Stable homotopy categories and stable homotopy groups of spheres

Ryo Kato

Preface

In this thesis, we study the stable homotopy category \mathcal{S} of spectra. For a spectrum E, we have the E_{*}-homology theory. Bousfield defined a localization functor $L_{E}: \mathcal{S} \rightarrow \mathcal{S}$ with respect to a spectrum E, which classifies spectra by the E_{*}-homology theory. Furthermore, for a spectrum E, Bousfield defined a class $\langle E\rangle$, which is called the Bousfield class of E, such that $L_{E}=L_{F}$ if and only if $\langle E\rangle=\langle F\rangle$. Bousfield also studied the lattice structure of these classes. Ohkawa showed that these classes form a set, which implies the classes form a lattice. The lattice is called the Bousfield lattice. We investigate the category \mathcal{S} by the Bousfield localizations and the Bousfield lattice.

In the celebrated paper [5], Miller, Ravenel and Wilson introduced the "chromatic" method to study the stable homotopy category \mathcal{S} of spectra. For the nth Johnson-Wilson spectrum $E(n), L_{n}$ denotes the Bousfield localization functor with respect to $E(n)$. These Bousfield localizations give rise to the "chromatic tower", which is a limit system $\left\{L_{n} X\right\}_{n}$. Hopkins and Ravenel showed the chromatic convergence theorem, which implies that if X is finite, then the homotopy groups $\pi_{*}(X)$ is isomorphic to $\lim _{n} \pi_{*}\left(L_{n} X\right)$. In particular, the homotopy groups $\pi_{*}(S)$ of the sphere spectrum S are built from the homotopy groups $\pi_{*}\left(L_{n} S\right)$.

The algebraic K-groups of the sphere spectrum are closely related with number theory, geometric topology and so on. Bökstedt, Hsiang and Madesn defined the cyclotomic trace map from the algebraic K-groups of a ring spectrum X to the topological cyclic group of X, which are approximated by the $T R$-groups of X. Furthermore the $T R$-groups of the sphere spectrum are studied by the stable homotopy groups $\pi_{*}(S)$ and the skeleton filtration spectral sequence.

From now on, we give an overview of this thesis.
In Chapter 1, we explain the results in [2]. In the Adams-Novikov spectral sequence converging to $\pi_{*}(S)$, we have an element $\beta_{p / p}$ in the E_{2}-term $E_{2}^{2,2 p^{2}(p-1)}$ which does not survive to $\pi_{*}(S)$. We prove that the element $\beta_{p / p}^{p}$ in $E_{2}^{2 p, 2 p^{3}(p-1)}$ survives to $\pi_{*}(S)$ in the Adams-Novikov spectral sequence, and also give conditions to which a product of elements in the Adams-Novikov E_{2}-term survives to $\pi_{*}(S)$. Furthermore, such products are detected in $\pi_{*}\left(L_{3} S\right)$. We investigate the third Morava stabilizer algebra for showing the result.

In Chapter 2, we look into the details of [1]. Hesselholt determined the 2-primary $T R$-groups of the sphere spectrum in dimensions less than 6 . We extend the result to dimensions less than 10 by use of the mod 2 Adams spectral sequence and the skeleton filtration spectral sequence.

In Chapter 3, we study the Adams-Novikov spectral sequence for computing the homotopy groups of a monochromatic spectrum. The E_{2}-terms of the spectral sequence are the cohomology groups of a monochromatic module, to which the chromatic spectral sequence converges. In [3], we determined the first line of an E_{1}-term of the chromatic spectral sequence for a monochromatic module whose chromatic level is greater than 3 . We look into the details of calculation for showing the result.

In the last chapter, we consider the works of [4] on a generalized Bousfield lattice. For a commutative ring R, we define the lattice $\beta(R)$, which is called the Bousfield lattice associated to R. In particular, the original Bousfield lattice is the Bousfield lattice associated to itself in this sense. We determine the structure of the lattice $\beta(P / I)$ for a principal ideal domain P and a nonzero ideal I of P, on which we show that the retract conjecture holds. As an application, we determine the structure of the Bousfield lattice of "harmonic" spectra, which implies that the Bousfield lattice of the category of spectra is uncountable.

Acknowledgments. I would like to thank Professor Shimomura for much valuable advice. I would also like to thank the faculty and staff of the Kochi University for their support.

