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Preface

In this thesis, we study the stable homotopy category S of spectra. For a
spectrum E, we have the E∗-homology theory. Bousfield defined a localization
functor LE : S → S with respect to a spectrum E, which classifies spectra by
the E∗-homology theory. Furthermore, for a spectrum E, Bousfield defined a
class ⟨E⟩, which is called the Bousfield class of E, such that LE = LF if and
only if ⟨E⟩ = ⟨F ⟩. Bousfield also studied the lattice structure of these classes.
Ohkawa showed that these classes form a set, which implies the classes form a
lattice. The lattice is called the Bousfield lattice. We investigate the category
S by the Bousfield localizations and the Bousfield lattice.

In the celebrated paper [5], Miller, Ravenel and Wilson introduced the “chro-
matic” method to study the stable homotopy category S of spectra. For the
nth Johnson-Wilson spectrum E(n), Ln denotes the Bousfield localization func-
tor with respect to E(n). These Bousfield localizations give rise to the “chro-
matic tower”, which is a limit system {LnX}n. Hopkins and Ravenel showed
the chromatic convergence theorem, which implies that if X is finite, then the
homotopy groups π∗(X) is isomorphic to limn π∗(LnX). In particular, the ho-
motopy groups π∗(S) of the sphere spectrum S are built from the homotopy
groups π∗(LnS).

The algebraic K-groups of the sphere spectrum are closely related with num-
ber theory, geometric topology and so on. Bökstedt, Hsiang and Madesn defined
the cyclotomic trace map from the algebraic K-groups of a ring spectrum X to
the topological cyclic group of X, which are approximated by the TR-groups
of X. Furthermore the TR-groups of the sphere spectrum are studied by the
stable homotopy groups π∗(S) and the skeleton filtration spectral sequence.

From now on, we give an overview of this thesis.

In Chapter 1, we explain the results in [2]. In the Adams-Novikov spec-
tral sequence converging to π∗(S), we have an element βp/p in the E2-term

E
2,2p2(p−1)
2 which does not survive to π∗(S). We prove that the element βpp/p in

E
2p,2p3(p−1)
2 survives to π∗(S) in the Adams-Novikov spectral sequence, and also

give conditions to which a product of elements in the Adams-Novikov E2-term
survives to π∗(S). Furthermore, such products are detected in π∗(L3S). We
investigate the third Morava stabilizer algebra for showing the result.

1



2

In Chapter 2, we look into the details of [1]. Hesselholt determined the
2-primary TR-groups of the sphere spectrum in dimensions less than 6. We
extend the result to dimensions less than 10 by use of the mod 2 Adams spectral
sequence and the skeleton filtration spectral sequence.

In Chapter 3, we study the Adams-Novikov spectral sequence for computing
the homotopy groups of a monochromatic spectrum. The E2-terms of the spec-
tral sequence are the cohomology groups of a monochromatic module, to which
the chromatic spectral sequence converges. In [3], we determined the first line
of an E1-term of the chromatic spectral sequence for a monochromatic module
whose chromatic level is greater than 3. We look into the details of calculation
for showing the result.

In the last chapter, we consider the works of [4] on a generalized Bousfield
lattice. For a commutative ring R, we define the lattice β(R), which is called the
Bousfield lattice associated to R. In particular, the original Bousfield lattice is
the Bousfield lattice associated to itself in this sense. We determine the structure
of the lattice β(P/I) for a principal ideal domain P and a nonzero ideal I of
P , on which we show that the retract conjecture holds. As an application, we
determine the structure of the Bousfield lattice of “harmonic” spectra, which
implies that the Bousfield lattice of the category of spectra is uncountable.

Acknowledgments. I would like to thank Professor Shimomura for much
valuable advice. I would also like to thank the faculty and staff of the Kochi
University for their support.
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Chapter 1

Products of Greek letter
elements dug up from the
third Morava stabilizer
algebra

In [2], Oka and Shimomura considered the cohomology of the second Morava
stabilizer algebra to study nontriviality of the products of beta elements of the
stable homotopy groups of spheres. In this chapter, we use the cohomology of
the third Morava stabilizer algebra to find nontrivial products of Greek letters
of the stable homotopy groups of spheres: α1γt, β2γt, ⟨α1, α1, β

p
p/p⟩γtβ1 and

⟨β1, p, γt⟩ for t with p ∤ t(t2 − 1) for a prime number p > 5. This is a joint work
with Professor Shimomura.

1.1 Introduction

Greek letter elements are well known generators of the stable homotopy groups
of spheres localized at a prime p. Studying products among these elements is
an interesting subject, and studied by several authors. For example, at an odd
prime p, all products of alpha elements are trivial. In [2], we used H∗S(2)
to study nontriviality of the product of beta elements. In this chapter, we
use H∗S(3) to find relations of Greek letters. The multiplicative structure of
H∗S(3) is given by Yamaguchi [5], but unfortunately, it has some typos. So
here, our computation is based on Ravenel’s.

Let βp/p be the generator of the E2-term E2,p2q
2 (S) of the Adams-Novikov

spectral sequence converging to the homotopy groups π∗(S) of the sphere spec-
trum S. Hereafter, q = 2p− 2 as usual. A relation given by Toda implies that
βp/p dies in the Adams-Novikov spectral sequence at a prime p > 2. At the
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CHAPTER 1. PRODUCTS OF GREEK LETTER ELEMENTS 6

prime two, β2
2/2 = 0 by [1, Prop. 8.22], while at the prime numbers three and

five, Ravenel showed that βpp/p survives to a homotopy element of π∗(S) and

α1β
p
p/p = 0 for the generator α1 of πq−1(S). Here, we show the following

Theorem 1.1.1. At a prime p > 3, βpp/p survives to π(p3−1)q−2(S) and α1β
p
p/p =

0.

Corollary 1.1.2. At a prime p > 3, the Toda bracket ⟨α1, α1, β
p
p/p⟩ is defined.

We notice that at the prime 3, Ravenel showed these in [3].
Let β1, β2 and γt (t > 0) be the generators of Coker J of dimensions pq− 2,

(2p+ 1)q − 2 and (tp2 + (t− 1)p+ t− 2)q − 3, respectively.

Theorem 1.1.3. Let p > 5, and t be a positive integer with p ∤ t(t2− 1). Then,
the elements α1γt, β2γt, ⟨α1, α1, β

p
p/p⟩β1γt and ⟨β1, p, γt⟩ generate subgroups of

the stable homotopy groups of spheres isomorphic to Z/p. Besides, even in the
case p|(t+ 1), β1γt and ⟨β1, p, γt⟩ are generators of order p.

Note that ⟨β1, p, γt⟩ = ⟨γt, p, β1⟩. We also notice that if t = 1, then
⟨γ1, p, β1⟩ = 0, while β2γ1 is non-trivial (see section five).

From here on, we assume that the prime number p is greater than three.

1.2 H∗S(3) revisited

We begin with recalling some notation from Ravenel’s green book [3]. Let BP
denote the Brown-Peterson spectrum. Then, the pair

(BP∗, BP∗(BP )) = (Z(p)[v1, v2, . . . ], BP∗[t1, t2, . . . ])

is a Hopf algebroid. Here, the degrees of vi and ti are 2pi − 2. The structure
maps act as follows:
(1.2.1)
ηR(v1) = v1 + pt1
ηR(v2) ≡ v2 + v1t

p
1 + pt2 mod (p2, vp1)

ηR(v3) ≡ v3 + v2t
p2

1 + v1t
p
2 + pt3 − pv1vp−1

2 t2 mod (p2, v21 , v
p
2)

∆(t1) = t1 ⊗ 1 + 1⊗ t1
∆(t2) = t2 ⊗ 1 + t1 ⊗ tp1 + 1⊗ t2 − v1b10
∆(t3) ≡ t3 ⊗ 1 + t2 ⊗ tp

2

1 + t1 ⊗ tp2 + 1⊗ t3 mod (v1, v2)

∆(t4) ≡ t4 ⊗ 1 + t3 ⊗ tp
3

1 + t2 ⊗ tp
2

2 + t1 ⊗ tp3 + 1⊗ t4 − v3b12 mod (v1, v2)

for

(1.2.2) b1k =
1

p

pk+1−1∑
i=1

(
pk+1

i

)
ti1 ⊗ t

pk+1−i
1 .
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Let K(3)∗ = Fp[v3, v
−1
3 ] have the BP∗-module structure given by viv

s
3 =

vs3vi = vs+1
3 if i = 3, and = 0 otherwise, and

Σ(3) = K(3)∗ ⊗BP∗ BP∗(BP )⊗BP∗ K(3)∗

= K(3)∗[t1, t2, . . . ]/(v3t
p3

i − v
pi

3 ti : i > 0) (by [3, 6.1.16])

is the Hopf algebra with structure inherited from BP∗(BP ). Define the Hopf
algebra S(3) by S(3) = Σ(3) ⊗K(3)∗Fp, where K(3)∗ acts on Fp by v3 · 1 = 1.
Then,

S(3) = Fp[t1, t2, . . . ]/(t
p3

i − ti : i > 0).

Now we abbreviate ExtS(3)(Fp, Fp) to H
∗S(3).

Consider integers di (= d3,i in [3, 6.3.1])

di =

{
0 i ≤ 0,

max(i, pdi−3) i > 0.

Then, there is a unique increasing filtration of the Hopf algebroid S(3) with deg

tp
j

i = di for 0 ≤ j < 3.

Theorem 1.2.3. (Ravenel[3, 6.3.2]) The associated Hopf algebra E0S(3) is

isomorphic to the truncated polynomial algebra of height p on the elements tp
j

i

for i > 0 and j ∈ Z/3, with coproduct defined by

∆(tp
j

i ) =

{∑i
k=0 t

pj

k ⊗ t
pk+j

i−k i ≤ 3,

tp
j

i ⊗ 1 + 1⊗ tp
j

i + bi−3,j+2 i > 3.

Let L(3) be the Lie algebra without restriction with basis xi,j for i > 0 and
j ∈ Z/3 and bracket given by

[xi,j , xk,l] =

{
δli+jxi+k,j − δ

j
k+lxi+k,l for i+ k ≤ 3,

0 otherwise,

where δij = 1 if i ≡ j mod 3 and 0 otherwise, and L(3, k) the quotient of L(3)
obtained by setting xi,j = 0 for i > k. Then, Ravenel noticed in [3, 6.3.8]:

Theorem 1.2.4. H∗(L(3, k)) for k ≤ 3 is the cohomology of the exterior com-
plex E(hi,j)on one-dimensional generators hi,j with i ≤ k and j ∈ Z/3, with
coboundary

d(hi,j) =

i−1∑
s=1

hs,jhi−s,s+j .

From now on, we abbreviate hi,j to hij , and h1j to hj .
Under the above filtration, Ravenel constructed the May spectral sequences

Theorem 1.2.5. (Ravenel [3, 6.3.4, 6.3.5]) There are spectral sequences
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(a) E2 = H∗(L(3, 3)) =⇒ H∗(E0S(3)) and

(b) E2 = H∗(E0S(3)) =⇒ H∗(S(3)).

Since these spectral sequences collapse, H∗S(3) is additively isomorphic to
H∗L(3, 3). Therefore, we have a projection

(1.2.6) π : H∗S(3)→ E0H∗S(3) = H∗(E0S(3)) = H∗L(3, 3).

Note that the Massey product ⟨hi, hi+1, hi+2, hi⟩ is homologous to v
(2−p)pi
3 bi+2

represented by v
(2−p)pi
3 b1,i+2 of (1.2.2), and π assigns the Massey product to

bi+2 ∈ H∗L(3, 3). Ravenel determined in [3, 6.3.34] the additive structure of
H∗L(3, 3). In particular, we have the following:

Theorem 1.2.7. H∗L(3, 3) contains submodules generated by:

h1k1ζ3, b0k1ζ3, h0l, k0l, h0b0b2l and h1l.

Moreover h1l ̸= h1k1ζ3. Here, l = h2h21h30, ki = hi+1h2i (i = 0, 1), b0 =
h1h32 + h21h20 + h31h1, b2 = h0h31 + h20h22 + h30h0 and ζ3 = h30 + h31 + h32.

Proof. In the table of [3, 6.3.34], we find the elements

h0, h1, k0, b0, b2, l, l′ = h0h22h31 and ζ3,

as well as the first element h1k1ζ3 of the theorem. We also have the element
h1k1h30 = h1h2h21h30 in the table, which is the last element h1l of the theorem.
These also imply h1l ̸= h1k1ζ3.

The element h0b0b2lζ3 is computed as

h0h2h21h30(h1h32 + h21h20 + h31h1)(h0h31 + h20h22 + h30h0)(h30 + h31 + h32)
= −2h0h1h2h20h21h22h30h31h32.

Therefore, h0b0b2l is the dual of the generator −1
2ζ3, and the elements h0b0b2l

and h0l are generators. Similarly, a computation

k0ll
′ζ3 = h1h20h2h21h30h0h22h31(h30 + h31 + h32)

= −h0h1h2h20h21h22h30h31h32

shows that k0l is the dual of the generator −l′ζ3.

Lemma 1.2.8. In H∗L(3, 3), h0k1 = 0 and k0k1 = 0.

Proof. From the proof of [3, 6.3.34], we read off the relations h0k1 = e30h2 and
k0k1 = e30g1 in H∗L(3, 2). Since e30 cobounds h30 in H∗L(3, 3), the lemma
follows.
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1.3 Greek letter elements

Let Es,tr (X) denote the Er-term of the Adams-Novikov spectral sequence con-
verging to the homotopy group πt−s(X) of a spectrum X. Then the E2-term is
ExtBP∗(BP )(BP∗, BP∗(X)). We here consider the Ext-group ExtBP∗(BP )(BP∗,M)
for aBP∗(BP )-comoduleM as the cohomology of the cobar complex Ω∗

BP∗(BP )M

(cf. [1]). Consider a sequence A = (a0, a1, . . . , an) of non-negative integers so
that the sequence pa0 , va11 , . . . , vann is invariant and regular. For such a sequence

A, Miller, Ravenel and Wilson introduced in [1] n-th Greek letter elements η
(n)
s(A)

in the Adams-Novikov E2-term E
n,t(A)
2 (S) by

(1.3.1) η
(n)
s(A) = δA,1 · · · δA,n(vann ) ∈ En,t(A)

2 (S)

for vann ∈ Ext
0,2an(p

n−1)
BP∗(BP ) (BP∗, BP∗/I(A,n)). Here, s(A) = an/an−1, an−2, · · · , a0

and t(A) = 2an(p
n − 1) − 2

∑n−1
i=0 ai(p

i − 1), I(A, k) denotes the ideal of BP∗
generated by pa0 , va11 , . . . , v

ak−1

k−1 , and δA,k+1 is the connecting homomorphism
associated to the short exact sequence

0→ BP∗/I(A, k)
v
ak
k−−→ BP∗/I(A, k)→ BP∗/I(A, k + 1)→ 0.

In particular, we write α = η(1), β = η(2) and γ = η(3). So far, only when
n ≤ 3, we know a condition whether or not Greek letter elements survive to

homotopy elements. We abbreviate η
(n)
s(A) to η

(n)
an if A = (1, . . . , 1, an) as usual.

For example, we consider β-elements defined by

(1.3.2)

βs = δ(1,1),1(β
′
s) ∈ E

2,t(1,1,s)
2 (S)

for β′
s = δ(1,1),2(v

s
2) ∈ E

1,t(1,1,s)
2 (V (0)), and

βpi/pi = βpi/pi,1 = δ(1,pi),1δ(1,pi),2(v
pi

2 ) ∈ E2,t(1,pi,pi)
2 (S).

At the prime p greater than three, we have the Smith-Toda spectrum V (k)
for k = 0, 1, 2 defined by the cofiber sequences

(1.3.3)

S
p−→ S

i−→ V (0)
j−→ ΣS,

ΣqV (0)
α−→ V (0)

i1−→ V (1)
j1−→ Σq+1V (0) and

Σ(p+1)qV (1)
β−→ V (1)

i2−→ V (2)
j2−→ Σ(p+1)q+1V (1).

Here, α ∈ [V (0), V (0)]q is the Adams map and β ∈ [V (1), V (1)](p+1)q is the
v2-periodic element due to L. Smith. Note that the BP∗-homology of these
spectra are BP∗(V (k)) = BP∗/Ik+1 for the ideal Ik of BP∗ generated by vi for
0 ≤ i < k with v0 = p. We consider the Bousfield-Ravenel localization functor
L3 with respect to v−1

3 BP . The E2-term E∗
2 (L3V (2)) of L3V (2) is isomorphic

to K(3)∗⊗H∗S(3), whose structure is given in [3] (see also [5]), and we consider
the composite

r : E∗
2 (S)

ι∗−→ E∗
2 (V (2))

η−→ E∗
2 (L3V (2))

ρ−→ H∗(S(3))
π−→ H∗L(3, 3).
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Here the first map is induced from the inclusion ι : S → V (2) to the bottom cell,
the second is from the localization map, the third is obtained by setting v3 = 1
and the last is the projection (1.2.6).

