬂlo (u2)7.2Then, d(’l)s_e(n_2)m) _ tualvs—e(n_g)_pl 1t1171 1 2
m = tu®vs? ¥ @?" . This shows the case for [I] # 0,n — 2.
— n—2
For [I] = 0, the similar computation shows that d(vs~¢"~2)m) = tyarps—p' GRS
n—2 n—1 n—2 n—2 n—2 n—2 —
o uoty " fun " @t ), which yields s~ 1gn;2.
For [I] = n—2, 0hy—3 € u®" "D (hop_u, hon_5,. .., hn_o, hy_g) = {uM=2TP" "py, o1
in C(p"~2). Indeed, u™=3 """ yields the equality by (3.3.1). O

3.6 On the action of a; and (; on Greek letter
elements

In this section, let H*M for a BP,(BP)-comodule M denote an Ext group
Extyp. (pp)(BPs, M). Consider the comodule Ni_1(j) = BP./(Ix—1 + (v]_,))
(vo = p), and the connecting homomorphism Jj ; associated to the short exact

sequence 0 — BP,/I;_4 %;> BP,/I;;_1 — Ni_1(j) — 0. We abbreviate d 1
to k. Here we consider the Greek letter elements of H*BP, /I, defined by

a" Y = uteH'BP,/I,_; and
alt)y = 0n;(v") € H'BP./I,y for v € HON, 1(j)
for t > 0, and
a1 = 61(’[}1) = hg GHlBP* and 51 :5162(1}2) = by EHZBP*.

Proposition 3.6.1. The elements ay and 51 act on the Greek letter elements
as follows:
aam b 1 —(n—1) 2 .
10 #0€ H'BP, /1,1, B #0€ H*BP,/I,_1;
and if the Greek letter elements agzgi/j) has an internal degree greater than
2(p" —1)(e(n — 1) — 1), then

arall),  #0€ HXBP. /Iy if[i] #0, pt (s +1) orp? | (s+ 1); and
Brall o #0€ H3BP. /I, 1 ifn#5, [i] #1 orpf (s +1).

In order to prove this, we make a chromatic argument: Let N, ,8 denote the
BP,BP-comodule BP, /I, and put My = vk_lN,g. We denote the cokernel of
the inclusion N,g — M,S by N,i, so that 0 — N,S — M,g Y, N,% — 0 is an
exact sequence. Let 5~k+1 : H°N ,1 — HTIN ,8 be the connecting homomorphism
associated to the short exact sequence. We notice that N} = colim; Ny (j) with
inclusion ¢;: Ni(j) — N} given by ¢;j(z) = z/u?, and that the connecting
homomorphism d,, ;: H*N,,_1(j) — H*TIN?_, factorizes to §,¢;.
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Lemma 3.6.2. For an element x$/u’ € HON} | for 0 < j < a; (j < p® if
s=1), aq and By act on it as follows:

riag/u #0€ H'NY | if[i] #0, pt(s+1) orp? | (s+1); and
2$B1/u? #0€ H2N} | ifn#5,[i]#1 orpt(s+1).

Proof. A change of rings theorem of Miller and Ravenel [7] shows that the
module H*M]!_, is isomorphic to Ext®*B. By (3.1.5), we see that x$hg/u #
0 € Ext'B unless [i] = 0, p | (s + 1) and p? { (s + 1). This shows the first
non-triviality. Similarly, since we have shown that (3.2.4) is exact, we see that
2581 /u#0 € Ext?B unless n = 5, [ij =1 and p | (s + 1). O

Lemma 3.6.3. Let & denote oy or 31, and x € H°N}_,, and suppose that
x&1 has an internal degree greater than 2(p"~! — 1)(e(n — 1) — 1). If & €
HSN!_| #0, then 6, (2)¢1 # 0 € HSIN?_|.

Proof. 1t suffices to show that z&; is not in the image of ,: H*M? | —
H*N}_,. Again the change of rings theorem shows that the module H*M?_,
is isomorphic to the module of Lemma 3.1.3 with substituting n — 1 for n.
Note that every generator of it except for ¢, belongs to H*N?_,, and also
is u*=1¢, 1 (cf [14]). It follows that every element of the image of ¢, has
an internal degree no greater than 2(e(n — 1) — 1)(p"~! — 1). Thus the lemma

follows. [

Proof of Proposition 3.6.1. The module H*M?_, contains a submodule k. (hq)
if s =1 and k.(bg) if s = 2. Therefore, the first two relations hold. The other
relations follow from Lemmas 3.6.2 and 3.6.3. O

Proof of Theorem 3.1.11. Note that af’) =7, = v}, and we obtain the theorem
from Proposition 3.6.1 at n = 4. O
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Chapter 4

Generalized Bousfield
lattices and a generalized
retract conjecture

In [1], Bousfield studied a lattice (Bousfield lattice) on the stable homotopy
category of spectra, and in [5], Hovey and Palmieri made the retract conjecture
on the lattice. In this chapter we generalize the Bousfield lattice and the retract
conjecture to the ones on a monoid. We also determine the structure of typical
examples of them, which satisfy the generalized retract conjecture. In particular
we give the structure of the Bousfield lattice of the stable homotopy category
of harmonic spectra explicitly. This is joit work with Professor Shimomura and
Yotaro Tatehara.