Bibliography

[1] R. Kato, The $T R$-groups of the sphere spectrum at the prime two, submitted.
[2] R. Kato and K. Shimomura, Products of Greek letter elements dug up from the third Moarava stabilizer algebra, Algebraic and Geometric Topology 12 (2012), 951-961.
[3] R. Kato and K. Shimomura, The first line of the Bockstein spectral sequence on a monochromatic spectrum at an odd prime, Nagoya Mathematical Journal 207 (2012), 139-157.
[4] R. Kato, K. Shimomura and Y. Tatehara, Generalized Bousfield lattices and a generalized retract conjecture, Publ. Res. Inst. Math. Sci. 50 (2014), no. 3, 497-513.
[5] H. R. Miller, D. C. Ravenel and W. S. Wilson, Periodic phenomena in the Adams-Novikov spectral sequence. Ann. of Math. (2) 106 (1977), no. 3, 469-516.

Contents

1 Products of Greek letter elements dug up from the third Morava stabilizer algebra 5
1.1 Introduction 5
$1.2 \quad H^{*} S(3)$ revisited 6
1.3 Greek letter elements 9
$1.4 \beta_{p / p}^{p}$ in the homotopy of spheres 11
1.5 Remarks 12
1.5.1 A relation on Toda bracket 12
1.5.2 On the action of γ_{1} 13
2 The $T R$-groups of the sphere spectrum at the prime two 15
2.1 Introduction 15
2.2 The Atiyah-Hirzebruch spectral sequences 17
2.3 The mod 2 Adams spectral sequence 20
3 The first line of the Bockstein spectral sequence on a monochro- matic spectrum at an odd prime 26
3.1 Introduction 26
3.2 Bockstein spectral sequence 31
3.3 The summands on $V_{(0, n-1)}$ and $\bar{C}_{G B}$ 34
3.4 The summands C_{G} and C_{K} 36
3.5 The summand $V_{(0, n-2)}$ 36
3.6 On the action of α_{1} and β_{1} on Greek letter elements 38
4 Generalized Bousfield lattices and a generalized retract conjec- ture 42
4.1 Introduction 42
4.2 Monoidal posets and Bousfield lattices 43
4.3 Retract conjecture 47
4.4 A Bousfield lattice associated to a quotient of PID 53
4.5 Bousfield lattices of stable homotopy categories 54
4.6 Problems 56

Chapter 1

Products of Greek letter elements dug up from the third Morava stabilizer algebra

In [2], Oka and Shimomura considered the cohomology of the second Morava stabilizer algebra to study nontriviality of the products of beta elements of the stable homotopy groups of spheres. In this chapter, we use the cohomology of the third Morava stabilizer algebra to find nontrivial products of Greek letters of the stable homotopy groups of spheres: $\alpha_{1} \gamma_{t}, \beta_{2} \gamma_{t},\left\langle\alpha_{1}, \alpha_{1}, \beta_{p / p}^{p}\right\rangle \gamma_{t} \beta_{1}$ and $\left\langle\beta_{1}, p, \gamma_{t}\right\rangle$ for t with $p \nmid t\left(t^{2}-1\right)$ for a prime number $p>5$. This is a joint work with Professor Shimomura.

1.1 Introduction

Greek letter elements are well known generators of the stable homotopy groups of spheres localized at a prime p. Studying products among these elements is an interesting subject, and studied by several authors. For example, at an odd prime p, all products of alpha elements are trivial. In [2], we used $H^{*} S(2)$ to study nontriviality of the product of beta elements. In this chapter, we use $H^{*} S(3)$ to find relations of Greek letters. The multiplicative structure of $H^{*} S(3)$ is given by Yamaguchi [5], but unfortunately, it has some typos. So here, our computation is based on Ravenel's.