Lemma 1.3.4. The map r assigns the Greek letter elements as follows:

r(α1) = h0, r(β1) = −b0, r(β2) = −2k0,
r(γt) = t(t2 − 1)l − t(t− 1)k1ζ3 and r(βp/p) = −b1.

We also have β′
1 = h1−vp−1

1 h0 ∈ E1,pq
2 (V (0)) for the generators hi of E

1,piq
2 (V (0))

represented by tp
i

1 .

Proof. First we consider the images of the Greek letter elements under the
map ι∗ : E

∗
2 (S) → E∗

2 (V (2)). In the cobar complex Ω∗
BP∗(BP )BP∗, by (1.2.1),

d(v1) = pt1, d(v
pi

2 ) ≡ vp
i

1 t
pi+1

1 mod (p, vp
i+1

1 ) for i ≥ 0, d(v22) ≡ 2v1v2t
p
1 + v21t

2p
1

mod (p, vp1), and d(v
t
3) ≡ tv2vt−1

3 tp
2

1 +
(
t
2

)
v22v

t−2
3 t2p

2

1 mod (p, v1, v
3
2), which imply

δ(1),1(v1) = [t1], δ(1,1),2(v2) = [tp1 − v
p−1
1 t1],

δ(1,1),2(v
2
2) = [2v2t

p
1 + v1t

2p
1 + v21y], δ(1,p),2(v

p
2) = [tp

2

1 − v
p2−p
1 tp1] and

δ(1,1,1),3(v
t
3) = [tvt−1

3 tp
2

1 +
(
t
2

)
v2v

t−2
3 t2p

2

1 +
(
t
3

)
v22v

t−3
3 t3p

2

1 + v32z] = γt,

for cochains y ∈ Ω1
BP∗(BP )BP∗/(p) and z ∈ Ω1

BP∗(BP )BP∗/(p, v1). Here, [x]
denotes a cohomology class represented by a cocycle x. The first one shows
α1 = h0, and the second gives the last statement of the lemma. We further see

that d(tp
k

1 ) = −pb1,k−1 for k ≥ 1 and d(vk) ≡ ptk mod I((2, 1, 1), k) for k = 2, 3
by (1.2.1) in ∈ Ω1

BP∗(BP )BP∗. Moreover, [b1,k]’s are assigned to bk in H∗L(3, 3)
under the projection π, and we obtain

rδ(1,pk−1),1(hk − vp
k−pk−1

1 hk−1) = −bk−1 for k = 1, 2,

rδ(1,1),1([2v2t
p
1 + v1t

2p
1 ]) = −2k0,

δ(1,1,1),2(γt) = [t(t− 1)vt−2
3 tp2 ⊗ t

p2

1 + z] = γ′t and

rδ(1,1,1),1(γ
′
t) = t(t− 1)(t− 2)h30k1 + t(t− 1)rδ(1,1,1),1(k1).

Here, z is a linear combination of terms in the ideal (v1, v2)
2 and of the form

vex ⊗ y for e ∈ {1, 2} and x, y ∈ {tp
k

i t
pl

j , t
3p2

1 : i, j, k, l ∈ {1, 2}}. Thus the
relations other than r(γt) follows. Note that b1 = h2h30+h22h21+h32h2. Since
rδ(1,1,1),1(k1) = (h21h30 + h31h21)h2 − h21b1 = 3l− k1ζ3, we obtain the relation
on r(γt).

Recall the cofiber sequences (1.3.3) and the v3-periodic element γ ∈ [V (2), V (2)]q3
(q3 = (p2+p+1)q) due to H. Toda. Then, the Greek letter elements in homotopy
are defined by
(1.3.5)

αt = jαti, βt = jβ′
t for β′

t = j1β
ti1i and γt = jj1j2γ

ti2i1i

for t > 0, and the Greek elements in the E2-term survives to the same named
one in homotopy by the Geometric Boundary Theorem (cf. [3]).
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Proof of Theorem 3.1.10. We begin with noticing that the element bi inH
∗L(3, 3)

is the image of the Massey product ⟨hi, hi+1, hi+2, hi⟩ under π, which is homolo-
gous to bi represented by b1,i in (1.2.2). We further note that the Toda brackets
⟨α1, α1, β

p
p/p⟩ and ⟨β1, p, γt⟩ are detected by α1b2 and h1γt of E∗

2 (S), respec-

tively. Indeed, in the first bracket, d2p−1(b2) = α1β
p
p/p by Corollary 1.4.4 below,

and in the second bracket, ⟨β1, p, γt⟩ = j⟨β′
1, p, γt⟩. Under the condition on t,

Lemmas 1.3.4, 1.2.7 and 1.2.8 imply that each element of α1γt, β2γt, α1b2γtβ1
and h1γt, as well as β1γt, generates a submodule isomorphic to Z/p of the E2-
term E∗

2 (S). These are, of course, permanent cycles, and nothing kills them in
the Adams-Novikov spectral sequence since each element has a filtration degree
less than 2p− 1.

1.4 βpp/p in the homotopy of spheres

Let X and X be the (p − 1)q- and (p − 2)q-skeletons of the Brown-Peterson
spectrum BP . Then, we have the cofiber sequences

(1.4.1) S
ι−→ X

κ−→ ΣqX
λ−→ S1 and X

ι′−→ X
κ′

−→ S(p−1)q λ′

−→ ΣX.

Then,

BP∗(X) = BP∗[x]/(x
p) and BP∗(X) = BP∗[x]/(x

p−1)

as subcomodules of BP∗(BP ), where x corresponds to t1. From [3, Chap.7], we
read off the following:

(1.4.2) bp1 = 0 ∈ E2p,p3q
2 (X), which implies

E2s+e,tq
2 (X) = 0 if s ≥ p and t < (s− 1)p2 + (s+ 1 + e)p.

Lemma 1.4.3. b0 : E
2s+e,tq
2 (S) → E

2s+2+e,(t+p)q
2 (S) is monomorphic if s ≥ p

and t ≤ (s− 1)p2 + (s+ e)p.

Proof. Note that b0 = λλ′, and the lemma follows from (1.4.2) and the exact
sequences

E
2s+e,(t+p−1)q
2 (X)

κ′

−→ E2s+e,tq
2 (S)

λ′

−→ E
2s+1+e,(t+p−1)q
2 (X)

E
2s+e+1,(t+p)q
2 (X)

r−→ E
2s+e+1,(t+p−1)q
2 (X)

λ−→ E
2s+2+e,(t+p)q
2 (S)

induced from the cofiber sequences in (1.4.1).

Ravenel showed that d2p−1(βp2/p2) ≡ α1β
p
p/p mod Ker βp1 in the Adams-

Novikov spectral sequence for π∗(S) (cf. [3, 6.4.1]). Here, the mapping βp1 on

E
2p+1,(p3+1)q
2 (S) is a monomorphism by Lemma 1.4.3:
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Corollary 1.4.4. In the Adams-Novikov spectral sequence for π∗(S), d2p−1(βp2/p2) =

α1β
p
p/p ∈ E

2p+1,(p3+1)q
2p−1 (S) = E

2p+1,(p3+1)q
2 (S).

Proof of Theorem 1.1.1. Consider the first cofiber sequence in (1.4.1). Since

the Adams-Novikov E2-term E
sq+3,(p3+s)q
2 (X) vanishes for s > 0 by (1.4.2),

the element ι∗(βp2/p2) ∈ E2,p3q
2 (X) survives to a homotopy element Xβp2/p2 ∈

π∗(X). In general, we see that

(1.4.5) Let ι : S → X denote the inclusion to the bottom cell. Then, λ∗ι(x) =
α1x for x ∈ E∗

2 (S).

Put βp/p = ι∗(βp/p) ∈ E2,p2q
2 (X), and we see that λ∗(β

p

p/p) = α1β
p
p/p, and so

we see that β
p

p/p detects an essential homotopy element κ∗(
Xβp2/p2) ∈ π∗(X)

by Corollary 1.4.4, which we also denote by β
p

p/p.

Now turn to the second cofiber sequence in (1.4.1). The relation bp1 = 0 of

(1.4.2) yields a cochain y =
∑p−1
i=0 x

iyi ∈ Ω2p−1BP∗(X) such that d(y) = bp1,
where yi ∈ Ω2p−1BP∗. It follows that d(y) = bp1 − d(xp−1)yp−1 ∈ Ω2pBP∗(X)

for y =
∑p−2
i=0 x

iyi ∈ Ω2p−1BP∗(X). In particular d(yp−1) = 0 ∈ Ω2p−1BP∗ and
d(yp−2) = (1− p)t1 ⊗ yp−1. By definition, these imply λ′∗(yp−1) = bp1. Consider
the exact sequence obtained by applying the homotopy groups to the second
cofiber sequence. Then, ι′∗(β

p

p/p) = 0 by (1.4.2), and so β
p

p/p must be pulled

back to an element ξ ∈ π∗(S) detected by yp−1. Since b0 = λλ′, b0yp−1 = h0b
p
1,

and ⟨h0, . . . , h0⟩yp−1 = h0⟨h0, . . . , h0, yp−1⟩, we see that

bp1 ≡ ⟨h0, . . . , h0, yp−1⟩ ̸≡ 0 ∈ E2p,p3q
2 (S) mod kerh0.

Put bp1 = ⟨h0, . . . , h0, yp−1⟩+c for c ∈ kerh0 ⊂ E2p,p3q
2 (S). Then, bp1−c survives

to βpp/p ∈ π∗(S).
The element α1β

p
p/p is detected by h0(b

p
1 − c) = h0b

p
1 in the Adams-Novikov

E2-term, which is killed by b2 by Corollary 1.4.4.

1.5 Remarks

1.5.1 A relation on Toda bracket

The relation ⟨βs, p, γt⟩ = ⟨γt, p, βs⟩ follows immediately from results of Toda:
By definition, ⟨βs, p, γt⟩ = jβ(s)γ(t)i and ⟨γt, p, βs⟩ = jγ(t)β(s)i for β(s) = j1β

si1
and γ(t) = j1j2γ

ti2i1. Since V (2) and V (3) are V (0)-module spectra, θ(β) = 0
and θ(γ) = 0 by [4, Lemma 2.3]. Similarly, θ(ik) = 0 and θ(jk) = 0 for k = 1, 2.
Therefore, [4, Lemma 2.2] implies θ(β(s)) = 0 and θ(γ(t)) = 0. Therefore,
β(s)γ(t) = γ(t)β(s) by [4, Cor. 2.7] as desired.
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1.5.2 On the action of γ1

Note that γ1 = α1βp−1. Then, α1γ1 = α2
1βp−1 = 0, ⟨α1, α1, β

p
p/p⟩β1γ1 =

−α1⟨α1, α1, β
p
p/p⟩β1βp−1 = −⟨α1, α1, α1⟩βpp/pβ1βp−1 = 0 since ⟨α1, α1, α1⟩ = 0,

and ⟨γ1, p, β1⟩ = βp−1⟨α1, p, β1⟩ = βp−1jαj1βi1i = 0.
For t ≥ 2,

βt = δ(1,1),1δ(1,1),2(v
t
2) = δ(1,1),1([tv

t−1
2 tp1 +

(
t
2

)
v1v

t−2
2 t2p1 + v21x])

≡ [t(t− 1)vt−2
2 t2 ⊗ tp1 − tv

t−1
2 b0 +

(
t
2

)
vt−2
2 t1 ⊗ t2p1 ] mod (p, v1)

≡ t(t− 1)vt−2
2 k0 − tvt−1

2 b0 mod (p, v1)

and α1β2βp−1 ∈ E5
2(S

0) is projected to h0(2k0 − 2v2b0)(2v
p−3
2 k0 + vp−2

2 b0) =

−2vp−2
2 h0k0b0 − 2h0v

p−1
2 b20 in E5

2(V (2)) under the induced map i∗ from the
inclusion i : S0 → V (2) to the bottom cell. Here, k0 = [t2 ⊗ tp1 + 1

2 t1 ⊗ t
2p
1 ].

Then, this element is detected by −2vp−2
2 k0 ∈ E3

1 = E
2,(p2+p−1)q
2 (X ∧ V (2)) in

the small descent spectral sequence. The killer of this element, if any, stays in

the E1-terms E2
1 = E

2,(p2+p)q
2 (X ∧ V (2)), E1

1 = E
3,(p2+2p−1)q
2 (X ∧ V (2)) and

E0
1 = E

4,(p2+2p)q
2 (X ∧V (2)). These are zero, and we see that the product is not

zero.
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Chapter 2

The TR-groups of the
sphere spectrum at the
prime two

For the multiplicative group S1, the circle, we have the topological Hochschild
S1-spectrum T (S) of the sphere spectrum S. For the finite cyclic group Cr (⊂
S1) of order r, the TR-groups of S at 2 are defined by the equivariant homotopy
groups TRnk (S; 2) = [Sk ∧ (S1/C2n−1)+, T (S)]S1 for k ≥ 0 and n ≥ 1. By the
“trace method”, the groups are closely related with the algebraic K-groups of
S. In [1], Hesselholt determined the TR-groups for 0 ≤ k ≤ 5, in order to obtain
the homotopy groups of the topological Whitehead spectrum of the circle in
dimensions less than 4. In this chapter, we extend his result for the TR-groups
to k ≤ 9 by the mod 2 Adams spectral sequence as well as the Atiyah-Hirzebruch
spectral sequence.

2.1 Introduction

Throughout this chapter, we fix a prime p = 2 and denote by Cr the finite
cyclic subgroup of the circle S1 of order r. Let T (X) denote the topological
Hochschild homology spectrum of a ring spectrum X. Since T (X) is an S1-
spectrum, we define the TR-spectrum TRn(X; 2) of level n as the fixed point
spectrum T (X)C2n−1 for n ≥ 1. The spectrum TR(X; 2) is given by

TR(X; 2) = holimnTR
n(X; 2),

the homotopy limit of the system {R : TRn(X; 2) → TRn−1(X; 2)}n of the
restriction maps. The Frobenius maps F : TRn(X; 2) → TRn−1(X; 2) induce
a map F : TR(X; 2) → TR(X; 2), and TC(X; 2) is a spectrum fitting in the
cofiber sequence

TC(X; 2)
i−→ TR(X; 2)

id−F−−−→ TR(X; 2)
∂−→ ΣTC(X; 2).

15
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Consider the algebraic K-theory spectrum K(X) of a ring spectrum X, and the
cyclotomic trace map trc : K(X)→ TC(X; 2). The “trace method” is to study
K(X) through the composite

trn : K(X)
trc−−→ TC(X; 2)

i−→ TR(X; 2)→ TRn(X; 2).

We call the homotopy groups TRn∗ (X; 2) = π∗(TR
n(X; 2)) the (2-primary) TR-

groups of X of level n.
Let S denote the sphere spectrum localized at the prime two. In this chapter,

we consider the TR-groups TRn∗ (S; 2). We have the Segal-tom Dieck splitting
TRn∗ (S; 2) ∼= πS∗ ((BC2n−1)+) ⊕ TRn−1

∗ (S; 2) ([1, p. 137, p. 148, p. 155]), where
BC2n−1 denotes the classifying space of C2n−1 . By definition, TR1

∗(S; 2) =
π∗(T (S)), which is isomorphic to π∗(S) ([1, p. 147]). These show an isomorphism

(2.1.1) TRn∗ (S; 2) ∼= π∗(S)⊕
⊕

1≤k<n π
S
∗ ((BC2k)+).

Hesselholt studied the Atiyah-Hirzebruch spectral sequence

(2.1.2) E2
s,t(n) = Hs(C2n , πt(S))⇒ πS∗ ((BC2n)+) ∼= π∗(S)⊕ πS∗ (BC2n),

which is called the skeleton spectral sequence in [1, p. 148], to show the following
theorem.

Theorem 2.1.3 (Hesselholt [1, Theorem 11]). The TR-groups TRnk (S; 2) for
k ≤ 5 are given by

TRn0 (S; 2) ∼= Z⊕n
(2) ,

TRn1 (S; 2) ∼= Z/2⊕n ⊕
⊕

1≤s<n Z/2s,
TRn2 (S; 2) ∼= Z/2⊕n ⊕

⊕
1≤s<n Z/2,

TRn3 (S; 2) ∼= Z/8⊕n ⊕
⊕

1≤s<n Z/2max{3,s+1} ⊕
⊕

2≤s<n Z/2,
TRn4 (S; 2) ∼=

⊕
1≤s<n Z/2min{3,s},

TRn5 (S; 2) ∼=
⊕

2≤s<n Z/2s ⊕
⊕

3≤s<n Z/2.