4.1 Introduction

Let M be a closed symmetric monoidal category with zero object, and consider
an object M of it. We call the full subcategory (M) of M the Bousfield class of
M if it consists of objects A of M such that M A = 0 by its monoidal structure.
Then we have a partial order on Bousfield classes by (M) < (N) if every object
of (N) is an object of (M). Then the subcategories (S) and (O) of the unit S
and the zero O are the greatest and the least ones in the order, respectively. We
call the collection of all Bousfield classes a Bousfield lattice, and denote it by
B(M). In a case where a Bousfield lattice is a set, the partial order introduces
a lattice structure to it, and we may investigate it algebraically.

In a sense, the stable homotopy theory is analyzing stable homotopy cate-
gories (cf. [6]). A stable homotopy category is a symmetric monoidal category,
and so we may consider its Bousfield lattice. In particular, T. Ohkawa [8] (cf.
[2]) showed that the Bousfield lattice B of the stable homotopy category of spec-
tra is a set, and then Iyengar and Krause [7] generalized it to a stable homotopy
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category.

In order to investigate a category, we sometimes classify special subcategories
of it. From this viewpoint, we study a Bousfield lattice by classifying localizing
subcategories (see [6]). Indeed, every Bousfield class is a localizing subcategory.

In [5], Hovey and Palmieri studied the Bousfield lattice B deeply. Further-
more, they proposed many conjectures on the structure of B. Among them,
there is the retract conjecture, which is one of our main topics. Dwyer and
Palmieri [3] constructed a stable homotopy category, where the conjecture does
not hold. So far, there seems no nontrivial category in which the conjecture
holds. In this chapter, we give some examples of categories with the affirmative
answer to the conjecture.

As stated above, a Bousfield lattice B(M) is a set in some cases. In this
case, it is a monoid with multiplication compatible with its order. We introduce
the notion of monoidal posets and define a functor § from a subcategory of
commutative monoids to the category of monoidal posets in Section two. Then
we define a Bousfield lattice of a monoid to be an object in the image of 3,
which is an analogy of Bousfield lattices of stable homotopy categories. In
particular, B has not only a structure of a monoidal poset, but also a Bousfield
lattice associated to B itself. In section three, we show analogous properties
on a Bousfield lattice to those given by Hovey and Palmieri [5] including the
following:

Conjecture 4.1.1 (Original retract conjecture [5, Conj. 3.12]). Let h be the
Bousfield class of the mod p Eilenberg-MacLane spectrum HZ/p in the Bousfield
lattice B. Then, there is a lattice isomorphism r.: B/J(h) — DL. Here, J(h) is
an ideal related to h (see Notation 4.3.1).

We generalize it to generalized retract conjectures on a monoidally distributive
poset (Conjectures 4.3.18 and 4.3.19) and show some facts relating to them.
Section four is devoted to determine Bousfield lattices obtained from principal
ideal domains, and to show the conjecture true for them. In section five, we
study about Bousfield lattices of stable homotopy categories of Bousfield local-
ized spectra, and construct isomorphisms between the Bousfield lattice and a
Boustfield lattice given in section four. In particular, we have the following;:

Theorem 4.1.2. The generalized retract conjectures holds on the stable homo-
topy category of harmonic spectra.

One of our final goals is to determine the lattice structure of B, which seems
difficult so much. In the last section, we propose problems on the functor g,
whose answers may help us to understand the Bousfield lattice B. We expect
that these problems give us hints to reach the goal.

4.2 Monoidal posets and Bousfield lattices

Let M be commutative monoid with unit 1. We call M a monoid with 0 if
M admits an element 0 € M such that 0-2z = 0 = = -0 for any z € M.
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A typical example of it is a commutative ring ignoring addition. We denote
by Mg the category consisting of commutative monoids with 0 and monoid
homomorphisms preserving zero.

For M € My, 8(M) denotes a set consisting of subsets

() ={y € M: xy =0}
of M for x € M.

Lemma 4.2.1. 8(M) for M € My is also a monoid with 0 with inherited
multiplication. Therefore, we have the canonical epimorphism M — B(M) in

M.