Let $\beta_{p / p}$ be the generator of the E_{2}-term $E_{2}^{2, p^{2} q}(S)$ of the Adams-Novikov spectral sequence converging to the homotopy groups $\pi_{*}(S)$ of the sphere spectrum S. Hereafter, $q=2 p-2$ as usual. A relation given by Toda implies that $\beta_{p / p}$ dies in the Adams-Novikov spectral sequence at a prime $p>2$. At the
prime two, $\beta_{2 / 2}^{2}=0$ by [1, Prop. 8.22], while at the prime numbers three and five, Ravenel showed that $\beta_{p / p}^{p}$ survives to a homotopy element of $\pi_{*}(S)$ and $\alpha_{1} \beta_{p / p}^{p}=0$ for the generator α_{1} of $\pi_{q-1}(S)$. Here, we show the following

Theorem 1.1.1. At a prime $p>3, \beta_{p / p}^{p}$ survives to $\pi_{\left(p^{3}-1\right) q-2}(S)$ and $\alpha_{1} \beta_{p / p}^{p}=$ 0 .

Corollary 1.1.2. At a prime $p>3$, the Toda bracket $\left\langle\alpha_{1}, \alpha_{1}, \beta_{p / p}^{p}\right\rangle$ is defined.
We notice that at the prime 3, Ravenel showed these in [3].
Let β_{1}, β_{2} and $\gamma_{t}(t>0)$ be the generators of Coker J of dimensions $p q-2$, $(2 p+1) q-2$ and $\left(t p^{2}+(t-1) p+t-2\right) q-3$, respectively.

Theorem 1.1.3. Let $p>5$, and t be a positive integer with $p \nmid t\left(t^{2}-1\right)$. Then, the elements $\alpha_{1} \gamma_{t}, \beta_{2} \gamma_{t},\left\langle\alpha_{1}, \alpha_{1}, \beta_{p / p}^{p}\right\rangle \beta_{1} \gamma_{t}$ and $\left\langle\beta_{1}, p, \gamma_{t}\right\rangle$ generate subgroups of the stable homotopy groups of spheres isomorphic to \mathbb{Z} / p. Besides, even in the case $p \mid(t+1), \beta_{1} \gamma_{t}$ and $\left\langle\beta_{1}, p, \gamma_{t}\right\rangle$ are generators of order p.

Note that $\left\langle\beta_{1}, p, \gamma_{t}\right\rangle=\left\langle\gamma_{t}, p, \beta_{1}\right\rangle$. We also notice that if $t=1$, then $\left\langle\gamma_{1}, p, \beta_{1}\right\rangle=0$, while $\beta_{2} \gamma_{1}$ is non-trivial (see section five).

From here on, we assume that the prime number p is greater than three.

$1.2 \quad H^{*} S(3)$ revisited

We begin with recalling some notation from Ravenel's green book [3]. Let $B P$ denote the Brown-Peterson spectrum. Then, the pair

$$
\left(B P_{*}, B P_{*}(B P)\right)=\left(\mathbb{Z}_{(p)}\left[v_{1}, v_{2}, \ldots\right], B P_{*}\left[t_{1}, t_{2}, \ldots\right]\right)
$$

is a Hopf algebroid. Here, the degrees of v_{i} and t_{i} are $2 p^{i}-2$. The structure maps act as follows:

$$
\begin{array}{rll}
\eta_{R}\left(v_{1}\right) & =v_{1}+p t_{1} \tag{1.2.1}\\
\eta_{R}\left(v_{2}\right) & \equiv v_{2}+v_{1} t_{1}^{p}+p t_{2} \quad \bmod \left(p^{2}, v_{1}^{p}\right) \\
\eta_{R}\left(v_{3}\right) & \equiv v_{3}+v_{2} t_{1}^{p^{2}}+v_{1} t_{2}^{p}+p t_{3}-p v_{1} v_{2}^{p-1} t_{2} & \bmod \left(p^{2}, v_{1}^{2}, v_{2}^{p}\right) \\
\Delta\left(t_{1}\right) & =t_{1} \otimes 1+1 \otimes t_{1} \\
\Delta\left(t_{2}\right) & =t_{2} \otimes 1+t_{1} \otimes t_{1}^{p}+1 \otimes t_{2}-v_{1} b_{10} & \\
\Delta\left(t_{3}\right) & \equiv t_{3} \otimes 1+t_{2} \otimes t_{1}^{p^{2}}+t_{1} \otimes t_{2}^{p}+1 \otimes t_{3} & \bmod \left(v_{1}, v_{2}\right) \\
\Delta\left(t_{4}\right) & \equiv t_{4} \otimes 1+t_{3} \otimes t_{1}^{p^{3}}+t_{2} \otimes t_{2}^{p^{2}}+t_{1} \otimes t_{3}^{p}+1 \otimes t_{4}-v_{3} b_{12} & \bmod \left(v_{1}, v_{2}\right)
\end{array}
$$

for

$$
\begin{equation*}
b_{1 k}=\frac{1}{p} \sum_{i=1}^{p^{k+1}-1}\binom{p^{k+1}}{i} t_{1}^{i} \otimes t_{1}^{p^{k+1}-i} \tag{1.2.2}
\end{equation*}
$$