Liulevicius determined the stable homotopy groups πSk (BC2) for k ≤ 9 ([3,
Theorem II.6]). We consider πSk (BC2n) for n > 1 and k ≤ 9 in this chap-
ter. In section 2, we determine the stable homotopy group πS6 (BC2n) by the
Atiyah-Hirzebruch spectral sequence, and in section 3, we determine the stable
homotopy groups πS∗ (BC2n) in dimensions 7, 8 and 9 by the mod 2 Adams
spectral sequence as well as the results in section 2. The following theorem
summarizes Corollary 2.2.10 and Propositions 2.3.12, 2.3.14 and 2.3.16.

Theorem 2.1.4. The TR-groups TRnk (S; 2) for 6 ≤ k ≤ 9 are given by

TRn6 (S; 2) ∼= Z/2⊕n ⊕
⊕

1≤s<n Z/2,
TRn7 (S; 2) ∼= Z/16⊕n ⊕

⊕
1≤s<n Z/2⊕

⊕
1≤s<n Z/2max{4,s+2} ⊕

⊕
2≤s<n Z/2,

TRn8 (S; 2) ∼= Z/2⊕2n ⊕
⊕

1≤s<n Z/2min{4,s} ⊕
⊕

1≤s<n Z/2⊕2,

TRn9 (S; 2) ∼= Z/2⊕3n ⊕
⊕

1≤s<n Z/2⊕3 ⊕
⊕

1≤s<n Z/2min{4,s} ⊕
⊕

2≤s<n Z/2s−1.
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2.2 The Atiyah-Hirzebruch spectral sequences

In this section, Ers,t(n) denotes an E
r-term of the Atiyah-Hirzebruch spectral se-

quence (2.1.2), and E∗(n) stands for the spectral sequence. Since the C2n-action
on the homotopy groups π∗(S) is trivial ([1, p. 145]), the standard resolution
gives rise to isomorphisms

(2.2.1) E2
s,t(n) = Hs(C2n , πt(S)) ∼=


πt(S) s = 0,

πt(S)/(2n) s : odd > 0,

πt(S)[2n] s : even > 0,

of groups, where πt(S)[2n] denotes the kernel of πt(S)
2n−→ πt(S).

Theorem 2.2.2 (cf. Toda [5, p. 189–190]). The homotopy groups πk(S) for
k ≤ 10 are given by

k 0 1 2 3 4 5 6 7 8 9 10
πk(S) Z(2) Z/2 Z/2 Z/8 0 0 Z/2 Z/16 Z/2⊕2 Z/2⊕3 Z/2
gen. ι η η2 ν ν2 σ ησ, ε ηε, µ, ν3 ηµ

The generators satisfy the relations η3 = 4ν, η2σ = ηε+ ν3 and νσ = 0.

We notice that the spectral sequence (2.1.2) splits into the direct sum of two
spectral sequences

E2
0,∗(n)⇒ π∗(S) and

⊕
s≥1E

2
s,∗(n)⇒ πS∗ (BC2n)

([1, p. 148]). We study the latter spectral sequence.
First we consider the case for n = 1. By (2.2.1) and Theorem 2.2.2, the

E2-terms E2
s,t(1) for s ≥ 1 and s+ t ≤ 10 are given by

s

10 0
9 Z/2 Z/2
8 0 Z/2 Z/2
7 Z/2 Z/2 Z/2 Z/2
6 0 Z/2 Z/2 4Z/8 0
5 Z/2 Z/2 Z/2 Z/2 0 0
4 0 Z/2 Z/2 4Z/8 0 0 Z/2
3 Z/2 Z/2 Z/2 Z/2 0 0 Z/2 Z/2
2 0 Z/2 Z/2 4Z/8 0 0 Z/2 8Z/16 Z/2⊕2

1 Z/2 Z/2 Z/2 Z/2 0 0 Z/2 Z/2 Z/2⊕2 Z/2⊕3

1 2 3 4 5 6 7 8 9 10 s+ t

Hereafter 2aZ/2b denotes the subgroup of Z/2b generated by 2a, which is iso-
morphic to Z/2b−a if a < b, and zero otherwise. For example, in the above
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chart, the boxed 4Z/8 at (s, t) = (2, 3) is the subgroup of Z/8 · ν generated by
4ν.

We deduce

(2.2.3) (E2
s,t(n)

d2−→ E2
s−2,t+1(n)) =

{
×η 4 ≤ s ≡ 0, 1 mod (4),

0 otherwise,

from [1, p. 148]. This implies that the E3-terms have a periodicity :

2.2.4 The E3-term E3
s,t(n) is isomorphic to E3

s+4,t(n) if s ≥ 2.
We obtain the E3-terms E3

s,t(1) for s ≥ 1 and s+ t ≤ 9 as follows by (2.2.3)
and (2.2.4).

s

9 0
8 0 0
7 Z/2 0 0
6 0 Z/2 0 0
5 0 0 Z/2 Z/2 0
4 0 0 0 4Z/8 0 0
3 Z/2 0 0 Z/2 0 0 Z/2
2 0 Z/2 0 0 0 0 Z/2 8Z/16
1 Z/2 Z/2 Z/2 Z/2 0 0 Z/2 Z/2 Z/2⊕2

1 2 3 4 5 6 7 8 9 s+ t

Theorem 2.2.5 (Liulevicius [3, Theorem II.6]). The stable homotopy groups of
BC2 = RP∞, the infinite real projective space, in dimensions less than 10 are
given by

k 1 2 3 4 5 6 7 8 9
πSk (RP∞) Z/2 Z/2 Z/8 Z/2 0 Z/2 Z/16⊕ Z/2 Z/2⊕3 Z/2⊕4

Corollary 2.2.6. The spectral sequence E∗(1) collapses at E3 for s+ t ≤ 9.

We turn to the case for n ≥ 2. By (2.2.3) and (2.2.4), we have the following
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chart of E3-terms of E∗(n) for s ≥ 1 and s+ t ≤ 10:

s

10 0
9 2Z/2n 0
8 0 0 0
7 Z/2n 0 0 Z/4
6 0 Z/2 0 K̃3,n 0

5 2Z/2n 0 Zn C3,n 0 0

4 0 0 0 K3,n 0 0 Z/2

3 Z/2n 0 0 Z/4 0 0 Z/2 C7,n

2 0 Z/2 0 K̃3,n 0 0 Z/2 K7,n K̃8,n

1 Z/2n Z/2 Z/2 C3,n 0 0 Z/2 C7,n Z/2⊕2 Z/2⊕3

1 2 3 4 5 6 7 8 9 10 s+ t

Here, Kt,n = πt(S)[2n], K̃t,n = Kt,n/(η), Ct,n = πt(S)/2n and Zn = ker(C2,n
η−→

C3,n), whose structures are :

K3,n
∼= 2max{3−n,0}Z/8, K7,n

∼= 2max{4−n,0}Z/16, K̃3,n
∼= 2max{3−n,0}Z/4,

K̃8,n
∼= Z/2 except for K̃8,2

∼= K̃8,3
∼= Z/2⊕2, C3,n

∼= Z/2min{n,3},
C7,n

∼= Z/2min{n,4} and Zn = 0 except for Z2
∼= Z/2.

Lemma 2.2.7 ([1, p. 145, Lemma 6, p. 148]). The Verschiebung map V : πS∗ ((BC2n−1)+)→
πS∗ ((BC2n)+) induces a map V : E∗(n − 1) → E∗(n) of spectral sequences. Let
{x}n denote an element of E2

s,t(n) represented by x ∈ πt(S). If s is even, then
V ({x}n−1) = {x}n for the map V : E2

s,t(n− 1)→ E2
s,t(n) of the E2-terms.

Since the differentials E3
6,1(1)

d3−→ E3
3,3(1) and E

3
4,6(1)

d3−→ E3
1,8(1) are trivial

by Corollary 2.2.6, the differentials E3
6,1(n)

d3−→ E3
3,3(n) and E

3
4,6(n)

d3−→ E3
1,8(n)

for n ≥ 2 are trivial by Lemma 2.2.7.
Recall [1, Lemma 8] that

2.2.8 (E4
s,t(n)

d4−→ E4
s−4,t+3(n)) =


×ν 4 < s ≡ 0, 1, 2, 3, 8, 9, 10, 11 mod (16),

×2ν 4 < s ≡ 6, 7, 12, 13 mod (16),

0 otherwise,

for n ≥ 1. We then obtain the following chart of the E5-terms for n ≥ 2, except



CHAPTER 2. THE TR-GROUPS OF THE SPHERE SPECTRUM 20

for the underlined group E5
7,3(n).

s

10 0

9 8Z/2n 0

8 0 0 0
7 2Z/2n 0 0 0

6 0 Z/2 0 K̃3,n 0

5 2Z/2n 0 Zn Z/2 0 0
4 0 0 0 K3,n 0 0 ?
3 Z/2n 0 0 Z/2 0 0 Z/2 ?

2 0 Z/2 0 K̃3,n 0 0 Z/2 K7,n ?

1 Z/2n Z/2 Z/2 C3,n 0 0 Z/2 C7,n Z/2⊕2 ?

1 2 3 4 5 6 7 8 9 10 s+ t

By (2.2.1) and Theorem 2.2.2, we see that E4
11,0(n) = Z/2n · ι, and that E4

7,3(n)
is a quotient of E3

7,3(n) = Z/4 · ν. Thus, we deduce from (2.2.8) that the group
E5

7,3(n) is zero.

Lemma 2.2.9. On Ers,t(n) for n ≥ 2 and r ≥ 5, the only possibly nonzero dif-

ferentials are E5
6,3(n)

d5−→ E5
1,7(n), E

7
9,0(n)

d7−→ E7
2,6(n) and E8

9,0(n)
d8−→ E8

1,7(n)
for s+ t ≤ 10.

Corollary 2.2.10. For n ≥ 2, the stable homotopy groups πS∗ (BC2n) in dimen-
sions from 6 to 9 satisfy the following relations :

πS6 (BC2n) ∼= Z/2,
|πS7 (BC2n)| = 2n+4,
|πS8 (BC2n)| ≤ 2min{n+2,6},
|πS9 (BC2n)| ≤ 2min{2n+2,n+6}.

2.3 The mod 2 Adams spectral sequence

In this section, we consider the mod 2 Adams spectral sequence

Es,t2 (X) = Exts,tA (H̃∗(X),Z/2)⇒ πSt−s(X)

for a space X. Here H̃∗(X) denotes a reduced cohomology of X with coefficients
Z/2, and A denotes the Steenrod algebra. We assume that n ≥ 2, and determine
the stable homotopy groups πS∗ (BC2n) in dimensions less than 10 by the mod
2 Adams spectral sequence for BC2n .
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Proposition 2.3.1. The E2-term E∗,∗
2 (BC2n) is isomorphic to xE∗,∗

2 (S0) ⊕
E∗,∗

2 (CP∞) ⊕ xE∗,∗
2 (CP∞) as a graded E∗,∗

2 (S0)-module for a generator x ∈
E1,0

2 (BC2n). Here S
0 and CP∞ denote the 0-dimensional sphere and the infinite

complex projective space, respectively.

Proof. We claim that there exists a generator x ∈ H̃1(BC2n) such that

(2.3.2) H̃∗(BC2n) ∼= Z/2 · x⊕ H̃∗(CP∞)⊕ xH̃∗(CP∞)

as a graded A-algebra. Indeed, the unreduced cohomology H∗(BC2n ,Z/2) is
isomorphic to the group cohomology H∗(C2n ,Z/2) ∼= E(x)⊗ P (y) with |x| = 1
and |y| = 2. Here E(−) and P (−) denote the exterior and the polynomial
algebras, respectively. Furthermore, we see that the action of A on the gener-
ators x and y is trivial except for Sq2(y) = y2 by the fundamental properties
of the Steenrod squares, other than Sq1(y) = 0. Note that Sq1 fits in the exact
sequence

H1(BC2n ,Z/2)
Sq1−−→ H2(BC2n ,Z/2)→ H2(BC2n ,Z/4)

→ H2(BC2n ,Z/2)
Sq1−−→ H3(BC2n ,Z/2)

associated to the short exact sequence 0 → Z/2 → Z/4 → Z/2 → 0. In the
exact sequence, H2(BC2n ,Z/2i) ∼= Z/2i by the standard resolution. The first

Sq1 is zero, and so is the second Sq1 as desired. We note that H̃∗(S0) ∼= Z/2
and H̃∗(CP∞) ∼= P (y) as graded A-algebras for the augmented ideal P (y) of
P (y). Thus, the claim (2.3.2) is verified and hence the proposition follows.

The E2-terms Es,t2 (S0) are well known as follows ([4, Theorem 3.2.11]) :

-
t− s

6s ...
...

5 h50 Ph1
4 h40 h30h3 h1c0
3 h30 h31 = h20h2 h20h2 c0 h32 = h21h3
2 h20 h21 h0h2 h22 h0h3 h1h3
1 h0 h1 h2 h3
0 1

0 1 2 3 4 5 6 7 8 9

The generators satisfy the relations :

(2.3.3)
hihi+1 = 0 for i ≥ 0, h31 = h20h2, h0h

2
2 = 0, h32 = h21h3,

h40h3 = 0, h0c0 = 0, h21c0 = 0 and h0Ph1 = 0.

We see the following fact immediately.

2.3.4 The mod 2 Adams spectral sequence for S0 collapses at E2 for t− s < 10.
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The E2-terms Es,t2 (CP∞) are determined in [3, Prop. II.3] as follows:

-
t− s

6s
...

...
...

...
...

...
5 h50e2 h40e4 h50e6 h20e8 h30e10
4 h40e2 h30e4 h40e6 h0e8 h30h3e2 h20e10
3 h30e2 h20e4 h30e6 e8 h20h3e2 h0e10
2 h20e2 h0e4 h0h2e2 h20e6 h21e6 h0h3e2 e10
1 h0e2 e4 h2e2 h0e6 h1e6 h3e2
0 e2 e6

0 1 2 3 4 5 6 7 8 9 10

Remark 2.3.5. In [3], the generators h0, hi(i > 0), e2, e4, e6, e8 and e10 here are
denoted by g0, hi−1, e0,2, e1,5, e0,6, e3,11 and e2,12, respectively.

Therefore, we obtain the following chart of E∗,∗
2 (BC2n) by Proposition 2.3.1.

-
t− s

6s
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

6 xh6
0 h6

0e2 xh6
0e2 h5

0e4 xh5
0e4 h6

0e6 xh6
0e6 h3

0e8 xh3
0e8 h4

0e10

5 xh5
0 h5

0e2 xh5
0e2 h4

0e4 xh4
0e4 h5

0e6 xh5
0e6 h2

0e8 xh2
0e8

xPh1

h3
0e10

4 xh4
0 h4

0e2 xh4
0e2 h3

0e4 xh3
0e4 h4

0e6 xh4
0e6

xh3
0h3

h0e8

xh0e8
h3
0h3e2

xh1c0
xh3

0h3e2
h2
0e10

3 xh3
0 h3

0e2 xh3
0e2

xh2
0h2

h2
0e4

xh2
0e4 h3

0e6 xh3
0e6

xh2
0h3

e8

xc0
xe8

h2
0h3e2

xh3
2

xh2
0h3e2
h0e10

2 xh2
0 h2

0e2
xh2

1

xh2
0e2

xh0h2

h0e4

xh0e4
h0h2e2

xh0h2e2
h2
0e6

xh2
2

xh2
0e6

xh0h3

h2
1e6

xh1h3

xh2
1e6

h0h3e2

xh0h3e2
e10

1 xh0
xh1

h0e2
xh0e2

xh2

e4

xe4
h2e2

xh2e2
h0e6

xh0e6
h1e6

xh3

xh1e6
h3e2 xh3e2

0 x e2 xe2 e6 xe6

0 1 2 3 4 5 6 7 8 9 10

Recall a well known fact (cf. [4, Lemma 3.1.3]) :

2.3.6 If α ∈ πS∗ (BC2n) is detected by an element a in E∗,∗
2 (BC2n), then 2α is

detected by ah0.

Since BC2n is a Hopf space (cf. [2]), the following holds (cf. [4, Theorem
2.3.3]).

2.3.7 The differentials of the mod 2 Adams spectral sequence for BC2n are deriva-
tions.



CHAPTER 2. THE TR-GROUPS OF THE SPHERE SPECTRUM 23

By (2.1.1) and Theorem 2.2.2, the TR-groups in Theorem 2.1.3 give rise to
the stable homotopy groups πSk (BC2n) for k ≤ 5 as follows:

(2.3.8)

πS1 (BC2n) ∼= Z/2n,
πS2 (BC2n) ∼= Z/2,
πS3 (BC2n) ∼= Z/2⊕ Z/2n+1,
πS4 (BC2n) ∼= Z/2min{3,n},
πS5 (BC2n) ∼= Z/2⊕min{1,n−2} ⊕ Z/2n.