Proof. Define a multiplication of 3(M) by (z)(y
defined as follows: Assume that (zg) = (z > and (

) = (zy). We verify it well
Yo > <y1> Then

zxoyo =0 & zwyo =0 by (wo) = (z1)
& zriyr =0 by (yo) = (y1),

and (royo) = {(x1y1). The elements (1) and (0) are the unit and the zero
elements. O

Remark 4.2.2. We notice that S(R) = Z/2 if R is a domain.

Lemma 4.2.3. Let M be a monoid with 0. Then (M) admits a partial order
‘<7 on M defined by (x) < (y) if (x) D (y). Besides, (1) and (0) are the greatest
and the least elements, respectively.

Proof. This is trivial since (1) = {0} and (0) = M. O

By the lemma, a commutative monoid (M) has also a poset structure.
Then we define the following notion by taking its crucial properties.

Definition 4.2.4. A monoidal poset P = (P, <,-,1,0) is defined by the follow-
ing data.

(1) (P,-,1,0) is a monoid with 0.
(2) (P, <) is a poset.
(3) The following are equivalent.
(a) x <.
(b) cy =0 for ¢ € P implies cx = 0.

A monoidal poset map f: P — P’ is an order preserving monoid homomorphism
with f(0) =
Lemma 4.2.3 implies the following.

Corollary 4.2.5. (M) for M € My is a monoidal poset with 1 = (1) and
0= (0).
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Lemma 4.2.6. Let M be a monoidal poset. Then, S(M) = M as monoidal
posets.

Remark 4.2.7. A monoidal poset seems a lattice, but unfortunately it is not true.
Indeed, we have an example: Consider a monoidal poset M = {1, z;, y;, w,0: i =
1,2} with multiplication

1 w22 |1 |y | w
x|l w | w | 0 |w]|O0
To | w | w | w| 0 ]O0
y1 | 0w ]| 0|00
Yya | w 0 0 010
w | 0 0 0100

Then, the join of y; and ys does not exist.

Let MP denote the category of monoidal posets and monoidal poset maps.
Then MP C M.

Lemma 4.2.8. Let M be a monoidal poset. Then, xz < yw if x <y and z < w.
In particular, if v <y, then xz < yz for any z.

Proposition 4.2.9. The category MP admits direct products.

Proof. Let { M)} be a family of monoidal posets. Then, we have a direct product
[ 1, Mx of monoids. Consider an order ‘<’ on [[, M defined by (zy) < (y») if
(ex)(yx) = (0) implies (cx)(zx) = (0). Tt is straightforward to verify this is the
desired direct product. O

Lemma 4.2.10. Let {M\,} be a family of monoidal posets. Then, {x)) <
() for all A if and only if {(w2)) < (). Here, (za), () € B(My) and
(@), ((yx)) € BTN M)

Proof. Assume that (x)) < (y,) for any A\. Then

(ex)(ya) =0 = cyyx = 0 for any A
= cxxy =0 for any A (" (zx) < (ya))
= (ex)(zr) =0,

Conversely, suppose that ((z,)) < ((y,)). Then, for any A,

pex=0 = (y)(ex)o=0
= (z3)(ex)o=0

() < ((y))

in My, where (cy)o denotes an element (z,) such that ) = ¢y and x, = 0 for
TN O

Corollary 4.2.11. Let {M,} be a family of monoidal posets. Define an order
<" on the set [], Mx by (zx) <" (ya) if xx < yx for all X\. Then it is equivalent
to the order in the proof of Proposition 4.2.9.
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Corollary 4.2.12. Let {My} be a family of monoidal posets. Then, \/ ,(z}) =
(V, 2X) for any subset {(z})}, C [T\ M.

Proof. Since (z}) < (V, @) for all p, \/,(25) < (V,2%). If (z}) < (21), then
2y < 2z, and so \/, 2§ < zy, that is, (\V/,2) < (21). Therefore, \/ (z4) =
(V,,2%) by definition. O

We call an epimorphism f: M — N of My strong if f(z) = 0 if and only if
z=0.
We define a map B(f): S(M) — B(N) by sending (x) to (f(z)).

Lemma 4.2.13. For a strong epimorphism f: M — N, the map B(f) is not
only a monoidal poset map but also a strong epimorphism.

Proof. Since f is a strong epimorphism, ¢ - f(z) = 0 & f(d) - f(x) = 0 &
f(d-2) =0« -2 =0 for an element ¢’ such that f(¢’) = ¢. This shows
that (z) = (y) implies (f(z)) = (f(y)). It is easy to see that 3(f) is a strong
epimorphism. O

We also consider the subcategories M and MP" of M, and MP, respec-
tively, obtained by restricting morphisms to strong epimorphisms.