Let $K(3)_{*}=F_{p}\left[v_{3}, v_{3}^{-1}\right]$ have the $B P_{*}$-module structure given by $v_{i} v_{3}^{s}=$ $v_{3}^{s} v_{i}=v_{3}^{s+1}$ if $i=3$, and $=0$ otherwise, and

$$
\begin{aligned}
\Sigma(3) & =K(3)_{*} \otimes_{B P_{*}} B P_{*}(B P) \otimes_{B P_{*}} K(3)_{*} \\
& =K(3)_{*}\left[t_{1}, t_{2}, \ldots\right] /\left(v_{3} t_{i}^{p^{3}}-v_{3}^{p^{i}} t_{i}: i>0\right) \quad(\text { by }[3,6.1 .16])
\end{aligned}
$$

is the Hopf algebra with structure inherited from $B P_{*}(B P)$. Define the Hopf algebra $S(3)$ by $S(3)=\Sigma(3) \otimes_{K(3) *} F_{p}$, where $K(3)_{*}$ acts on F_{p} by $v_{3} \cdot 1=1$. Then,

$$
S(3)=F_{p}\left[t_{1}, t_{2}, \ldots\right] /\left(t_{i}^{p^{3}}-t_{i}: i>0\right) .
$$

Now we abbreviate $\operatorname{Ext}_{S(3)}\left(F_{p}, F_{p}\right)$ to $H^{*} S(3)$.
Consider integers $d_{i}\left(=d_{3, i}\right.$ in [3, 6.3.1])

$$
d_{i}= \begin{cases}0 & i \leq 0 \\ \max \left(i, p d_{i-3}\right) & i>0\end{cases}
$$

Then, there is a unique increasing filtration of the Hopf algebroid $S(3)$ with deg $t_{i}^{p^{j}}=d_{i}$ for $0 \leq j<3$.

Theorem 1.2.3. (Ravenel[3, 6.3.2]) The associated Hopf algebra $E^{0} S(3)$ is isomorphic to the truncated polynomial algebra of height p on the elements $t_{i}^{p^{j}}$ for $i>0$ and $j \in \mathbb{Z} / 3$, with coproduct defined by

$$
\Delta\left(t_{i}^{p^{j}}\right)= \begin{cases}\sum_{k=0}^{i} t_{k}^{p^{j}} \otimes t_{i-k}^{p^{k+j}} & i \leq 3 \\ t_{i}^{p^{j}} \otimes 1+1 \otimes t_{i}^{p^{j}}+b_{i-3, j+2} & i>3\end{cases}
$$

Let $L(3)$ be the Lie algebra without restriction with basis $x_{i, j}$ for $i>0$ and $j \in \mathbb{Z} / 3$ and bracket given by

$$
\left[x_{i, j}, x_{k, l}\right]= \begin{cases}\delta_{i+j}^{l} x_{i+k, j}-\delta_{k+l}^{j} x_{i+k, l} & \text { for } i+k \leq 3 \\ 0 & \text { otherwise }\end{cases}
$$

where $\delta_{j}^{i}=1$ if $i \equiv j \bmod 3$ and 0 otherwise, and $L(3, k)$ the quotient of $L(3)$ obtained by setting $x_{i, j}=0$ for $i>k$. Then, Ravenel noticed in [3, 6.3.8]:

Theorem 1.2.4. $H^{*}(L(3, k))$ for $k \leq 3$ is the cohomology of the exterior complex $E\left(h_{i, j}\right)$ on one-dimensional generators $h_{i, j}$ with $i \leq k$ and $j \in \mathbb{Z} / 3$, with coboundary

$$
d\left(h_{i, j}\right)=\sum_{s=1}^{i-1} h_{s, j} h_{i-s, s+j} .
$$

From now on, we abbreviate $h_{i, j}$ to $h_{i j}$, and $h_{1 j}$ to h_{j}.
Under the above filtration, Ravenel constructed the May spectral sequences
Theorem 1.2.5. (Ravenel [3, 6.3.4, 6.3.5]) There are spectral sequences
(a) $E_{2}=H^{*}(L(3,3)) \Longrightarrow H^{*}\left(E_{0} S(3)\right)$ and
(b) $E_{2}=H^{*}\left(E_{0} S(3)\right) \Longrightarrow H^{*}(S(3))$.