We obtain the following lemma from (2.3.8).

Lemma 2.3.9. In the mod 2 Adams spectral sequence for BC2n , the elements
x, xe2 and xe4 are permanent cycles,

dn(e2) = xhn0 , dn(e4) = xhn+1
0 e2 and d2(e6) =

{
h0h2e2 + xh0e4 n = 2,

h0h2e2 n > 2.

Furthermore, d2(h2e2) = xh20h2 if n = 2, and h2e2 is a permanent cycle other-
wise.

Lemma 2.3.10. The elements h1e6 and xh0e6 of E1,8
2 (BC2n) are permanent

cycles.

Proof. We note that πS6 (BC2n) ∼= Z/2 by Corollary 2.2.10. Since xh2e2 is a
permanent cycle by Lemma 2.3.9, it detects a generator of πS6 (BC2n), and so
h0e6 supports a nonzero differential. We deduce dn(h0e6) = xhn0 e4 from the
structure of πS5 (BC2n) in (2.3.8). Therefore hi0e6 for i ≥ 1 cannot be a target
of any differential.

Lemma 2.3.11. dn(e8) = xhn+3
0 e6.

Proof. By (2.3.4), (2.3.7), Lemmas 2.3.9 and 2.3.10, the elements xh0e6, h1e6
and xh22 (resp. xh1e6, xh3 and h21e6) detect generators of πS7 (BC2n) (resp.
πS8 (BC2n)). Since |πS7 (BC2n)| = 2n+4 by Corollary 2.2.10, and the elements
h1e6 and xh22 generate the Z/2-summands, the element detected by xhn+3

0 e6 is
zero in the homotopy.

Proposition 2.3.12. πS7 (BC2n) ∼= Z/2⊕2 ⊕ Z/2n+2. The generators of sum-
mands are detected by xh22, h1e6 and xh0e6, respectively.

Lemma 2.3.13. The element h3e2 ∈ E1,10
2 (BC2n) is a permanent cycle if

n > 3, and dn(h3e2) = xhn0h3 if n = 2, 3. The element xe8 is a permanent
cycle.

Proof. Since dn(e2) = xhn0 by Lemma 2.3.9, we have dn(h3e2) = xhn0h3 by
(2.3.7), which is not zero if n = 2, 3, and zero if n > 3. By (2.3.7) and Lemma
2.3.11, hi0e8 supports a nontrivial differential, and so it cannot be a target of an
Adams differential. Therefore dr(h3e2) = 0 for r > n in the case for n > 3.

Since dn(xe8) = 0 by Lemma 2.3.11, we see that dr(xe8) = 0 for r > n
similarly.
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This together with Lemma 2.3.10 implies the following result.

Proposition 2.3.14. πS8 (BC2n) ∼= Z/2⊕2 ⊕ Z/2min{n,4}. The generators of
summands are detected by xh1e6, h

2
1e6 and xh3, respectively.

Lemma 2.3.15. |πS9 (BC2n)| = 2min{2n+2,n+6}.

Proof. Proposition 2.3.14 shows that |πS8 (BC2n)| = 2min{n+2,6}, which implies
that the undetermined differentials in Lemma 2.2.9 turn out to be trivial. We
now see the lemma by the same argument as the proof of Corollary 2.2.10.

Proposition 2.3.16. πS9 (BC2n) ∼= Z/2⊕3 ⊕Z/2min{n,4} ⊕Z/2n−1. The gener-

ators of summands are detected by xc0, xh
2
1e6, xh1h3, h

max{4−n,0}
0 h3e2 and xe8,

respectively.

Proof. Since d2(xh3e2) = 0 by Lemma 2.3.13, we see that xc0 and xh1h3 gen-
erate Z/2-summands by (2.3.4) and (2.3.7). The element xh21e6 detects a gen-
erator of the other Z/2 summand by Lemma 2.3.10. Lemma 2.3.13 shows that

h
max{4−n,0}
0 h3e2 generates the summand Z/2min{n,4}. Lemmas 2.3.13 and 2.3.15

imply that xe8 generates the summand Z/2n−1.

Remark 2.3.17. This also implies a differential dn(e10) = xhn−1
0 e8 for n > 2,

and d2(e10) ≡ xh0e8 mod (h30h3e2) for n = 2.
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Chapter 3

The first line of the
Bockstein spectral sequence
on a monochromatic
spectrum at an odd prime

The chromatic spectral sequence is introduced in [8] to compute the E2-term
of the Adams-Novikov spectral sequence for computing the stable homotopy
groups of spheres. The E1-term Es,t1 (k) of the spectral sequence is an Ext
group of BP∗BP -comodules. There are a sequence of Ext groups Es,t1 (n−s) for
non-negative integers n with Es,t1 (0) = Es,t1 , and Bockstein spectral sequences
computing a module Es,∗1 (n−s) from Es−1,∗

1 (n−s+1). So far, a small number of
the E1-terms are determined. Here, we determine the E1,1

1 (n− 1) = Ext1M1
n−1

for p > 2 and n > 3 by computing the Bockstein spectral sequence with E1-term
E0,s

1 (n) for s = 1, 2. As an application, we study the non-triviality of the action
of α1 and β1 in the homotopy groups of the second Smith-Toda spectrum V (2).
This is a joint work with Professor Shimomura.

3.1 Introduction

Let p be a prime number, Sp the stable homotopy category of p-local spectra,
and S the sphere spectrum localized at p. Understanding homotopy groups
π∗(S) of S is one of the principal problems in stable homotopy theory. The
main vehicle for computing π∗(S) is the Adams-Novikov spectral sequence based
on the Brown-Peterson spectrum BP . BP is the p-typical component of MU ,
the complex cobordism spectrum, and that it has homotopy groups BP∗ =
π∗(BP ) = Z(p)[v1, v2, · · · ] where vn is a canonical generator of degree 2pn−2. In
order to study the E2-term of the Adams-Novikov spectral sequence, H. Miller,
D. Ravenel and S. Wilson [8] introduced the chromatic spectral sequence. It

26
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was designed to compute the E2-term, but has the following deeper connotation.
Let Ln : Sp → Sp denote the Bousfield-Ravenel localization functor with respect
to v−1

n BP (cf. [12]). It gives rise the chromatic filtration Sp → · · · → LnSp →
Ln−1Sp → · · · → L0Sp of the stable homotopy category of spectra, which is
a powerful tool for understanding the category. The chromatic nth layer of
the spectrum S can be determined from the homotopy groups of LK(n)S, the
Bousfield localization of S with respect to the nth Morava K-theory K(n) that
it has homotopy groups K(n)∗ = v−1

n Z/p[vn] for n > 0 and K(0)∗ = Q. By the
chromatic convergence theorem of Hopkins-Ravenel [13], S is the inverse limit
of the LnS. Let E(n) be the nth Johnson-Wilson spectrum E(n) with E(n)∗ =
v−1
n Z(p)[v1, · · · , vn] for n > 0 and E(0) = K(0). It is Boufield equivalent to
v−1
n BP and also to K(0) ∨ · · · ∨K(n), i.e. LE(n) = Ln = LK(0)∨···∨K(n). We
notice that E(0) = HQ, the rational Eilenberg-MacLane spectrum, and E(1)
is the p-local Adams summand of periodic complex K-theory. Futhermore,
E(2) is closely related to elliptic cohomology. So far, we have no geometric
interpretation of homology theories K(n) or E(n) when n > 2.

From now on, we assume that the prime p is odd. We explain the E1-term
of the chromatic spectral sequence. The Brown-Peterson spectrum BP is a ring
spectrum that induces the Hopf algebroid (BP∗, BP∗(BP )) = (BP∗, BP∗[t1,
t2, . . . ]) in the standard way [14], and we have an induced Hopf algebroid

(E(n)∗, E(n)∗(E(n))) = (E(n)∗, E(n)∗ ⊗BP∗ BP∗(BP )⊗BP∗ E(n)∗)

where E(n)∗ is considered to be a BP∗-module by sending vk to zero for k > n.
Then, the E1-term is given by

Es,t1 (n− s) = ExttE(n)∗(E(n))(E(n)∗,M
s
n−s).

Here,Ms
n−s denotes the E(n)∗(E(n))-comodule E(n)∗/(In−s+(v∞n−s, v

∞
n−s+1, . . . ,

v∞n−1)), in which Ik denotes the ideal of E(n)∗ generated by vi for 0 ≤ i < k
(v0 = p), and M/(w∞) for w ∈ E(n)∗ and an E(n)∗-module M denotes the
cokernel of the localization map M → w−1M . In order to study the sta-
ble homotopy groups π∗(LK(n)S), we study here the homotopy groups of the

monochromatic component MnS of S (see [12]). Then, the E2-term Es,t2 (MnS)
of the Adams-Novikov spectral sequence for computing π∗(MnS) is the E1-term
En,s1 (0) of the chromatic spectral sequence. In [8], the authors also introduced
the vn−s-Bockstein spectral sequence Es−1,t+1

1 (n− s+ 1)⇒ Es,t1 (n− s) associ-
ated to a short exact sequence

0→Ms−1
n−s+1

φ−→Ms
n−s

vn−s−−−→Ms
n−s → 0

of E(n)∗(E(n))-comodules, where φ(x) = x/vn−s. So far, the E1-term Es,t1 (n−
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s) is determined in the following cases (cf. [14]):

(s, t, n) = (0, t, n) for (a) n ≤ 2, (b) n = 3, p > 3, (c) t ≤ 2 by Ravenel [11],
(Henn [2] for n = 2 and p = 3),

= (1, 0, n) for n ≥ 0 by Miller, Ravenel and Wilson [8],
= (s, t, n) for n ≤ 2 by Shimomura and his colaborators: Arita [1],

Tamura [20], Yabe [21] and Wang [22], ([15], [18], [19]),
= (1, 1, 3) by Shimomura [16], Hirata and Shimomura [3],
= (2, 0, n) for n > 3 by Shimomura [17], for n = 3 by Nakai [9], [10].

In this chapter, we determine the structure of E1,1
1 (n− 1) for n > 3. The case

n = 3, which is special, is treated in [16] and [3]. The result is the first step to
understand π∗(LK(n)S) for n > 3 as explained above. We proceed to state the
result.

In this chapter, we consider only the cases s = 0 and s = 1, and, hereafter,
put

v = vn and u = vn−1.

Furthermore, we put
F = Z/p,

and consider the coefficient ring K(n)∗ = F [v±1
n ] = F [v±1] = E(n)∗/In,

A = E(n)∗/In−1 and B = M1
n−1 = A/(u∞) = Coker (A→ u−1A).

Since the ideal In−1 is invariant, (A,Γ) = (A,E(n)∗(E(n))/In−1) is a Hopf
algebroid, and we use the abbreviation

ExtsM = ExtsΓ(A,M)

for a Γ-comodule M . Then, the chromatic E1-terms are

E0,t
1 (n) = ExttK(n)∗ and E1,t

1 (n− 1) = ExttB.

We have the u-Bockstein spectral sequence

(3.1.1) E1 = Ext∗K(n)∗ =⇒ Ext∗B

associated to the short exact sequence

(3.1.2) 0
K−→ (n)∗

φ−→ B
u−→ B → 0,

where φ is a homomorphism defined by φ(x) = x/u.
Let R be a ring, and let R⟨g⟩ denote the R-module generated by g. The

E1-term of the u-Bockstein spectral sequence was determined by Ravenel [11]
as follows:

Theorem 3.1.3. Ext0K(n)∗ = K(n)∗ and

Ext1K(n)∗ = K(n)∗⟨hi, ζn : 0 ≤ i < n⟩,
Ext2K(n)∗ = K(n)∗⟨ζnhi, bi, gi, ki, hjhk : 0 ≤ i < n, 0 ≤ j < k − 1 < n− 1⟩.
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In the theorem, the generators hi and bi are represented by tp
i

1 and
∑p−1
k=1

1
p

(
p
k

)
tkp

i

1 ⊗

t
(p−k)pi
1 of the cobar complex Ω∗

ΓK(n)∗, respectively, and gi and ki are given by
the Massey products

(3.1.4) gi = ⟨hi, hi, hi+1⟩ and ki = ⟨hi, hi+1, hi+1⟩.

In order to determine the module Ext0B, Miller, Ravenel and Wilson [8] intro-
duced elements xi and integers ai in [8, (5.11) and (5.13)], where they denoted

them by xn,i and an,i, such that xi ≡ vp
i

mod In with the action of the con-
necting homomorphism δ given in [8, (5.18)]:

(3.1.5) δ(vs/u) = svs−1hn−1 and δ(xsi/u
ai) = sv(sp−1)pi−1

h[i−1] for i ≥ 1.

Hereafter, we let
[i] ∈ {0, 1, . . . , n− 2}

be the principal representative of the integer i module n − 1. The elements xi
and the integers ai are defined inductively by x0 = v and a0 = 1, and for i > 0,

(3.1.6)

xi =

{
xpi−1 for i = 1 or [i] ̸= 1,

xpi−1 − ubn,ivp
i−pi−1+1 for i > 1 and [i] = 1, and

ai =

{
pai−1 for i = 1 or [i] ̸= 1,

pai−1 + p− 1 for i > 1 and [i] = 1.

Here, bn,k(n−1)+1 = (pn − 1)(pk(n−1) − 1)/(pn−1 − 1). The result (3.1.5) deter-
mines the differentials of the Bockstein spectral sequence, which implies:

Theorem 3.1.7. ([8, Th. 5.10]) As a k∗-module,

Ext0B = L∞ ⊕
⊕

p∤s,i≥0

Lai⟨xsi ⟩.

Here, k∗ = k(n− 1)∗ = F [u], Li = k∗/(u
i) and L∞ = k∗/(u

∞) = colimiLi.

This theorem together with (3.1.5) implies the following:

Corollary 3.1.8. The cokernel of δ : Ext0B → Ext1K(n)∗ is the F -module
generated by

vtζn, vtp−1hn−1, hj for 0 ≤ j < n− 1, and

vsp
k

hj for 0 ≤ j < n− 1, where [k] ̸= [j], s ̸≡ −1 (p), or s ≡ −1 (p2),

for integers s and t with p ∤ s.

By Theorem 3.1.3, the module Ext1K(n)∗ is the direct sum of ζnExt
0K(n)∗ =

ζnK(n)∗, F ⟨hj⟩ for j ∈ Z/(n− 1) and the modules

V(i,j,s) = F ⟨vsp
i

hj⟩
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for (i, j, s) ∈ N×Z/n×Z. Here, N denotes the set of non-negative integers, and
Z = Z \ pZ. We partition N× Z/n as follows:

-

6

0 1 2 ↗
n− 1
↖
n 2n− 2

↗
1

n− 1
n− 2

j : hj
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More precisely,

H = {(0, j) : 1 ≤ j < n− 2}
∪{(i, j) : i > 0, [i] ̸= n− 3, n− 2, 2 + [i] ≤ j ≤ n− 2}
∪{(i, j) : i > 0, [i] ̸= 0, 1, 0 ≤ j ≤ [i]− 2},

GB = {(i, [i]) : i ≥ 0},
K = {(i, [i]− 1) : i > 0, [i] ̸= 0} and
G = {(i, [i]− 2) : i > 1, [i] ̸= 0, 1}.

We introduce notation

V(0,n−2) =
⊕

s∈Z′ V(0,n−2,s),
V(0,n−1) =

⊕
t∈Z V(0,n−1,tp−1) = F [v±p]⟨v−1hn−1⟩,

CX =
⊕

(i,j)∈X, s∈Z V(i,j,s) for a subset X ⊂ N× Z/n,
CGB =

⊕
(i,j)∈GB

((⊕
s∈Z V(i,j,s)

)
⊕
(⊕

t∈Z V(i,j,tp2−1)

))
=

⊕
(i,[i],s)∈G̃B V(i,j,s) ⊕

⊕
i≥0 F [v

±pi+2

]⟨v−pih[i]⟩ and

CO = F ⟨θ, hj : j ∈ Z/(n− 1)⟩.

Here, for e(i) = (pi − 1)/(p− 1), θ = ve(n−2)hn−2,

Z′
= Z \ {e(n− 2)}, Z = {n ∈ Z : p ∤ (s+ 1)} and

G̃B = {(i, [i], s) : s ∈ Z}.

We also consider the subset T of N× Z/n× Z defined by

T = {(i, j, s) ∈ N× Z/n× Z : p ∤ (s+ 1) or p2 | (s+ 1) if [i] = j,
p | (s+ 1) if (i, j) = (0, n− 1), and s ̸= e(n− 2) if (i, j) = (0, n− 2)}.