Corollary 4.2.14. The operation 8 above defines a functor f: M — MPP C
M.

By the above argument, we redefine Bousfield lattices as follows. The defi-
nition is one of our main topics in this chapter.

Definition 4.2.15. For a monoid M € M we call a monoidal poset S(M) the
Bousfield lattice associated to M.

In earlier papers, a Bousfield lattice is made from a closed symmetric monoidal
category with a zero object. However, its set theoretic confusion complicates our
argument too much. Our new definition settles this problem, and the following
proposition says that this argument is consistent.

Proposition 4.2.16. The Bousfield lattice B of the stable homotopy category
of spectra is a Bousfield lattice in the sense of our definition.

Proof. By forgetting the ordering on B, we regard B as a monoid with 1 = (S)
and 0 = (x). Then it is clear that S(B) = B. O

Proposition 4.2.17. The functor 8 satisfies the following:
(1) B(HA M) = H,\ B(M,).
(2) BB(M) = B(M).
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Proof. (1) Let {px: B(I], Mx) — B(M))} be a family of epimorphisms defined
by ((xx)) — (zx), and {fa: W — B(My)} a family of poset maps. We notice
that py is well defined by Lemma 4.2.10. For an element w € W, we take an
element wy € Wy so that fy(w) = (wy), and define g: W — B(I[, M) by
g(w) = ((wy)). Then g is also a well defined poset map by Lemma 4.2.10 and

pag(w) = pa({(wy))) = (wx) = fa(w).

Suppose that there is another poset map ¢': W — B([[, M) satisfying prg’'(w) =
fa(w) for w € W, and ¢’ assigns w to ((w})). Then

pag (w) = fi(w) for any A < <w/\> (wy) for any A
=3 (( 4)) = ((wy)) (by Lemma 4.2.10)
& glw) = glw).
Therefore, S([], M) is the product [, B(M)).
(2) is seen by Lemma 4.2.6. O

4.3 Retract conjecture

From now on, we assume that every monoidal poset considered is a complete
lattice.

Since a monoidal poset M is a sup-lattice with the least element 0 = (0), M
is a bounded lattice.

Notation 4.3.1. For a monoidal poset M, we define the following notations.

ap(z) = \{yeM:zy=0} forxe M,
BAM) : = {zxep(X):xVa(z)=1},
DL(M) := {zxeM:z2?=uz},

= {yeM:y<z-ay(x)} forze M,
= {zxeM:az"=0 for somen > 1},
AM) = {xeM:ry(x)=0}

)
|
ryu(x) = V{weDL(M): w<z} forxe M,
)
)

We will omit M from notations, if M is clear from the context.
It is well known that the subposet DL(M) is also a complete lattice. Indeed
the following holds.

Proposition 4.3.2. DL(M) is closed under arbitrary joins.

Proof. By Lemma 4.2.8, (\/AEA 23)? < (Vyea 2)- Suppose that x is in DL
for X € A. Then, zx = 23 < (V en x,\) and 50 \/ycp 22 < (Vaep 22)% O

Lemma 4.3.3. In DL(M), the meet of x and y is xy.
Proof. Since x Ay <zanda Ay <y, if e Aye€ DL(M) thenz Ay <zy. O
Remark 4.3.4. DL(M) is not always sublattice of M by Lemma 4.3.3.
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For investigating the original Bousfield lattice B, the operations r and a play
important roles (see [5]). Hereafter we try to give their properties analogously
on monoidal posets.

Proposition 4.3.5. Let M be a monoidal poset, and r = rp;: M — M be the
map defined in Notation 4.3.1.

(1) r is order-preserving i.e. x <y implies r(z) < r(y).

(

2) r(
(3) r(z) <z™ for any n > 1.
(4) r(

Proof. (1) is trivial, and (2) follows from Proposition 4.3.2. For (3), r(z) < z
by definition, and we have r(z) = r(x)" < ™.

Since r(z)r(y) < xy and r(z)r(y) € DL(M), we have r(x)r(y) < r(zy). We
also see r(xAy) < r(x)r(y), since r(zAy) < r(z) and r(zAy) < r(y). Therefore,
r(zy) <r(zxAy) <r@)r(y) <r(zy), and obtain (4). O

r(x)? =r(x) and r*(x) = r(x) forx € M.

r(zy) =r(@)r(y) =r(z Ay) forx,y € M.

The behavior of the map r is the same as the one on B, but not that of the
operation a. Indeed, for any x € M and {yx}» C M, the relation z(\/, yr) >
V, (zy») is not always an equality. To make the operator a have good properties,
we introduce a following notion.