Since these spectral sequences collapse, $H^{*} S(3)$ is additively isomorphic to $H^{*} L(3,3)$. Therefore, we have a projection

$$
\begin{equation*}
\pi: H^{*} S(3) \rightarrow E^{0} H^{*} S(3)=H^{*}\left(E_{0} S(3)\right)=H^{*} L(3,3) . \tag{1.2.6}
\end{equation*}
$$

Note that the Massey product $\left\langle h_{i}, h_{i+1}, h_{i+2}, h_{i}\right\rangle$ is homologous to $v_{3}^{(2-p) p^{i}} b_{i+2}$ represented by $v_{3}^{(2-p) p^{i}} b_{1, i+2}$ of (1.2.2), and π assigns the Massey product to $b_{i+2} \in H^{*} L(3,3)$. Ravenel determined in [3, 6.3.34] the additive structure of $H^{*} L(3,3)$. In particular, we have the following:

Theorem 1.2.7. $H^{*} L(3,3)$ contains submodules generated by:

$$
h_{1} k_{1} \zeta_{3}, \quad b_{0} k_{1} \zeta_{3}, \quad h_{0} l, \quad k_{0} l, \quad h_{0} b_{0} b_{2} l \quad \text { and } \quad h_{1} l .
$$

Moreover $h_{1} l \neq h_{1} k_{1} \zeta_{3}$. Here, $l=h_{2} h_{21} h_{30}, k_{i}=h_{i+1} h_{2 i}(i=0,1), b_{0}=$ $h_{1} h_{32}+h_{21} h_{20}+h_{31} h_{1}, b_{2}=h_{0} h_{31}+h_{20} h_{22}+h_{30} h_{0}$ and $\zeta_{3}=h_{30}+h_{31}+h_{32}$.

Proof. In the table of $[3,6.3 .34]$, we find the elements

$$
h_{0}, \quad h_{1}, \quad k_{0}, \quad b_{0}, \quad b_{2}, \quad l, \quad l^{\prime}=h_{0} h_{22} h_{31} \quad \text { and } \quad \zeta_{3},
$$

as well as the first element $h_{1} k_{1} \zeta_{3}$ of the theorem. We also have the element $h_{1} k_{1} h_{30}=h_{1} h_{2} h_{21} h_{30}$ in the table, which is the last element $h_{1} l$ of the theorem. These also imply $h_{1} l \neq h_{1} k_{1} \zeta_{3}$.

The element $h_{0} b_{0} b_{2} l \zeta_{3}$ is computed as

$$
\begin{aligned}
& h_{0} h_{2} h_{21} h_{30}\left(h_{1} h_{32}+h_{21} h_{20}+h_{31} h_{1}\right)\left(h_{0} h_{31}+h_{20} h_{22}+h_{30} h_{0}\right)\left(h_{30}+h_{31}+h_{32}\right) \\
= & -2 h_{0} h_{1} h_{2} h_{20} h_{21} h_{22} h_{30} h_{31} h_{32} .
\end{aligned}
$$

Therefore, $h_{0} b_{0} b_{2} l$ is the dual of the generator $-\frac{1}{2} \zeta_{3}$, and the elements $h_{0} b_{0} b_{2} l$ and $h_{0} l$ are generators. Similarly, a computation

$$
\begin{aligned}
k_{0} l l^{\prime} \zeta_{3} & =h_{1} h_{20} h_{2} h_{21} h_{30} h_{0} h_{22} h_{31}\left(h_{30}+h_{31}+h_{32}\right) \\
& =-h_{0} h_{1} h_{2} h_{20} h_{21} h_{22} h_{30} h_{31} h_{32}
\end{aligned}
$$

shows that $k_{0} l$ is the dual of the generator $-l^{\prime} \zeta_{3}$.
Lemma 1.2.8. In $H^{*} L(3,3), h_{0} k_{1}=0$ and $k_{0} k_{1}=0$.
Proof. From the proof of [3, 6.3.34], we read off the relations $h_{0} k_{1}=e_{30} h_{2}$ and $k_{0} k_{1}=e_{30} g_{1}$ in $H^{*} L(3,2)$. Since e_{30} cobounds h_{30} in $H^{*} L(3,3)$, the lemma follows.