In this notation, the cokernel of δ in Corollary 3.1.8 is given by
(3.1.9)

Coker δ = ζnK(n)∗ ⊕ CO ⊕
⊕

(i,j,s)∈T V(i,j,s)
= ζnK(n)∗ ⊕ CO ⊕ V(0,n−2) ⊕ V(0,n−1) ⊕ CH ⊕ CK ⊕ CG ⊕ CGB
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Finally, we consider the k∗-modules:

W(i,j,s) = La(i,j,s)⟨xsihj⟩,
W(0,n−2) =

⊕
s∈Z′ W(0,n−2,s),

W(0,n−1) =
⊕

t∈ZW(0,n−1,tp−1),
BX =

⊕
(i,j)∈X, s∈ZW(i,j,s) for a subset X ⊂ N× Z/n,

BGB =
⊕

(i,j)∈GB

((⊕
s∈ZW(i,j,s)

)
⊕
(⊕

t∈ZW(i,j,tp2−1)

))
and

C∞ = (K(n− 1)∗/k∗) ⟨θ, hj : j ∈ Z/(n− 1)⟩.

Here, a(i, j, s) denotes an integer defined as follows: for (i, j) = (0, n − 2),
a(0, n− 2, s) = 2 if p ∤ s(s− 1), and

a(0, n− 2, s) =


al p ∤ t, l > 0, [l] ̸= 0, n− 2,

al + e(n− 2) + pn−3 p ∤ t, l > 0, [l] = n− 2,

al + 1 p ∤ t, l > 0, [l] = 0

if s = tpl + e(n− 2); for (i, j) ∈ {(0, n− 1)} ∪H ∪K ∪G ∪GB,

a(i, j, s) =



p− 1 (i, j) = (0, n− 1),

ai (i, j) ∈ H,
ai + ai−1 (i, j) ∈ K ∪G,
2ai (i, j, s) ∈ G̃B,
(p− 1)ai+1 (i, j) ∈ GB, p2 | (s+ 1).

Theorem 3.1.10. The chromatic E1-term Ext1B = Ext1M1
n−1 is canonically

isomorphic to the k∗-module

ζnExt
0B ⊕ C∞ ⊕W(0,n−2) ⊕W(0,n−1) ⊕BH ⊕BK ⊕BG ⊕BGB .

Let V (n) be the nth Smith-Toda spectrum defined byBP∗(V (n)) = BP∗/In+1.
As an application of the theorem, we study the action of α1 and β1 on the el-
ements ut (t > 0) in the Adams-Novikov E2-term E∗

2 (V (n)) in section 6. In
particular, it leads us an geometric result for n = 4. In [23], Toda constructed
the self map γ on V (2) to show the existence of V (3) for the prime p > 5. We
notice that γti ∈ π∗(V (2)) for the inclusion i : S → V (2) to the bottom cell is
detected by ut = vt3 ∈ BP∗(V (2)) in the Adams-Novikov spectral sequence.

Theorem 3.1.11. Let p > 5. Then γtiα1 and γtiβ1 are nontrivial in π∗(V (2))
for t > 0.

3.2 Bockstein spectral sequence

We compute the Bockstein spectral sequence by use of the following lemma.
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Lemma 3.2.1. Let δ : ExtsB → Exts+1K(n)∗ be the connecting homomorphism
associated to the short exact sequence (3.1.2). Suppose that Coker δ =

⊕
k Vk ⊂

Ext1K(n)∗ and
⊕

k Uk ⊂ Ext2K(n)∗ for F -modules Vk and Uk, and there exist
u-torsion k∗-modules Wk fitting in a commutative diagram

0 −−−−→ Vk
φ′

∗−−−−→ Wk
u−−−−→ Wk

δ′−−−−→ Uky fk

y yfk y
0 −−−−→ Coker δ

φ∗−−−−→ Ext1B
u−−−−→ Ext1B

δ−−−−→ Ext2K(n)∗

of exact sequences. Then, Ext1B =
⊕

kWk.

This follows immediately from [8, Remark 3.11].

Let θ̃ be an element of Corollary 3.5.8. Then, θ̃/uk and hj/u
k for j ∈ Z/(n−

1) belong to Ext1B, and we define the map f : C∞ → Ext1B by f((u−k)θ) =

θ̃/uk and f((u−k)hj) = hj/u
k for (u−k) ∈ K(n−1)∗/k∗, so that the short exact

sequence

(3.2.2) 0→ CO
1/u−−→ C∞

u−→ C∞ → 0

yields a summand of Lemma 3.2.1.
Note that if a cocycle z represents ζn, then so does zp. Therefore, we have

ζn/u
j ∈ Ext1B represented by zp

j

/uj . The exact sequence (3.1.2) induces the

exact sequence 0 → Ext0K(n)∗
φ∗−−→ Ext0B

u−→ Ext0B
δ−→ Ext1K(n)∗, and we

have an exact sequence

(3.2.3) 0→ ζnExt
0K(n)∗

φ∗−−→ ζnExt
0B

u−→ ζnExt
0B

δ−→ ζnExt
1K(n)∗,

which is a summand of Lemma 3.2.1. Together with (3.2.2) and (3.2.3), Theorem
3.1.10 follows from Lemma 3.2.1 if the following sequence is exact for each
(i, j, s) ∈ T :

(3.2.4) 0→ V(i,j,s)
φ′

∗−−→W(i,j,s)
u−→W(i,j,s)

δ′−→ U(i,j,s),

where U(i,j,s) denotes an F -module generated by a single generator as follows:
for (i, j) = (0, n− 2), U(0,n−2,s) = Fpvs−2kn−2 if p ∤ s(s− 1),

U(0,n−2,s) =


Fpvs−p

l−1

h[l−1]hn−2 p ∤ t, l > 0, [l] ̸= 0, n− 2,

Fpvs−p
l−1

b2n−5 p ∤ t, l > 0, [l] = n− 2,

Fpvs−p
l−1−1gn−2 p ∤ t, l > 0, [l] = 0;
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if s = tpl + e(n− 2); for (i, j) ∈ {(0, n− 1)} ∪H ∪K ∪G ∪GB,

U(i,j,s) =



Fpvs−p+1bn−1 (i, j) = (0, n− 1),

F ⟨v(sp−1)pi−1

h[i−1]hj⟩ (i, j) ∈ H,
Fpv(s−2)pkn−1 (i, j) = (1, 0) ∈ K,
Fpv(sp

2−p−1)pi−2

k[i−2] (i, j) ∈ K, i > 1,

Fpv(sp
2−p−1)pi−2

g[i−2] (i, j) ∈ G,
Fpvs−p−1gn−1 (i, j, s) ∈ G̃B, i = 0,

Fpv(sp−2)pi−1

g[i−1] (i, j, s) ∈ G̃B, i > 0,

F ⟨v(s+1−p)pibj⟩ (i, j) ∈ GB, p2 | (s+ 1).

Since the mapping T → {U(i,j,s) : (i, j, s) ∈ T } assigning (i, j, s) to U(i,j,s)

is an injection, we see the following:

Lemma 3.2.5. The direct sum of ζnExt
1K(n)∗ and U(i,j,s) for (i, j, s) ∈ T is

a sub-F -module of Ext2K(n)∗.

The homomorphism fk in Lemma 3.2.1 onW(i,j,s) for (i, j, s) ∈ T is explicitly
given by

f(i,j,s)(x) = x/ua(i,j,s).

It follows that the homomorphism δ′ on it is given by the composite δ(1/ua(i,j,s)).
Hereafter we denote it by δ′(i,j,s), that is, δ

′
(i,j,s) = δ(1/ua(i,j,s)), and consider a

condition:

(3.2.6)(i,j,s) δ′(i,j,s)(x) = y for the generators x ∈W(i,j,s) and y ∈ U(i,j,s).

Note that φ′
∗(x) = ua(i,j,s)−1x for the generators x ∈ V(i,j,s) and x ∈W(i,j,s),

since fkφ
′
∗(x) = φ∗(x) = x/u. Then,

Lemma 3.2.7. For each (i, j, s) ∈ T , if the condition (3.2.6)(i,j,s) holds, then
(3.2.4) for (i, j, s) is exact and yields a summand of Lemma 3.2.1.

The relations in (3.1.5) show immediately

(3.2.8) The condition (3.2.6)(i,j,s) holds for (i, j) ∈ H.

Proof of Theorem 3.1.10. The theorem follows from Lemmas 3.2.1, 3.2.5 and
3.2.7 together with (3.2.2), (3.2.3), (3.2.8), Lemmas 3.3.7, 3.3.8, 3.4.1 and 3.5.9,
in which the lemmas are proved below. Indeed, the direct sum of ζnExt

0K(n)∗,
CO and V(i,j,s) for (i, j, s) ∈ T is the cokernel of δ by (3.1.9).



CHAPTER 3. THE FIRST LINE OF BSS 34

3.3 The summands on V(0,n−1) and CGB

We begin with stating some formulae on the Hopf algebroid (A,Γ):
(3.3.1)

0 = vtp
n

k + utp
n−1

k+1 − up
k+1

tk+1 − tkηR(vp
k

) ∈ Γ for k < n,

ηR(u) = u, ηR(v) = v + utp
n−1

1 − upt1,
∆(tk) =

∑k
i=0 ti ⊗ t

pi

k−i for k < n, and

∆(tn) =
∑n
i=0 ti ⊗ t

pi

n−i − ubn−2.

Then the connecting homomorphism δ : Ext1B → Ext2K(n)∗ is computed
by the differential d : Ω1

ΓA→ Ω2
ΓA of the cobar complex modulo an ideal, which

is defined by

(3.3.2) d(x) = 1⊗ x−∆(x) + x⊗ 1.

We also use the differential d : Ω0
ΓA→ Ω1

ΓA defined by d(w) = ηR(w)− ηL(w).
For w,w′ ∈ Ω0

ΓA and x ∈ Ω1
ΓA, these differentials satisfy

(3.3.3)
d(ww′) = d(w)ηR(w

′) + wd(w′), d(wx) = d(w)⊗ x+ wd(x), and
d(xηR(w)) = d(x)ηR(w)− x⊗ d(w).

We also use the Steenrod operations P 0 and βP 0 on Ext∗C(j) for j ≥ 1 and
Ext∗B (cf. [6], [14]). Here, C(j) denotes the comodule A/(uj), and we notice

that C(1) = K(n)∗. Let Ω̃sM = ΩsE(n)∗(E(n))M for an E(n)∗(E(n))-comodule

M . Given a cocycle x(j) of Ω̃sC(j), x̃(j) denotes a cochain of Ω̃sE(n)∗ such

that πj(x̃(j)) = x(j) for the projection πj : Ω̃
sE(n)∗ → Ω̃sC(j). Since x(j) is

a cocycle, d(x̃(j)p) = pyj +
∑n−2
i=1 v

p
i zj,i + ujpzj,n−1 for some elements yj and

zj,i ∈ Ω̃s+1E(n)∗. Under this situation, the Steenrod operations are defined by

P 0([x(j)]) = [x(j)p] and βP 0([x(j)]) = [yj ] ∈ Ext∗C(jp), and
P 0([x(j)/uj ]) = [x(j)p/ujp] and βP 0([x(j)/uj ]) = [yj/u

jp] ∈ Ext∗B.

Here, [x] denotes the homology class represented by a cocycle x. In particular,
the operation acts on our elements as follows:

(3.3.4) βP 0(xi/u
ai) =

{
vp−1hn−1/u

p−1 i = 0,

xp
2−1
i−1 h[i−1]/u

(p−1)ai i > 0,
in Ext1B;

(3.3.5)

P 0(xsihk/u
j) =

{
xsi+1hk+1/u

jp k ̸= n− 2,

xsi+1h0/u
jp−p+1 k = n− 2;

in Ext1B; and

βP 0(xsihk) = xsi+1bk in Ext2K(n)∗.

The following is a folklore (cf. [14, Corollary A1.5.5]):

(3.3.6) P 0δ = δP 0 and βP 0δ = −δβP 0 in Ext∗K(n)∗.
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Lemma 3.3.7. The condition (3.2.6)(i,j,s) holds for each (i, j, s) ∈ {(0, n −
1, tp− 1), (i, j, tp2 − 1) : t ∈ Z, (i, j) ∈ GB}.

Proof. For k ≥ −1, consider a generator x(k, t) = xtp
2−1

k h[k] for k ≥ 0 and

x(−1) = xtp−1
0 hn−1, and (k, t) denotes a triple (k, [k], tp2 − 1) if k ≥ 0 and

(0, n − 1, tp − 1) if k = −1. Then, (1/ua(k,t))(x(k, t)) = xt−1
k+2βP

0(xk+1/u
ak+1)

for k ≥ −1 by (3.3.4). Now, δ′
(k,t)

(x(k, t)) equals

xt−1
k+2δ(βP

0(xk+1/u
ak+1)) = −xt−1

k+2(βP
0(xp−1

k h
[k]
)) = −xν(t)k+1b[k]

by (3.3.6), (3.1.5) and (3.3.5). Here, (ν(t), [k]) = (tp − 1, [k]) if k ≥ 0 and
= ((t− 1)p, n− 1) if k = −1.

Lemma 3.3.8. The condition (3.2.6)(i,[i],s) holds for (i, [i], s) ∈ G̃B.

Proof. We prove this by induction on i. By (3.3.1) and (3.3.2), we compute
mod (u3)

d(vs+1−ptp
n

1 ) ≡ (s+ 1)uvs−ptp
n−1

1 ⊗ tp
n

1 +
(
s+1
2

)
u2vs−p−1t2p

n−1

1 ⊗ tp
n

1

d((s+ 1)uvs−ptp
n−1

2 ) ≡ s(s+ 1)u2vs−p−1tp
n−1

1 ⊗ tp
n−1

2 − (s+ 1)uvs−ptp
n−1

1 ⊗ tp
n

1

to obtain δ(vsh0/u
2) = s(s+ 1)vs−p−1gn−1 and so

δ′(0,0,s)(v
sh0) = s(s+ 1)vs−p−1gn−1.

Apply P 0 to it, and we obtain

δ′(1,1,s)(v
sph1) = δ(P 0(vsh0/u

2)) = P 0δ(vsh0/u
2) = s(s+ 1)P 0(vs−p−1gn−1)

= s(s+ 1)vsp−p
2−pgn = s(s+ 1)vsp−2g0.

Here, we notice that gn = vp
2+p−2g0 in Ext2K(n)∗ by (3.3.1). Suppose induc-

tively that δ′(i,1,s)(x
s
ih1) = s(s+1)v(sp−2)pi−1

g0 for [i] = 1, which is (3.2.6)(i,1,s).

Note that ai+j = pai+j−1 if 0 < j < n − 2, and we see that P 0δ′(i,j,s) =

δ′(i+1,j+1,s)P
0 by (3.3.6). Therefore, (P 0)j for j < n − 2 yields the equation

for δ′a(i+j,j+1,s)(x
s
i+jhj+1). At i′ = i + n − 2, for t = (i′, 0, s), δ′t(x

s
i′h0) =

δP 0(xsi′−1hn−2/u
a(i′−1,n−2,s)) (by (3.3.5)) = s(s+1)v(sp−2)pi+n−3

gn−2 by (3.3.6)
and inductive hypothesis.

Note that ai+n−1 = pn−1ai + p − 1. Consider the connecting homomor-
phism δj : Ext

1M1
n−1 → Ext2C(j) associated to the short exact sequence 0 →

C(j)
1/uj

−−−→ M1
n−1

uj

−→ M1
n−1 → 0. Then, uj−1δ = δju

j−1. Besides, δj(P
0)k =

(P 0)kδ if pk ≥ j. Now in Ext2C(p2 + p − 1), up
2+p−2δ′(i+n−1,1,s)(x

s
i+n−1h1)

equals

up
2+p−2δ(xsi+n−1h1/u

pn−1a+2(p−1)) = δp2+p−1(P
0)n−1(xsih1/u

a)

= (P 0)n−1(s(s+ 1)v(sp−2)pi−1

g0) = s(s+ 1)v(sp−2)pi+n−2

gn−1
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for a = a(i, [i], s), which equals s(s + 1)up
2+p−2v(sp−2)pi+n−2

g0 by the relation

up+2gn−1 = up
2+2pg0. This relation follows from (3.1.4) and uhn−1 = uph0

given by d(v).

3.4 The summands CG and CK

We study the action of the connecting homomorphism δ by use of the Massey
product. We notice that this is also shown by use of P 0-operation considered in
the previous section, but we use the Massey product for the sake of simplicity.

Lemma 3.4.1. The condition (3.2.6)(i,j,s) holds for (i, j) ∈ G ∪K.