Definition 4.3.6. A monoidal poset M is a monoidally distributive poset if M
satisfies that z(\/, yx) = V,(zyx) for any x € M and {yx}» C M.

Remark 4.3.7. DL(M) is a distributive lattice if M is a monoidally distributive
poset by Lemma 4.3.3.

In the same way as [5], we have
Proposition 4.3.8. Let M be a monoidally distributive poset. Then,
(1) a(—) is order-reversing.
(2) 2y =0 if and only if v < a(y).
(3) aa(x) = x.

Lemma 4.3.9. Let M be a monoidally distributive poset. Fixz ¢ € M such
that ¢ = 0 for a positive integer n. Then, for any x € M, (x V ¢)” < x and
r(zVe)=r(z).

Proof. Under the assumption, we compute

(xVe)r = a"Vva'lev.. Vot
= g tvan2cv...ver ) <o

for any @ € M. So, if z < xVefor z € DL(M), then z < z. Thus, r(zVe) = r(x)
by definition of 7. O
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Proposition 4.3.10. Let M be a monoidally distributive poset. Then Jyr(x) C
N(M) c A(M) for any x € M.

Proof. Since (x - apr(2))(z - apr(z)) < zaps(x) = 0 by Proposition 4.3.8(2), we
have Jy(x) € N(M). Suppose that 2" = 0, then r(z) = r(x)" = r(z™) =
r(0) = 0 by Proposition 4.3.5 (4). So we have N(M) C A(M). O

Proposition 4.3.11. Let M) be a monoidal poset for any X € A. Then,
(1) r((xx)) = (r(zx)) for any (zx) € [T, Ma.

(2) r preserves arbitrary joins on My for any A € A if and only if r preserves
arbitrary joins on [[, My

Proof. (1) is given by Corollary 4.2.12.
(2) Suppose that r preserves arbitrary joins on M) for any A € A. Then, for

{(@X)}u < Ty Mo,

r(V,(2%) = r((V,z5)) (by Corollary 4.2.12)
r(V,28)) (by (1))

V, r(@X))

V,.(r(zX)) (by Corollary 4.2.12).

Il
/\/\‘3

Therefore,  preserves arbitrary joins on [[, M.
Conversely, if  preserves arbitrary joins on [, My, then

(V2 = (V25 (by (1)
(\/u(ﬂ?‘)f)g (by Corollary 4.2.12)

|
.

I
=
—
=
—
8
>
&

(V,r(@X)) (by Corollary 4.2.12).

It follows that r preserves arbitrary joins on My for any A € A as desired. O

Remark 4.3.12. We notice that M) is a monoidally distributive poset for any
A € Aif and only if J],., M is a monoidally distributive poset. Indeed, if
M), is a monoidally distributive poset for any A € A, then (cx)(V,(#})) =

@)V, 28) = (ea(V,28) = (V,eazh) =V, (eazh) for (ex) € T, My and
{(@¥)}, C TI, My by Corollary 4.2.12. Thus, [], M) is a monoidally dis-
tributive poset. Conversely, if [], M) is a monoidally distributive poset, then

(ex(V,28)) = (e)(V,, 25) = (ex)(V . (2R)) =V (eaz) = (V, exxy) by Corol-
lary 4.2.12. Therefore, M) is a monoidally distributive poset for any A € A by
Lemma 4.2.10.

Recall that an ideal I of a poset is any subset of M such that:
(1) fz € l,and y <z, then y € I, and

(2) For z,y € I, there is an element z € I such that z < z and y < z.
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Suppose that a monoidal poset M is an ordinary lattice. Then, an ideal of
M is also an ideal as a lattice, and for an ideal I, M/I is the lattice of equivalent
classes under the equivalence relation defined by

(4.3.13) x~y ifand onlyif x Vec=1yVcfor some cel

with order given by [z] < [y] & 2V e < yVe for some ¢ € I. We notice that M /T
is complete if M and I are complete. If M is monoidally distributive, then M /I
has the multiplication [z][y] := [xy]. Indeed, if zVi=12'Viand yVj=1y' Vj
for x,2',y,y’ € M and 4,j € I, then (x Vi)(yV j) = (2’ Vi)(y' V j) turns into

zyV(zVi)jVv(yVvi)i = 2y V(@ Vi)V (Vi)
= 2y V(eVviiVv(yVji.

Since (x V1)j V (y V j)i € I, the multiplication is well defined.

Remark 4.3.14. M/I is not always a monoidal poset. Indeed, we have an exam-
ple: Let M = {1,z,y,0} be a monoidal poset with multiplication 2% = x,ry =
0,42 = 0. Then, for the ideal I = {y,0}, M/I = {1,z,0} and B(M/I) = {1,0}.
Since M /I # B(M/I), M/I is not a monoidal poset by Lemma 4.2.6.