1.3 Greek letter elements

Let $E_{r}^{s, t}(X)$ denote the E_{r}-term of the Adams-Novikov spectral sequence converging to the homotopy group $\pi_{t-s}(X)$ of a spectrum X. Then the E_{2}-term is $\operatorname{Ext}_{B P_{*}(B P)}\left(B P_{*}, B P_{*}(X)\right)$. We here consider the Ext-group $\operatorname{Ext}_{B P_{*}(B P)}\left(B P_{*}, M\right)$ for a $B P_{*}(B P)$-comodule M as the cohomology of the cobar complex $\Omega_{B P_{*}(B P)}^{*} M$ ($c f$. [1]). Consider a sequence $A=\left(a_{0}, a_{1}, \ldots, a_{n}\right)$ of non-negative integers so that the sequence $p^{a_{0}}, v_{1}^{a_{1}}, \ldots, v_{n}^{a_{n}}$ is invariant and regular. For such a sequence A, Miller, Ravenel and Wilson introduced in [1] n-th Greek letter elements $\eta_{s(A)}^{(n)}$ in the Adams-Novikov E_{2}-term $E_{2}^{n, t(A)}(S)$ by

$$
\begin{equation*}
\eta_{s(A)}^{(n)}=\delta_{A, 1} \cdots \delta_{A, n}\left(v_{n}^{a_{n}}\right) \in E_{2}^{n, t(A)}(S) \tag{1.3.1}
\end{equation*}
$$

for $v_{n}^{a_{n}} \in \operatorname{Ext}_{B P_{*}(B P)}^{0,2 a_{n}\left(p^{n}-1\right)}\left(B P_{*}, B P_{*} / I(A, n)\right)$. Here, $s(A)=a_{n} / a_{n-1}, a_{n-2}, \cdots, a_{0}$ and $t(A)=2 a_{n}\left(p^{n}-1\right)-2 \sum_{i=0}^{n-1} a_{i}\left(p^{i}-1\right), I(A, k)$ denotes the ideal of $B P_{*}$ generated by $p^{a_{0}}, v_{1}^{a_{1}}, \ldots, v_{k-1}^{a_{k-1}}$, and $\delta_{A, k+1}$ is the connecting homomorphism associated to the short exact sequence

$$
0 \rightarrow B P_{*} / I(A, k) \xrightarrow{v_{k}^{a_{k}}} B P_{*} / I(A, k) \rightarrow B P_{*} / I(A, k+1) \rightarrow 0 .
$$

In particular, we write $\alpha=\eta^{(1)}$, $\beta=\eta^{(2)}$ and $\gamma=\eta^{(3)}$. So far, only when $n \leq 3$, we know a condition whether or not Greek letter elements survive to homotopy elements. We abbreviate $\eta_{s(A)}^{(n)}$ to $\eta_{a_{n}}^{(n)}$ if $A=\left(1, \ldots, 1, a_{n}\right)$ as usual. For example, we consider β-elements defined by

$$
\begin{align*}
& \beta_{s}=\delta_{(1,1), 1}\left(\beta_{s}^{\prime}\right) \in E_{2}^{2, t(1,1, s)}(S) \\
& \quad \text { for } \beta_{s}^{\prime}=\delta_{(1,1), 2}\left(v_{2}^{s}\right) \in E_{2}^{1, t(1,1, s)}(V(0)), \text { and } \tag{1.3.2}\\
& \beta_{p^{i} / p^{i}}=\beta_{p^{i} / p^{i}, 1}=\delta_{\left(1, p^{i}\right), 1} \delta_{\left(1, p^{i}\right), 2}\left(v_{2}^{p^{i}}\right) \in E_{2}^{2, t\left(1, p^{i}, p^{i}\right)}(S) .
\end{align*}
$$