Proof. We consider the element (1/ua(i,j,s))(xsihj) the Massey product ⟨sxsp−1
i−1 /uai−1 , h[i−1], hj⟩.

Then, δ′(i,j,s)(x
s
ihj) = δ⟨sxsp−1

i−1 /uai−1 , h[i−1], hj⟩ = ⟨sδ(xsp−1
i−1 /uai−1), h[i−1], hj⟩,

which equals−⟨svsp−2hn−1, h0, h0⟩ = −sv(s−2)pkn−1 if i = 1, and−⟨sv(sp2−p−1)pi−2

h[i−2], h[i−1], hj⟩ ={
−sv(sp2−p−1)pi−2

kj−1 j = [i− 1],

−2sv(sp2−p−1)pi−2

gj j = [i− 2]
otherwise. Here, we note that ⟨hi, hi+1, hi⟩ =

2gi.

3.5 The summand V(0,n−2)

Consider the elements ci = up
i

hn−1+i and c
′
i = up

i+1

hi of Ext
1A. The elements

have internal degrees |ci| = |c′i| = pie(n)q for q = 2p− 2, and satisfy

ci = c′i, cici+1 = 0, hn+ici = 0 and hi+1ci = hi+1c
′
i = 0.

We consider the cochains wk = ue(k−1)ctp
n−1

k of the cobar complex Ω1
ΓA.

Then,

(3.5.1) wk = −wpk−1ηR(v) + upe(k−2)vp
k−1

ctk−1 + up
k+pe(k−2)ctk

for k > 1 by (3.3.1). Let wk be a cochain of the cobar complex Ω1
ΓA defined

inductively by:

(3.5.2)
w1 = tp

n−1

1 − up−1t1 = −w1 + up−1ct1 and

wk = wpk−1ηR(v) + (−1)kupe(k−2)vp
k−1

ctk−1

and put

(3.5.3)
m′
k = −

∑k−1
i=1 (−1)iup

i−1

wp
i

k−i ⊗ wi and

mk = up
k−1

wk +
∑k−1
i=1 (−1)iup

i−1

vp
ie(k−i)wi.

Lemma 3.5.4. d(ve(k)) = mk. Besides, d(wk) = m′
k if k ≤ n.
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Proof. We prove the lemma inductively. Since d(v) = uw1 = m1, we see the
case for k = 1. Indeed, m′

1 = 0. Suppose that the equalities hold for k − 1.
Then, we compute by (3.3.3), (3.5.1) and (3.5.2),

d(ve(k)) = d(vpe(k−1))ηR(v) + vpe(k−1)d(v)

=
(
up

k−1

wpk−1 +
∑k−2
i=1 (−1)iup

i

vp
i+1e(k−1−i)wpi

)
ηR(v)− uvpe(k−1)

(
w1 − up−1ct1

)
= up

k−1
(
wk − (−1)kupe(k−2)vp

k−1

ctk−1

)
− uvpe(k−1)

(
w1 − up−1ct1

)
+
∑k−2
i=1 (−1)iup

i

vp
i+1e(k−1−i)

(
−wi+1 +

(
upe(i−1)vp

i

cti + up
i+1+pe(i−1)cti+1

))
,

which equals mk, and similarly,

d(wk) = −
∑k−2
i=1 (−1)iup

i

wp
i+1

k−1−i ⊗ w
p
i ηR(v) + uwpk−1 ⊗ (w1 − up−1ct1)

+(−1)kupe(k−2)
(
up

k−1

wp
k−1

1 ⊗ ctk−1 + vp
k−1

d(ctk−1)
)

= −
∑k−2
i=1 (−1)iup

i

wp
i+1

k−1−i ⊗
(
−wi+1 + upe(i−1)vp

i

cti + up
i+1+pe(i−1)cti+1

)
+uwpk−1 ⊗ (w1 − up−1ct1)

+(−1)kue(k−2)
(
up

k−1

wp
k−1

1 ⊗ ctk−1 + vp
k−1

d(ctk−1)
)

= m′
k

Here, the underlined terms cancel each other if k ≤ n by (3.5.2) and (3.3.1) with
the relation ∆(cx) = T (c ⊗ c)∆(x) for the switching map T : Γ ⊗ Γ → Γ ⊗ Γ.

We also introduce an element

ck = hn+k−1 − u(p−1)pkhk ∈ Ext1A.

Corollary 3.5.5. For each 0 < k < n, the Massey products µk = ⟨upk , ck, ck−1, ck−2, . . . , c1, c0⟩
and µ′

k = ⟨ck, ck−1, ck−2, . . . , c1, c0⟩ are defined. In fact, the cocycles mk+1 and
m′
k+1 represent elements of the Massey products µk and µ′

k, respectively.

In particular, we have

Corollary 3.5.6. The Massey product ⟨upn−3

, cn−3, cn−4, . . . , c0⟩ ⊂ Ext1A is
defined and contains zero.

Lemma 3.5.7. The Massey product ⟨cn−3, cn−4, . . . , c0, hn−2⟩ ⊂ Ext2A con-
tains zero.

Corollary 3.5.8. The Massey product µ = ⟨upn−3

, cn−3, cn−4, . . . , c0, hn−2⟩ is
defined and contain an element whose leading term is ve(n−2)hn−2.

Lemma 3.5.9. The condition (3.2.6)(i,j,s) holds for (i, j) = (0, n− 2).

Proof. If p ∤ s(s− 1), it follows from the computation

d(vstp
n−2

1 ) ≡ suvs−1tp
n−1

1 ⊗ tp
n−2

1 +
(
s
2

)
u2t2p

n−1

1 ⊗ tp
n−2

1 mod (u3)

d(suvs−1ctp
n−2

2 ) ≡ s(s− 1)u2tp
n−1

1 ⊗ ctp
n−2

2 − suvs−1tp
n−1

1 ⊗ tp
n−2

1 mod (u3).
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Suppose s = tpl + e(n − 2) with p ∤ t and l > 0. Let θ̃ denote an element of

Corollary 3.5.8. We take a generator corresponding to vshn−2 to be vs−e(n−2)θ̃.

We denote a representative of θ̃ by m, which is congruent to ve(n−2)tp
n−2

1 +

uvpe(n−3)ctp
n−2

2 modulo (u2). Then, d(vs−e(n−2)m) = tualvs−e(n−2)−pl−1

tp
[l−1]

1 ⊗
m ≡ tualvs−pl−1

tp
[l−1]

1 ⊗ tp
n−2

1 . This shows the case for [l] ̸= 0, n− 2.

For [l] = 0, the similar computation shows that d(vs−e(n−2)m) ≡ tualvs−pl−1

(tp
n−2

1 ⊗
tp

n−2

1 +uv−1tp
n−1+pn−2

1 ⊗tp
n−2

1 +uv−1tp
n−2

1 ⊗ctp
n−2

2 ), which yields vs−1−pl−1

gn−2.

For [l] = n−2, θ̃hn−3 ∈ ue(n−2)⟨h2n−4, h2n−5, . . . , hn−2, hn−3⟩ = {ue(n−2)+pn−3

b2n−5}
in C(pn−2). Indeed, ue(n−3)tp

n−3

n yields the equality by (3.3.1).

3.6 On the action of α1 and β1 on Greek letter
elements

In this section, let H∗M for a BP∗(BP )-comodule M denote an Ext group
Ext∗BP∗(BP )(BP∗,M). Consider the comodule Nk−1(j) = BP∗/(Ik−1 + (vjk−1))
(v0 = p), and the connecting homomorphism δk,j associated to the short exact

sequence 0 → BP∗/Ik−1

vjk−1−−−→ BP∗/Ik−1 → Nk−1(j) → 0. We abbreviate δk,1
to δk. Here we consider the Greek letter elements of H∗BP∗/In−1 defined by

α
(n−1)
t = ut ∈ H0BP∗/In−1 and

α
(n)
(t/j) = δn,j(v

t) ∈ H1BP∗/In−1 for vt ∈ H0Nn−1(j)

for t > 0, and

α1 = δ1(v1) = h0 ∈ H1BP∗ and β1 = δ1δ2(v2) = b0 ∈ H2BP∗.

Proposition 3.6.1. The elements α1 and β1 act on the Greek letter elements
as follows:

α1α
(n−1)
t ̸= 0 ∈ H1BP∗/In−1, β1α

(n−1)
t ̸= 0 ∈ H2BP∗/In−1;

and if the Greek letter elements α
(n)
(spi/j) has an internal degree greater than

2(pn − 1)(e(n− 1)− 1), then

α1α
(n)
(spi/j) ̸= 0 ∈ H2BP∗/In−1 if [i] ̸= 0, p ∤ (s+ 1) or p2 | (s+ 1); and

β1α
(n)
(spi/j) ̸= 0 ∈ H3BP∗/In−1 if n ̸= 5, [i] ̸= 1 or p ∤ (s+ 1).

In order to prove this, we make a chromatic argument: Let N0
k denote the

BP∗BP -comodule BP∗/Ik, and put M0
k = v−1

k N0
k . We denote the cokernel of

the inclusion N0
k → M0

k by N1
k , so that 0 → N0

k → M0
k

ψ−→ N1
k → 0 is an

exact sequence. Let δ̃k+1 : H
sN1

k → Hs+1N0
k be the connecting homomorphism

associated to the short exact sequence. We notice that N1
k = colimjNk(j) with

inclusion φj : Nk(j) → N1
k given by φj(x) = x/uj , and that the connecting

homomorphism δn,j : H
sNn−1(j) → Hs+1N0

n−1 factorizes to δ̃nφj .
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Lemma 3.6.2. For an element xsi/u
j ∈ H0N1

n−1 for 0 < j ≤ ai (j ≤ pi if
s = 1), α1 and β1 act on it as follows:

xsiα1/u
j ̸= 0 ∈ H1N1

n−1 if [i] ̸= 0, p ∤ (s+ 1) or p2 | (s+ 1); and
xsiβ1/u

j ̸= 0 ∈ H2N1
n−1 if n ̸= 5, [i] ̸= 1 or p ∤ (s+ 1).

Proof. A change of rings theorem of Miller and Ravenel [7] shows that the
module HsM1

n−1 is isomorphic to ExtsB. By (3.1.5), we see that xsih0/u ̸=
0 ∈ Ext1B unless [i] = 0, p | (s + 1) and p2 ∤ (s + 1). This shows the first
non-triviality. Similarly, since we have shown that (3.2.4) is exact, we see that
xsiβ1/u ̸= 0 ∈ Ext2B unless n = 5, [i] = 1 and p | (s+ 1).

Lemma 3.6.3. Let ξ1 denote α1 or β1, and x ∈ H0N1
n−1, and suppose that

xξ1 has an internal degree greater than 2(pn−1 − 1)(e(n − 1) − 1). If xξ1 ∈
HsN1

n−1 ̸= 0, then δ̃n(x)ξ1 ̸= 0 ∈ Hs+1N0
n−1.

Proof. It suffices to show that xξ1 is not in the image of ψ∗ : H
sM0

n−1 →
HsN1

n−1. Again the change of rings theorem shows that the module HsM0
n−1

is isomorphic to the module of Lemma 3.1.3 with substituting n − 1 for n.
Note that every generator of it except for ζn−1 belongs to HsN0

n−1, and also

is ue(n−1)ζn−1 (cf. [14]). It follows that every element of the image of ψ∗ has
an internal degree no greater than 2(e(n− 1)− 1)(pn−1 − 1). Thus the lemma
follows.

Proof of Proposition 3.6.1. The module HsM0
n−1 contains a submodule k∗⟨h0⟩

if s = 1 and k∗⟨b0⟩ if s = 2. Therefore, the first two relations hold. The other
relations follow from Lemmas 3.6.2 and 3.6.3.

Proof of Theorem 3.1.11. Note that α
(3)
t = γt = vt3, and we obtain the theorem

from Proposition 3.6.1 at n = 4.
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Chapter 4

Generalized Bousfield
lattices and a generalized
retract conjecture

In [1], Bousfield studied a lattice (Bousfield lattice) on the stable homotopy
category of spectra, and in [5], Hovey and Palmieri made the retract conjecture
on the lattice. In this chapter we generalize the Bousfield lattice and the retract
conjecture to the ones on a monoid. We also determine the structure of typical
examples of them, which satisfy the generalized retract conjecture. In particular
we give the structure of the Bousfield lattice of the stable homotopy category
of harmonic spectra explicitly. This is joit work with Professor Shimomura and
Yotaro Tatehara.

4.1 Introduction

LetM be a closed symmetric monoidal category with zero object, and consider
an object M of it. We call the full subcategory ⟨M⟩ ofM the Bousfield class of
M if it consists of objects A ofM such that MA = 0 by its monoidal structure.
Then we have a partial order on Bousfield classes by ⟨M⟩ ≤ ⟨N⟩ if every object
of ⟨N⟩ is an object of ⟨M⟩. Then the subcategories ⟨S⟩ and ⟨O⟩ of the unit S
and the zero O are the greatest and the least ones in the order, respectively. We
call the collection of all Bousfield classes a Bousfield lattice, and denote it by
B(M). In a case where a Bousfield lattice is a set, the partial order introduces
a lattice structure to it, and we may investigate it algebraically.

In a sense, the stable homotopy theory is analyzing stable homotopy cate-
gories (cf. [6]). A stable homotopy category is a symmetric monoidal category,
and so we may consider its Bousfield lattice. In particular, T. Ohkawa [8] (cf.
[2]) showed that the Bousfield lattice B of the stable homotopy category of spec-
tra is a set, and then Iyengar and Krause [7] generalized it to a stable homotopy

42
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category.
In order to investigate a category, we sometimes classify special subcategories

of it. From this viewpoint, we study a Bousfield lattice by classifying localizing
subcategories (see [6]). Indeed, every Bousfield class is a localizing subcategory.

In [5], Hovey and Palmieri studied the Bousfield lattice B deeply. Further-
more, they proposed many conjectures on the structure of B. Among them,
there is the retract conjecture, which is one of our main topics. Dwyer and
Palmieri [3] constructed a stable homotopy category, where the conjecture does
not hold. So far, there seems no nontrivial category in which the conjecture
holds. In this chapter, we give some examples of categories with the affirmative
answer to the conjecture.

As stated above, a Bousfield lattice B(M) is a set in some cases. In this
case, it is a monoid with multiplication compatible with its order. We introduce
the notion of monoidal posets and define a functor β from a subcategory of
commutative monoids to the category of monoidal posets in Section two. Then
we define a Bousfield lattice of a monoid to be an object in the image of β,
which is an analogy of Bousfield lattices of stable homotopy categories. In
particular, B has not only a structure of a monoidal poset, but also a Bousfield
lattice associated to B itself. In section three, we show analogous properties
on a Bousfield lattice to those given by Hovey and Palmieri [5] including the
following:

Conjecture 4.1.1 (Original retract conjecture [5, Conj. 3.12]). Let h be the
Bousfield class of the mod p Eilenberg-MacLane spectrum HZ/p in the Bousfield
lattice B. Then, there is a lattice isomorphism r∗ : B/J(h)→ DL. Here, J(h) is
an ideal related to h (see Notation 4.3.1).

We generalize it to generalized retract conjectures on a monoidally distributive
poset (Conjectures 4.3.18 and 4.3.19) and show some facts relating to them.
Section four is devoted to determine Bousfield lattices obtained from principal
ideal domains, and to show the conjecture true for them. In section five, we
study about Bousfield lattices of stable homotopy categories of Bousfield local-
ized spectra, and construct isomorphisms between the Bousfield lattice and a
Bousfield lattice given in section four. In particular, we have the following:

Theorem 4.1.2. The generalized retract conjectures holds on the stable homo-
topy category of harmonic spectra.

One of our final goals is to determine the lattice structure of B, which seems
difficult so much. In the last section, we propose problems on the functor β,
whose answers may help us to understand the Bousfield lattice B. We expect
that these problems give us hints to reach the goal.

4.2 Monoidal posets and Bousfield lattices

Let M be commutative monoid with unit 1. We call M a monoid with 0 if
M admits an element 0 ∈ M such that 0 · x = 0 = x · 0 for any x ∈ M .
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A typical example of it is a commutative ring ignoring addition. We denote
by M0 the category consisting of commutative monoids with 0 and monoid
homomorphisms preserving zero.

For M ∈M0, β(M) denotes a set consisting of subsets

⟨x⟩ = {y ∈M : xy = 0}

of M for x ∈M .

Lemma 4.2.1. β(M) for M ∈ M0 is also a monoid with 0 with inherited
multiplication. Therefore, we have the canonical epimorphism M → β(M) in
M0.