Lemma 4.3.15. Let M be a monoidally distributive poset. Then, N(M) is an
ideal of M and Jp(x) is a principal ideal of M for any x € M.

Proof. Suppose that 2 = 0 and y™ = 0. Then, (zVy)"t™ =\/ ., ... xoyb.
Since if @ < n then b > m, (z Vy)"t™ = 0. So N(M) is an ideal of M. By
definition, Jys(z) is a principal ideal of M. O

Here, consider the following correspondence:
ro: M/I — DL(M);[z] = {r(y): y € [z]}

We notice that if r, is a mapping (i.e. a single-valued mapping), then it is a
surjection.

Theorem 4.3.16. Let M be a monoidally distributive poset and I an ideal in

M.
(1) If I is contained in N, then r. is a mapping.
(2) If ry is a mapping, then I C A.
(3) If r. is an injection, then I = A.
(4) If s is an injection and I C N, then:

(a) For any x andy in M, r(xVy) =r(x)Vr(y) holds. In particular, if
I is a principal ideal, then r preserves arbitrary joins.

(b) For any x € M, there exists an integer n such that ™ = r(z).
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Proof. (1) If xVe=yVcfiorz,y € M and ¢ € I C N, then r(z) = r(y) by
Lemma 4.3.9.

(2) Forz € I, [x] =0=[0] in M/I, and so r(x) = r.([z]) = r([0]) = r(0) =
0. Thus, z € A.

(3) For z € A, r.([z]) = r(x) = 0 = r.([0]). It follows that [z] = [0], since .
is an injection, which implies « € I. So we obtain A = I by (2).

(4) For z € M, r.([z]) = r(z) = r*(z) = r.([r(z)]) and [z] = [r(z)], since r,
is an injection. So we have an element ¢, € N such that z V¢, = r(z) V¢, and
then:

(a) Since x VyVey Vey =r(x) Vr(y) Ve Ve, r(eVy) =r(x) Vr(y) by
Lemma 4.3.9. Suppose that [ is a principal ideal and take a generator m
of I. Then, (\/,zx) Vm = (V,r(xy)) Vm for any subset {zx}x C M.
Therefore 7(\/ ycp 2a) = Ve 7(7) by Lemma 4.3.9.

(b) Since there exists an integer n such that ¢ =0,
2" < (xVey)" = (r(z) V)" <r(z).
by Lemma 4.3.9. 0
Hovey and Palmieri introduced a map r,: M/J(h) — DL, and proposed
Conjecture 1.1 in the introduction. Here, we generalize the map to our setting.

Lemma 4.3.17. The map rar: M — M for a monoidal poset M factors through
DL(M). Furthermore, it induces the map r«: M/Jp(y) — DL(M) fory € M
assigning the class [x] to ra(x).

Proof. The former statement follows from Proposition 4.3.5(2), and the latter
from Proposition 4.3.10 and Proposition 4.3.16(1). O

By Theorem 4.3.16, we see that J(h) = A if Conjecture 4.1.1 holds. This
makes us conjecture the following:

Conjecture 4.3.18 (Generalized retract conjecture 1 (GRC1)). Let M be a
monoidal poset. If M is a complete lattice and is monoidally distributive, and
if A= A(M) is an ideal of M, then r.: M/A — DL is a lattice isomorphism.

Conjecture 4.3.19 (Generalized retract conjecture 2 (GRC2)). Let M be a
monoidal poset. If M is a complete lattice and monoidally distributive, then
r«: M/N — DL(M) is a lattice isomorphism.

By Theorem 4.3.16 (3), we see the following:
Corollary 4.3.20. GRC?2 implies GRC1.
Example 4.3.21. Consider the monoidal poset M = B(Z/2™Z). Then,

M = {1,2,22,~~~ ,27"71,27":0},
DL(M) = {1,0} and
N(M> = {27227"' 72m—1,0}-

And so M/N(M) = DL(M). That is, GRC2 holds on B(Z/2™7Z).
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Theorem 4.3.22. For a monoidally distributive poset M, the following are
equivalent.

(1) r: M/N — DL is an isomorphism.
(2) Any class [x] € M/N satisfies [2%] = [z].

Proof. The statement (1) implies (2), since r.([z]) = r.([2?]).

For the converse, it suffices to show that 7, is injective. If [#?] = [z], then
[x] = [z"] for any n > 0 by induction. So, we have an element ¢, € N for each
2 € M such that

(4.3.23) T Ve =a" Ve, for any n > 0.