Proof. Define a multiplication of β(M) by ⟨x⟩⟨y⟩ = ⟨xy⟩. We verify it well
defined as follows: Assume that ⟨x0⟩ = ⟨x1⟩ and ⟨y0⟩ = ⟨y1⟩. Then

zx0y0 = 0 ⇔ zx1y0 = 0 by ⟨x0⟩ = ⟨x1⟩
⇔ zx1y1 = 0 by ⟨y0⟩ = ⟨y1⟩,

and ⟨x0y0⟩ = ⟨x1y1⟩. The elements ⟨1⟩ and ⟨0⟩ are the unit and the zero
elements.

Remark 4.2.2. We notice that β(R) = Z/2 if R is a domain.

Lemma 4.2.3. Let M be a monoid with 0. Then β(M) admits a partial order
‘≤’ on M defined by ⟨x⟩ ≤ ⟨y⟩ if ⟨x⟩ ⊃ ⟨y⟩. Besides, ⟨1⟩ and ⟨0⟩ are the greatest
and the least elements, respectively.

Proof. This is trivial since ⟨1⟩ = {0} and ⟨0⟩ =M .

By the lemma, a commutative monoid β(M) has also a poset structure.
Then we define the following notion by taking its crucial properties.

Definition 4.2.4. A monoidal poset P = (P,≤, ·, 1, 0) is defined by the follow-
ing data.

(1) (P, ·, 1, 0) is a monoid with 0.

(2) (P,≤) is a poset.

(3) The following are equivalent.

(a) x ≤ y.
(b) cy = 0 for c ∈ P implies cx = 0.

A monoidal poset map f : P → P ′ is an order preserving monoid homomorphism
with f(0) = 0.

Lemma 4.2.3 implies the following.

Corollary 4.2.5. β(M) for M ∈ M0 is a monoidal poset with 1 = ⟨1⟩ and
0 = ⟨0⟩.
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Lemma 4.2.6. Let M be a monoidal poset. Then, β(M) = M as monoidal
posets.

Remark 4.2.7. A monoidal poset seems a lattice, but unfortunately it is not true.
Indeed, we have an example: Consider a monoidal posetM = {1, xi, yi, w, 0: i =
1, 2} with multiplication

1 x1 x2 y1 y2 w
x1 w w 0 w 0
x2 w w w 0 0
y1 0 w 0 0 0
y2 w 0 0 0 0
w 0 0 0 0 0

Then, the join of y1 and y2 does not exist.

LetMP denote the category of monoidal posets and monoidal poset maps.
ThenMP ⊂M0.

Lemma 4.2.8. Let M be a monoidal poset. Then, xz ≤ yw if x ≤ y and z ≤ w.
In particular, if x ≤ y, then xz ≤ yz for any z.

Proposition 4.2.9. The categoryMP admits direct products.

Proof. Let {Mλ} be a family of monoidal posets. Then, we have a direct product∏
λMλ of monoids. Consider an order ‘≤’ on

∏
λMλ defined by (xλ) ≤ (yλ) if

(cλ)(yλ) = (0) implies (cλ)(xλ) = (0). It is straightforward to verify this is the
desired direct product.

Lemma 4.2.10. Let {Mλ} be a family of monoidal posets. Then, ⟨xλ⟩ ≤
⟨yλ⟩ for all λ if and only if ⟨(xλ)⟩ ≤ ⟨(yλ)⟩. Here, ⟨xλ⟩, ⟨yλ⟩ ∈ β(Mλ) and
⟨(xλ)⟩, ⟨(yλ)⟩ ∈ β(

∏
λMλ).

Proof. Assume that ⟨xλ⟩ ≤ ⟨yλ⟩ for any λ. Then

(cλ)(yλ) = 0 ⇒ cλyλ = 0 for any λ
⇒ cλxλ = 0 for any λ (∵ ⟨xλ⟩ ≤ ⟨yλ⟩)
⇒ (cλ)(xλ) = 0,

Conversely, suppose that ⟨(xµ)⟩ ≤ ⟨(yµ)⟩. Then, for any λ,

yλcλ = 0 ⇒ (yλ)(cλ)0 = 0
⇒ (xλ)(cλ)0 = 0 (∵ ⟨(xµ)⟩ ≤ ⟨(yµ)⟩)
⇒ xλcλ = 0

in Mλ, where (cλ)0 denotes an element (xµ) such that xλ = cλ and xµ = 0 for
µ ̸= λ.

Corollary 4.2.11. Let {Mλ} be a family of monoidal posets. Define an order
≤′ on the set

∏
λMλ by (xλ) ≤′ (yλ) if xλ ≤ yλ for all λ. Then it is equivalent

to the order in the proof of Proposition 4.2.9.
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Corollary 4.2.12. Let {Mλ} be a family of monoidal posets. Then,
∨
µ(x

µ
λ) =

(
∨
µ x

µ
λ) for any subset {(xµλ)}µ ⊂

∏
λMλ.

Proof. Since (xµλ) ≤ (
∨
µ x

µ
λ) for all µ,

∨
µ(x

µ
λ) ≤ (

∨
µ x

µ
λ). If (xµλ) ≤ (zλ), then

xµλ ≤ zλ, and so
∨
µ x

µ
λ ≤ zλ, that is, (

∨
µ x

µ
λ) ≤ (zλ). Therefore,

∨
µ(x

µ
λ) =

(
∨
µ x

µ
λ) by definition.

We call an epimorphism f : M → N ofM0 strong if f(x) = 0 if and only if
x = 0.

We define a map β(f) : β(M)→ β(N) by sending ⟨x⟩ to ⟨f(x)⟩.

Lemma 4.2.13. For a strong epimorphism f : M → N , the map β(f) is not
only a monoidal poset map but also a strong epimorphism.

Proof. Since f is a strong epimorphism, c · f(x) = 0 ⇔ f(c′) · f(x) = 0 ⇔
f(c′ · x) = 0 ⇔ c′ · x = 0 for an element c′ such that f(c′) = c. This shows
that ⟨x⟩ = ⟨y⟩ implies ⟨f(x)⟩ = ⟨f(y)⟩. It is easy to see that β(f) is a strong
epimorphism.

We also consider the subcategoriesM andMPepi ofM0 andMP, respec-
tively, obtained by restricting morphisms to strong epimorphisms.

Corollary 4.2.14. The operation β above defines a functor β :M→MPepi ⊂
M.

By the above argument, we redefine Bousfield lattices as follows. The defi-
nition is one of our main topics in this chapter.

Definition 4.2.15. For a monoid M ∈ M we call a monoidal poset β(M) the
Bousfield lattice associated to M .

In earlier papers, a Bousfield lattice is made from a closed symmetric monoidal
category with a zero object. However, its set theoretic confusion complicates our
argument too much. Our new definition settles this problem, and the following
proposition says that this argument is consistent.

Proposition 4.2.16. The Bousfield lattice B of the stable homotopy category
of spectra is a Bousfield lattice in the sense of our definition.

Proof. By forgetting the ordering on B, we regard B as a monoid with 1 = ⟨S⟩
and 0 = ⟨∗⟩. Then it is clear that β(B) = B.

Proposition 4.2.17. The functor β satisfies the following:

(1) β(
∏
λMλ) =

∏
λ β(Mλ).

(2) ββ(M) = β(M).



CHAPTER 4. GENERALIZED BOUSFIELD LATTICES 47

Proof. (1) Let {pλ : β(
∏
λMλ)→ β(Mλ)} be a family of epimorphisms defined

by ⟨(xλ)⟩ 7→ ⟨xλ⟩, and {fλ : W → β(Mλ)} a family of poset maps. We notice
that pλ is well defined by Lemma 4.2.10. For an element w ∈ W , we take an
element wλ ∈ Wλ so that fλ(w) = ⟨wλ⟩, and define g : W → β(

∏
λMλ) by

g(w) = ⟨(wλ)⟩. Then g is also a well defined poset map by Lemma 4.2.10 and

pλg(w) = pλ(⟨(wλ)⟩) = ⟨wλ⟩ = fλ(w).

Suppose that there is another poset map g′ : W → β(
∏
λMλ) satisfying pλg

′(w) =
fλ(w) for w ∈W , and g′ assigns w to ⟨(w′

λ)⟩. Then

pλg
′(w) = fλ(w) for any λ ⇔ ⟨w′

λ⟩ = ⟨wλ⟩ for any λ
⇔ ⟨(w′

λ)⟩ = ⟨(wλ)⟩ (by Lemma 4.2.10)
⇔ g′(w) = g(w).

Therefore, β(
∏
λMλ) is the product

∏
λ β(Mλ).

(2) is seen by Lemma 4.2.6.

4.3 Retract conjecture

From now on, we assume that every monoidal poset considered is a complete
lattice.

Since a monoidal poset M is a sup-lattice with the least element 0 = ⟨0⟩, M
is a bounded lattice.

Notation 4.3.1. For a monoidal poset M , we define the following notations.

aM (x) :=
∨
{y ∈M : xy = 0} for x ∈M,

BA(M) : = {x ∈ β(X) : x ∨ a(x) = 1},
DL(M) := {x ∈M : x2 = x},
rM (x) :=

∨
{w ∈ DL(M) : w ≤ x} for x ∈M,

JM (x) := {y ∈M : y ≤ x · aM (x)} for x ∈M,
N(M) := {x ∈M : xn = 0 for some n ≥ 1},
A(M) := {x ∈M : rM (x) = 0}.

We will omit M from notations, if M is clear from the context.
It is well known that the subposet DL(M) is also a complete lattice. Indeed

the following holds.

Proposition 4.3.2. DL(M) is closed under arbitrary joins.

Proof. By Lemma 4.2.8, (
∨
λ∈Λ xλ)

2 ≤ (
∨
λ∈Λ xλ). Suppose that xλ is in DL

for λ ∈ Λ. Then, xλ = x2λ ≤ (
∨
λ∈Λ xλ)

2, and so
∨
λ∈Λ xλ ≤ (

∨
λ∈Λ xλ)

2.

Lemma 4.3.3. In DL(M), the meet of x and y is xy.

Proof. Since x ∧ y ≤ x and x ∧ y ≤ y, if x ∧ y ∈ DL(M) then x ∧ y ≤ xy.

Remark 4.3.4. DL(M) is not always sublattice of M by Lemma 4.3.3.
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For investigating the original Bousfield lattice B, the operations r and a play
important roles (see [5]). Hereafter we try to give their properties analogously
on monoidal posets.

Proposition 4.3.5. Let M be a monoidal poset, and r = rM : M → M be the
map defined in Notation 4.3.1.

(1) r is order-preserving i.e. x ≤ y implies r(x) ≤ r(y).

(2) r(x)2 = r(x) and r2(x) = r(x) for x ∈M .

(3) r(x) ≤ xn for any n ≥ 1.

(4) r(xy) = r(x)r(y) = r(x ∧ y) for x, y ∈M .

Proof. (1) is trivial, and (2) follows from Proposition 4.3.2. For (3), r(x) ≤ x
by definition, and we have r(x) = r(x)n ≤ xn.

Since r(x)r(y) ≤ xy and r(x)r(y) ∈ DL(M), we have r(x)r(y) ≤ r(xy). We
also see r(x∧y) ≤ r(x)r(y), since r(x∧y) ≤ r(x) and r(x∧y) ≤ r(y). Therefore,
r(xy) ≤ r(x ∧ y) ≤ r(x)r(y) ≤ r(xy), and obtain (4).

The behavior of the map r is the same as the one on B, but not that of the
operation a. Indeed, for any x ∈ M and {yλ}λ ⊂ M , the relation x(

∨
λ yλ) ≥∨

λ(xyλ) is not always an equality. To make the operator a have good properties,
we introduce a following notion.

Definition 4.3.6. A monoidal poset M is a monoidally distributive poset if M
satisfies that x(

∨
λ yλ) =

∨
λ(xyλ) for any x ∈M and {yλ}λ ⊂M .

Remark 4.3.7. DL(M) is a distributive lattice if M is a monoidally distributive
poset by Lemma 4.3.3.

In the same way as [5], we have

Proposition 4.3.8. Let M be a monoidally distributive poset. Then,

(1) a(−) is order-reversing.

(2) xy = 0 if and only if x ≤ a(y).

(3) aa(x) = x.

Lemma 4.3.9. Let M be a monoidally distributive poset. Fix c ∈ M such
that cn = 0 for a positive integer n. Then, for any x ∈ M , (x ∨ c)n ≤ x and
r(x ∨ c) = r(x).

Proof. Under the assumption, we compute

(x ∨ c)n = xn ∨ xn−1c ∨ · · · ∨ xcn−1

= x(xn−1 ∨ xn−2c ∨ · · · ∨ cn−1) ≤ x

for any x ∈M . So, if z ≤ x∨c for z ∈ DL(M), then z ≤ x. Thus, r(x∨c) = r(x)
by definition of r.
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Proposition 4.3.10. Let M be a monoidally distributive poset. Then JM (x) ⊂
N(M) ⊂ A(M) for any x ∈M .

Proof. Since (x · aM (x))(x · aM (x)) ≤ xaM (x) = 0 by Proposition 4.3.8(2), we
have JM (x) ⊂ N(M). Suppose that xn = 0, then r(x) = r(x)n = r(xn) =
r(0) = 0 by Proposition 4.3.5 (4). So we have N(M) ⊂ A(M).

Proposition 4.3.11. Let Mλ be a monoidal poset for any λ ∈ Λ. Then,

(1) r((xλ)) = (r(xλ)) for any (xλ) ∈
∏
λMλ.

(2) r preserves arbitrary joins on Mλ for any λ ∈ Λ if and only if r preserves
arbitrary joins on

∏
λMλ

Proof. (1) is given by Corollary 4.2.12.
(2) Suppose that r preserves arbitrary joins on Mλ for any λ ∈ Λ. Then, for

{(xµλ)}µ ⊂
∏
λMλ,

r(
∨
µ(x

µ
λ)) = r((

∨
µ x

µ
λ)) (by Corollary 4.2.12)

= (r(
∨
µ x

µ
λ)) (by (1))

= (
∨
µ r(x

µ
λ))

=
∨
µ(r(x

µ
λ)) (by Corollary 4.2.12).

Therefore, r preserves arbitrary joins on
∏
λMλ.

Conversely, if r preserves arbitrary joins on
∏
λMλ, then

(r(
∨
µ x

µ
λ)) = r((

∨
µ x

µ
λ)) (by (1))

= r(
∨
µ(x

µ
λ)) (by Corollary 4.2.12)

=
∨
µ(r(x

µ
λ))

= (
∨
µ r(x

µ
λ)) (by Corollary 4.2.12).

It follows that r preserves arbitrary joins on Mλ for any λ ∈ Λ as desired.

Remark 4.3.12. We notice that Mλ is a monoidally distributive poset for any
λ ∈ Λ if and only if

∏
λ∈ΛMλ is a monoidally distributive poset. Indeed, if

Mλ is a monoidally distributive poset for any λ ∈ Λ, then (cλ)(
∨
µ(x

µ
λ)) =

(cλ)(
∨
µ x

µ
λ) = (cλ(

∨
µ x

µ
λ)) = (

∨
µ cλx

µ
λ) =

∨
µ(cλx

µ
λ) for (cλ) ∈

∏
λMλ and

{(xµλ)}µ ⊂
∏
λMλ by Corollary 4.2.12. Thus,

∏
λMλ is a monoidally dis-

tributive poset. Conversely, if
∏
λMλ is a monoidally distributive poset, then

(cλ(
∨
µ x

µ
λ)) = (cλ)(

∨
µ x

µ
λ) = (cλ)(

∨
µ(x

µ
λ)) =

∨
µ(cλx

µ
λ) = (

∨
µ cλx

µ
λ) by Corol-

lary 4.2.12. Therefore, Mλ is a monoidally distributive poset for any λ ∈ Λ by
Lemma 4.2.10.

Recall that an ideal I of a poset is any subset of M such that:

(1) If x ∈ I, and y ≤ x, then y ∈ I, and

(2) For x, y ∈ I, there is an element z ∈ I such that x ≤ z and y ≤ z.
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Suppose that a monoidal poset M is an ordinary lattice. Then, an ideal of
M is also an ideal as a lattice, and for an ideal I,M/I is the lattice of equivalent
classes under the equivalence relation defined by

(4.3.13) x ∼ y if and only if x ∨ c = y ∨ c for some c ∈ I

with order given by [x] ≤ [y]⇔ x∨c ≤ y∨c for some c ∈ I. We notice thatM/I
is complete ifM and I are complete. IfM is monoidally distributive, thenM/I
has the multiplication [x][y] := [xy]. Indeed, if x ∨ i = x′ ∨ i and y ∨ j = y′ ∨ j
for x, x′, y, y′ ∈M and i, j ∈ I, then (x ∨ i)(y ∨ j) = (x′ ∨ i)(y′ ∨ j) turns into

xy ∨ (x ∨ i)j ∨ (y ∨ j)i = x′y′ ∨ (x′ ∨ i)j ∨ (y′ ∨ j)i
= x′y′ ∨ (x ∨ i)j ∨ (y ∨ j)i.