Since ¢, € N, we have an integer L = L(z) > 0 such that ¢ = 0. Then
ot <(xVe) = (2" Ve < a”

for any n > 0 by Lemma 4.3.9. In particular, z¥ = ()2 and so

(4.3.24) @) = ()

by Proposition 4.3.5.
Now suppose that 7, ([z]) = r.([y]). Then r(z) = r(y), and 24 = 4L by
(4.3.24). By (4.3.23),

TV ez Vey = gt®) Vg Vey :yL(y) Vey Ve, =yVegVey
and [z] = [y] by the definition (4.3.13). O

Furthermore, Proposition 4.3.11 leads us to the following.

Proposition 4.3.25. Let { M} xca be a family of monoidally distributive posets.
Then, the following are equivalent.

(1) GRC holds on My for any X € A.

(2) GRC holds on [ M.
Here, GRC is GRC1 or GRC2.

As an application, we extend a result of Dwyer and Palmieri:

Theorem 4.3.26 (Dwyer-Palmieri [3]). There is a ring A such that the original
retract conjecture does not hold on the derived category D(A) of A.

In the proof of it, Dwyer and Palmieri define A to be a truncated polynomial
ring over a field k, and take (k) instead of h = (HZ/p). Here (k) denotes a
Bousfield class of a complex {X;} with Xg = k, and X; = 01if ¢ # 0. By a
similar argument of Hovey and Palmieri in [5], if 7. is an isomorphism from
B(D(A))/J({k)) to DL, then any Bousfield class z € B(D(A)) satisfies 22 = 3.
They show the theorem by constructing a Bousfield class y € B(D(A)) such
that y > 42 > --- > y™ > ---. By Theorem 4.3.16, the existence of the class y
implies further the following;:

Theorem 4.3.27. The map r.: B(D(A))/N — DL is not isomorphic.
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4.4 A Bousfield lattice associated to a quotient
of PID

We abbreviate ‘principal ideal domain’ to ‘PID’. Furthermore, we write x for
(x) € B(M), where no confusion arises.

Theorem 4.4.1. Let P be a PID and put ¢ = pg°---p," € P for prime
elements p; and integers e; > 0. Let B denote a Bousfield lattice B(P/qP).
Then,

(1) B={z € P:x|q} as sets. In particular q is the zero element 0.
(2) x >y if and only if x | y.

(3) DL ={py’---pyr7': s, =0 ore;}.

(4) N={z€B:po- pm-1|x in P}.

(5) B =TI B(P/p{‘P).

Proof. For an element x € P, we consider an integer e;(x) and an element g
defined by

ei(r) ;= max{e: e <e; and p§ |z}, and wzy = Ho<z<mpe’(x)

We see that
(4.4.2) r =12y € B(P/qP) for any x € P.

Indeed, (4 divides x, and so x < x(,). If zy = 0 in P/qP, then zy is divisible

by ¢ in P. Therefore, q | 2(4)y(q) and so q | z(4)y. Hence z(gy = 0 in P/qP and
SO Z(q) <ux.

The statements (1)-(4) follow immediately from (4.4.2), and (5) from (1).

O

Corollary 4.4.3. We have isomorphisms of monoidal posets
B(P/pg? -0 P) =TI B(Z/24Z)  and
DL(B(P/pg° - fzn 1 P)) = H;L:_O Z]2.

Corollary 4.4.4. For any PID P and a non-zero element q € P, the Bousfield
lattice B(P/qP) is monoidally distributive.

Proof. Noticing the relation

Sn—1

tn— lo In : .
e Py )V (P9 Pt ) = pg’ Pyt with I; = min{s;, ¢},
the proof is straightforward. O

Theorem 4.4.5. If P is a PID and ¢ € P\ {0}, then GRC2 holds on 5(P/qP),
and so does GRC1.
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Proof. The ideal N(B(P/qP)) has the greatest element g = po---pn—1. We
compute

S0 Sn—1 o min{so,1} min{s,—1,1} _  min{2so,1} min{2s,_1,1}
(po” P A )Vg = po “Pn-1 = Do " Pn-1
250 25p 1 Sn—1

(P> P, Ve = 0yt ) V.

So the theorem follows from Theorem 4.3.22. O

Remark 4.4.6. We have another proof of the theorem. Since §(P/qP) = H?:_Ol B(Z/2%Z)
and GRC2 holds on §(Z/2%Z), GRC2 holds on B(P/qP) by Proposition 4.3.25.

4.5 Bousfield lattices of stable homotopy cate-
gories

Let Ag for a spectrum E denote the stable homotopy category of E-local spec-
tra, and B(Ag) the Bousfield lattice in the sense of Bousfield. Then we have
the Bousfield localization functor Lg: & — Lg. The monoidal structure of Lg
is given by XY = Lr(X AY). We consider the Johnson-Wilson spectra E(n)
and the Morava K-theories K (n) for n > 0. By the chromatic viewpoint, inves-
tigating the categories A, (= Ag(,)) and Ag(y) is one of main targets of stable
homotopy theory. We determine the Bousfield lattices of these categories.

We begin with a simple category. A spectrum F is called a field if it is a
ring spectrum and FFA X = \/ X¢F for all spectra X.

Proposition 4.5.1. Let F' be a field. Then, B(Ar) =Z/2.

Proof. Since F is a ring spectrum, we have F. X = F A X. We see easily (X) >
(FX). Suppose that (FX)C = 0. Then, XC is F-acyclic and so XC = 0. It
follows that (X) = (FX) = (\/ £'F) = 0 or (F), which shows the lemma. O

By [4], the Eilenberg-MacLane spectrum HZ/p and the Morava K-theories
K(n) are fields.

Corollary 4.5.2. B(Apz,,) = Z/2 = B(Agn))-

Theorem 4.5.3. Let pg,...,p, be n+ 1 distinguished prime numbers. Then
B(A,,) is isomorphic to B(Z/po -+ pn) = [11—o Z/2 in MP.

Proof. The Bousfield lattice B(L,,) consists of (L, X) for all spectra X, which
equals, by Ravenel [9],

(LoX) = (La8%) - (X) = (E(n))-(X)
= (Vosiza (K@) 4X) = Vocicn ana xionxso K0)-

since L,, is smashing and K (n) is a field. Here (X) - (Y) is the Bousfield class
of the smash product X A Y. We define a map f: B(L,) = B8(Z/po---pn) by
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f(Vies (K(2))) = [L;ggpi for S € {0,1,--- ,n}. Then f preserves multiplica-

tion, since
(Vies K@) (Vjer (K(G)) = Viesar (K1),
(Ligsp)(Ijgrri) = Iligs or igrpi = Iligsnrpi-
Moreover, for the order, we have

Vies (K1) < V,er (K(i)) & SCT e In)-S>I(n)—-T
& ligspi < Iligrpi,

and f is a monoidal poset map. O
A similar argument shows the following

Theorem 4.5.4. Let E = \/,. K(i) be a spectrum for a finite subset F' of
Zso. Then B(LEg) is isomorphic to [ ], Z/2.

This together with Theorem 4.4.5 implies

Corollary 4.5.5. GRC2 holds on B(Ag) for a spectrum E = \/,.p K(i) on a
finite subset F' of Z>.

The chromatic tower Ag - A; < Ay < --- induces the inverse system
(4.5.6) B(Ag) < B(A1) < B(Ag) -+ .
Moreover, we notice that B, := limB(A,) = [[,Z/2 in MP. We call a
spectrum harmonic if it is (V5 K ())-local.

Theorem 4.5.7. Let H be the stable homotopy category of harmonic spectra.
Then B(H) is isomorphic to By, in MP.

Proof. Let f: [[Z/2 — B(H) be the poset map defined by (z,,) =\, _; (K(n))
and let p,: B(H) — B(A,,) be the poset map defined by (X) — (X) - (E(n)).
Then, we have the following commutative diagram

B(A;) «— B(A;)

A
%

B(H) < [12/2
for any 7 and j with ¢ < j, since

pif((zn) = pi(V,, = (K(0)) = V,, 1 (K(n))- (E@))
- \/izn, Tp=1 <K(’Il)>

Therefore, B(H) is the inverse limit of the above system (4.5.6) by definition.
O
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Proof of Theorem 4.1.2. This follows from Theorem 4.5.7 and Proposition 4.3.25.
O

In the same way, we obtain

Theorem 4.5.8. Let T' be a set of field spectra, and put \/ T' = \/ pcp F'. Then,
B(Lyr)=117%/2.

4.6 Problems

We leave some problems in this section.

Problem 4.6.1. What is a condition on X L1 Y in M, under which B(f) is
an isomorphism ?

Suppose that the problem is settled and we find a map from B to a com-
mutative monoid Y such that S(f) is an isomorphism. Then, we may study
B = 5(B) by observing 5(Y") by virtue of Proposition 4.2.16, which may let us
consider the lattice from a different viewpoint.

Problem 4.6.2. Let M be a monoid with 0. Then, is there a ring R such that
B(M) is isomorphic to R as a monoid ?

Example 4.6.3. Letpy,...,p, be n+1 distinguished primes. Then 3(Z/po ...pn) =
I1' 0 Z/2 as monoids by Theorem 4.5.5.

If this is possible, we may approach these from the ring theoretic viewpoint.

Problem 4.6.4. Are B/J(h) and DL monoidal posets?
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