Since (x ∨ i)j ∨ (y ∨ j)i ∈ I, the multiplication is well defined.

Remark 4.3.14. M/I is not always a monoidal poset. Indeed, we have an exam-
ple: Let M = {1, x, y, 0} be a monoidal poset with multiplication x2 = x, xy =
0, y2 = 0. Then, for the ideal I = {y, 0}, M/I = {1, x, 0} and β(M/I) = {1, 0}.
Since M/I ̸= β(M/I), M/I is not a monoidal poset by Lemma 4.2.6.

Lemma 4.3.15. Let M be a monoidally distributive poset. Then, N(M) is an
ideal of M and JM (x) is a principal ideal of M for any x ∈M .

Proof. Suppose that xn = 0 and ym = 0. Then, (x ∨ y)n+m =
∨
a+b=n+m x

ayb.
Since if a < n then b ≥ m, (x ∨ y)n+m = 0. So N(M) is an ideal of M . By
definition, JM (x) is a principal ideal of M .

Here, consider the following correspondence:

r∗ : M/I → DL(M); [x] 7→ {r(y) : y ∈ [x]}

We notice that if r∗ is a mapping (i.e. a single-valued mapping), then it is a
surjection.

Theorem 4.3.16. Let M be a monoidally distributive poset and I an ideal in
M .

(1) If I is contained in N , then r∗ is a mapping.

(2) If r∗ is a mapping, then I ⊂ A.

(3) If r∗ is an injection, then I = A.

(4) If r∗ is an injection and I ⊂ N , then:

(a) For any x and y in M , r(x∨ y) = r(x)∨ r(y) holds. In particular, if
I is a principal ideal, then r preserves arbitrary joins.

(b) For any x ∈M , there exists an integer n such that xn = r(x).
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Proof. (1) If x ∨ c = y ∨ c for x, y ∈ M and c ∈ I ⊂ N , then r(x) = r(y) by
Lemma 4.3.9.

(2) For x ∈ I, [x] = 0 = [0] in M/I, and so r(x) = r∗([x]) = r∗([0]) = r(0) =
0. Thus, x ∈ A.

(3) For x ∈ A, r∗([x]) = r(x) = 0 = r∗([0]). It follows that [x] = [0], since r∗
is an injection, which implies x ∈ I. So we obtain A = I by (2).

(4) For x ∈M , r∗([x]) = r(x) = r2(x) = r∗([r(x)]) and [x] = [r(x)], since r∗
is an injection. So we have an element cx ∈ N such that x∨ cx = r(x)∨ cx, and
then:

(a) Since x ∨ y ∨ cx ∨ cy = r(x) ∨ r(y) ∨ cx ∨ cy, r(x ∨ y) = r(x) ∨ r(y) by
Lemma 4.3.9. Suppose that I is a principal ideal and take a generator m
of I. Then, (

∨
λ xλ) ∨ m = (

∨
λ r(xλ)) ∨ m for any subset {xλ}λ ⊂ M .

Therefore r(
∨
λ∈Λ xλ) =

∨
λ∈Λ r(xλ) by Lemma 4.3.9.

(b) Since there exists an integer n such that cnx = 0,

xn ≤ (x ∨ cx)n = (r(x) ∨ cx)n ≤ r(x).

by Lemma 4.3.9.

Hovey and Palmieri introduced a map r∗ : M/J(h) → DL, and proposed
Conjecture 1.1 in the introduction. Here, we generalize the map to our setting.

Lemma 4.3.17. The map rM : M →M for a monoidal posetM factors through
DL(M). Furthermore, it induces the map r∗ : M/JM (y)→ DL(M) for y ∈ M
assigning the class [x] to rM (x).

Proof. The former statement follows from Proposition 4.3.5(2), and the latter
from Proposition 4.3.10 and Proposition 4.3.16(1).

By Theorem 4.3.16, we see that J(h) = A if Conjecture 4.1.1 holds. This
makes us conjecture the following:

Conjecture 4.3.18 (Generalized retract conjecture 1 (GRC1)). Let M be a
monoidal poset. If M is a complete lattice and is monoidally distributive, and
if A = A(M) is an ideal of M , then r∗ : M/A→ DL is a lattice isomorphism.

Conjecture 4.3.19 (Generalized retract conjecture 2 (GRC2)). Let M be a
monoidal poset. If M is a complete lattice and monoidally distributive, then
r∗ : M/N → DL(M) is a lattice isomorphism.

By Theorem 4.3.16 (3), we see the following:

Corollary 4.3.20. GRC2 implies GRC1.

Example 4.3.21. Consider the monoidal poset M = β(Z/2mZ). Then,

M = {1, 2, 22, · · · , 2m−1, 2m = 0},
DL(M) = {1, 0} and
N(M) = {2, 22, · · · , 2m−1, 0}.

And so M/N(M) ∼= DL(M). That is, GRC2 holds on β(Z/2mZ).
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Theorem 4.3.22. For a monoidally distributive poset M , the following are
equivalent.

(1) r∗ : M/N → DL is an isomorphism.

(2) Any class [x] ∈M/N satisfies [x2] = [x].

Proof. The statement (1) implies (2), since r∗([x]) = r∗([x
2]).

For the converse, it suffices to show that r∗ is injective. If [x2] = [x], then
[x] = [xn] for any n > 0 by induction. So, we have an element cx ∈ N for each
x ∈M such that

(4.3.23) x ∨ cx = xn ∨ cx for any n > 0.

Since cx ∈ N , we have an integer L = L(x) > 0 such that cLx = 0. Then

xL ≤ (x ∨ cx)L = (xn ∨ cx)L ≤ xn

for any n > 0 by Lemma 4.3.9. In particular, xL = (xL)2 and so

(4.3.24) xL(x) = r(x)

by Proposition 4.3.5.
Now suppose that r∗([x]) = r∗([y]). Then r(x) = r(y), and xL(x) = yL(y) by

(4.3.24). By (4.3.23),

x ∨ cx ∨ cy = xL(x) ∨ cx ∨ cy = yL(y) ∨ cy ∨ cx = y ∨ cx ∨ cy
and [x] = [y] by the definition (4.3.13).

Furthermore, Proposition 4.3.11 leads us to the following.

Proposition 4.3.25. Let {Mλ}λ∈Λ be a family of monoidally distributive posets.
Then, the following are equivalent.

(1) GRC holds on Mλ for any λ ∈ Λ.

(2) GRC holds on
∏
Mλ.

Here, GRC is GRC1 or GRC2.

As an application, we extend a result of Dwyer and Palmieri:

Theorem 4.3.26 (Dwyer-Palmieri [3]). There is a ring Λ such that the original
retract conjecture does not hold on the derived category D(Λ) of Λ.

In the proof of it, Dwyer and Palmieri define Λ to be a truncated polynomial
ring over a field k, and take ⟨k⟩ instead of h = ⟨HZ/p⟩. Here ⟨k⟩ denotes a
Bousfield class of a complex {Xi} with X0 = k, and Xi = 0 if i ̸= 0. By a
similar argument of Hovey and Palmieri in [5], if r∗ is an isomorphism from
B(D(Λ))/J(⟨k⟩) to DL, then any Bousfield class x ∈ B(D(Λ)) satisfies x2 = x3.
They show the theorem by constructing a Bousfield class y ∈ B(D(Λ)) such
that y > y2 > · · · > yn > · · · . By Theorem 4.3.16, the existence of the class y
implies further the following:

Theorem 4.3.27. The map r∗ : B(D(Λ))/N → DL is not isomorphic.
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4.4 A Bousfield lattice associated to a quotient
of PID

We abbreviate ‘principal ideal domain’ to ‘PID’. Furthermore, we write x for
⟨x⟩ ∈ β(M), where no confusion arises.

Theorem 4.4.1. Let P be a PID and put q = pe00 · · · p
em−1

m−1 ∈ P for prime
elements pi and integers ei > 0. Let B denote a Bousfield lattice β(P/qP ).
Then,

(1) B = {x ∈ P : x | q} as sets. In particular q is the zero element 0.

(2) x ≥ y if and only if x | y.

(3) DL = {ps00 · · · p
sm−1

m−1 : si = 0 or ei}.

(4) N = {x ∈ B : p0 · · · pm−1 | x in P}.

(5) B =
∏n−1
i=0 β(P/p

ei
i P ).

Proof. For an element x ∈ P , we consider an integer ei(x) and an element x(q)
defined by

ei(x) := max{e : e ≤ ei and pei | x}, and x(q) :=
∏

0≤i<m p
ei(x)
i .

We see that

(4.4.2) x = x(q) ∈ β(P/qP ) for any x ∈ P.

Indeed, x(q) divides x, and so x ≤ x(q). If xy = 0 in P/qP , then xy is divisible
by q in P . Therefore, q | x(q)y(q) and so q | x(q)y. Hence x(q)y = 0 in P/qP and
so x(q) ≤ x.

The statements (1)-(4) follow immediately from (4.4.2), and (5) from (1).

Corollary 4.4.3. We have isomorphisms of monoidal posets

β(P/pe00 · · · p
en−1

n−1 P ) =
∏n−1
i=0 β(Z/2eiZ) and

DL(β(P/pe00 · · · p
en−1

n−1 P )) =
∏n−1
i=0 Z/2.

Corollary 4.4.4. For any PID P and a non-zero element q ∈ P , the Bousfield
lattice β(P/qP ) is monoidally distributive.

Proof. Noticing the relation

(ps00 · · · p
sn−1

n−1 ) ∨ (pt00 · · · p
tn−1

n−1 ) = pl00 · · · p
ln−1

n−1 with li = min{si, ti},

the proof is straightforward.

Theorem 4.4.5. If P is a PID and q ∈ P \{0}, then GRC2 holds on β(P/qP ),
and so does GRC1.
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Proof. The ideal N(β(P/qP )) has the greatest element g = p0 · · · pn−1. We
compute

(ps00 · · · p
sn−1

n−1 ) ∨ g = p
min{s0,1}
0 · · · pmin{sn−1,1}

n−1 = p
min{2s0,1}
0 · · · pmin{2sn−1,1}

n−1

= (p2s00 · · · p2sn−1

n−1 ) ∨ g = (ps00 · · · p
sn−1

n−1 )
2 ∨ g.

So the theorem follows from Theorem 4.3.22.

Remark 4.4.6. We have another proof of the theorem. Since β(P/qP ) =
∏n−1
i=0 β(Z/2eiZ)

and GRC2 holds on β(Z/2eiZ), GRC2 holds on β(P/qP ) by Proposition 4.3.25.

4.5 Bousfield lattices of stable homotopy cate-
gories

Let ΛE for a spectrum E denote the stable homotopy category of E-local spec-
tra, and B(ΛE) the Bousfield lattice in the sense of Bousfield. Then we have
the Bousfield localization functor LE : S → LE . The monoidal structure of LE
is given by XY = LE(X ∧ Y ). We consider the Johnson-Wilson spectra E(n)
and the Morava K-theories K(n) for n ≥ 0. By the chromatic viewpoint, inves-
tigating the categories Λn(= ΛE(n)) and ΛK(n) is one of main targets of stable
homotopy theory. We determine the Bousfield lattices of these categories.

We begin with a simple category. A spectrum F is called a field if it is a
ring spectrum and F ∧X =

∨
ΣaF for all spectra X.

Proposition 4.5.1. Let F be a field. Then, B(ΛF ) = Z/2.

Proof. Since F is a ring spectrum, we have FX = F ∧X. We see easily ⟨X⟩ ≥
⟨FX⟩. Suppose that (FX)C = 0. Then, XC is F -acyclic and so XC = 0. It
follows that ⟨X⟩ = ⟨FX⟩ = ⟨

∨
ΣiF ⟩ = 0 or ⟨F ⟩, which shows the lemma.

By [4], the Eilenberg-MacLane spectrum HZ/p and the Morava K-theories
K(n) are fields.

Corollary 4.5.2. B(ΛHZ/p) = Z/2 = B(ΛK(n)).

Theorem 4.5.3. Let p0, . . . , pn be n + 1 distinguished prime numbers. Then
B(Λn) is isomorphic to β(Z/p0 · · · pn) =

∏n
i=0 Z/2 inMP.

Proof. The Bousfield lattice B(Ln) consists of ⟨LnX⟩ for all spectra X, which
equals, by Ravenel [9],

⟨LnX⟩ = ⟨LnS0⟩ · ⟨X⟩ = ⟨E(n)⟩ · ⟨X⟩
=

(∨
0≤i≤n ⟨K(i)⟩

)
· ⟨X⟩ =

∨
0≤i≤n and K(i)∧X ̸=0 ⟨K(i)⟩.

since Ln is smashing and K(n) is a field. Here ⟨X⟩ · ⟨Y ⟩ is the Bousfield class
of the smash product X ∧ Y . We define a map f : B(Ln) → β(Z/p0 · · · pn) by
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f(
∨
i∈S ⟨K(i)⟩) =

∏
i̸∈S pi for S ⊂ {0, 1, · · · , n}. Then f preserves multiplica-

tion, since

(
∨
i∈S ⟨K(i)⟩)(

∨
j∈T ⟨K(j)⟩) =

∨
i∈S∩T ⟨K(i)⟩,

(
∏
i ̸∈S pi)(

∏
j ̸∈T pj) =

∏
i ̸∈S or i ̸∈T pi =

∏
i ̸∈S∩T pi.

Moreover, for the order, we have∨
i∈S ⟨K(i)⟩ ≤

∨
i∈T ⟨K(i)⟩ ⇔ S ⊂ T ⇔ I(n)− S ⊃ I(n)− T

⇔
∏
i ̸∈S pi ≤

∏
i ̸∈T pi,

and f is a monoidal poset map.

A similar argument shows the following

Theorem 4.5.4. Let E =
∨
i∈F K(i) be a spectrum for a finite subset F of

Z≥0. Then B(LE) is isomorphic to
∏
i∈F Z/2.

This together with Theorem 4.4.5 implies

Corollary 4.5.5. GRC2 holds on B(ΛE) for a spectrum E =
∨
i∈F K(i) on a

finite subset F of Z≥0.

The chromatic tower Λ0 ← Λ1 ← Λ2 ← · · · induces the inverse system

(4.5.6) B(Λ0)← B(Λ1)← B(Λ2)← · · · .

Moreover, we notice that B∞ := lim
n

B(Λn) =
∏
n Z/2 in MP. We call a

spectrum harmonic if it is (
∨
i≥0K(i))-local.

Theorem 4.5.7. Let H be the stable homotopy category of harmonic spectra.
Then B(H) is isomorphic to B∞ inMP.

Proof. Let f :
∏

Z/2→ B(H) be the poset map defined by (xn) 7→
∨
xn=1 ⟨K(n)⟩

and let pn : B(H) → B(Λn) be the poset map defined by ⟨X⟩ 7→ ⟨X⟩ · ⟨E(n)⟩.
Then, we have the following commutative diagram

B(Λi) B(Λj)

B(H)
∏

Z/2

u

u

pi
[
[]

pj u

u

f

'
'*

for any i and j with i ≤ j, since

pif((xn)) = pi(
∨
xn=1 ⟨K(n)⟩) =

∨
xn=1 ⟨K(n)⟩ · ⟨E(i)⟩

=
∨
i≥n, xn=1 ⟨K(n)⟩.

Therefore, B(H) is the inverse limit of the above system (4.5.6) by definition.
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Proof of Theorem 4.1.2. This follows from Theorem 4.5.7 and Proposition 4.3.25.

In the same way, we obtain

Theorem 4.5.8. Let T be a set of field spectra, and put
∨
T =

∨
F∈T F . Then,

B(L∨
T ) =

∏
Z/2.

4.6 Problems

We leave some problems in this section.

Problem 4.6.1. What is a condition on X
f−→ Y in M, under which β(f) is

an isomorphism ?

Suppose that the problem is settled and we find a map from B to a com-
mutative monoid Y such that β(f) is an isomorphism. Then, we may study
B = β(B) by observing β(Y ) by virtue of Proposition 4.2.16, which may let us
consider the lattice from a different viewpoint.

Problem 4.6.2. Let M be a monoid with 0. Then, is there a ring R such that
β(M) is isomorphic to R as a monoid ?

Example 4.6.3. Let p0, . . . , pn be n+1 distinguished primes. Then β(Z/p0 . . . pn) =∏n
i=0 Z/2 as monoids by Theorem 4.5.3.

If this is possible, we may approach these from the ring theoretic viewpoint.

Problem 4.6.4. Are B/J(h) and DL monoidal posets?
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