At the prime p greater than three, we have the Smith-Toda spectrum $V(k)$ for $k=0,1,2$ defined by the cofiber sequences

$$
\begin{gather*}
S \xrightarrow{p} S \xrightarrow{i} V(0) \xrightarrow{j} \Sigma S, \\
\Sigma^{q} V(0) \xrightarrow{\alpha} V(0) \xrightarrow{i_{1}} V(1) \xrightarrow{j_{1}} \Sigma^{q+1} V(0) \quad \text { and } \tag{1.3.3}\\
\Sigma^{(p+1) q} V(1) \xrightarrow{\beta} V(1) \xrightarrow{i_{2}} V(2) \xrightarrow{j_{2}} \Sigma^{(p+1) q+1} V(1) .
\end{gather*}
$$

Here, $\alpha \in[V(0), V(0)]_{q}$ is the Adams map and $\beta \in[V(1), V(1)]_{(p+1) q}$ is the v_{2}-periodic element due to L. Smith. Note that the $B P_{*}$-homology of these spectra are $B P_{*}(V(k))=B P_{*} / I_{k+1}$ for the ideal I_{k} of $B P_{*}$ generated by v_{i} for $0 \leq i<k$ with $v_{0}=p$. We consider the Bousfield-Ravenel localization functor L_{3} with respect to $v_{3}^{-1} B P$. The E_{2}-term $E_{2}^{*}\left(L_{3} V(2)\right)$ of $L_{3} V(2)$ is isomorphic to $K(3)_{*} \otimes H^{*} S(3)$, whose structure is given in [3] (see also [5]), and we consider the composite

$$
r: E_{2}^{*}(S) \xrightarrow{\iota_{*}} E_{2}^{*}(V(2)) \xrightarrow{\eta} E_{2}^{*}\left(L_{3} V(2)\right) \xrightarrow{\rho} H^{*}(S(3)) \xrightarrow{\pi} H^{*} L(3,3) .
$$

Here the first map is induced from the inclusion $\iota: S \rightarrow V(2)$ to the bottom cell, the second is from the localization map, the third is obtained by setting $v_{3}=1$ and the last is the projection (1.2.6).
Lemma 1.3.4. The map r assigns the Greek letter elements as follows:

$$
\begin{aligned}
r\left(\alpha_{1}\right) & =h_{0}, \quad r\left(\beta_{1}\right)=-b_{0}, \quad r\left(\beta_{2}\right)=-2 k_{0}, \\
r\left(\gamma_{t}\right) & =t\left(t^{2}-1\right) l-t(t-1) k_{1} \zeta_{3} \quad \text { and } \quad r\left(\beta_{p / p}\right)=-b_{1} .
\end{aligned}
$$

We also have $\beta_{1}^{\prime}=h_{1}-v_{1}^{p-1} h_{0} \in E_{2}^{1, p q}(V(0))$ for the generators h_{i} of $E_{2}^{1, p^{i} q}(V(0))$ represented by $t_{1}^{p^{i}}$.
Proof. First we consider the images of the Greek letter elements under the map $\iota_{*}: E_{2}^{*}(S) \rightarrow E_{2}^{*}(V(2))$. In the cobar complex $\Omega_{B P_{*}(B P)}^{*} B P_{*}$, by (1.2.1), $d\left(v_{1}\right)=p t_{1}, d\left(v_{2}^{p^{i}}\right) \equiv v_{1}^{p^{i}} t_{1}^{p^{i+1}} \bmod \left(p, v_{1}^{p^{i+1}}\right)$ for $i \geq 0, d\left(v_{2}^{2}\right) \equiv 2 v_{1} v_{2} t_{1}^{p}+v_{1}^{2} t_{1}^{2 p}$ $\bmod \left(p, v_{1}^{p}\right)$, and $d\left(v_{3}^{t}\right) \equiv t v_{2} v_{3}^{t-1} t_{1}^{p^{2}}+\binom{t}{2} v_{2}^{2} v_{3}^{t-2} t_{1}^{2 p^{2}} \bmod \left(p, v_{1}, v_{2}^{3}\right)$, which imply

$$
\begin{aligned}
\delta_{(1), 1}\left(v_{1}\right) & =\left[t_{1}\right], \quad \delta_{(1,1), 2}\left(v_{2}\right)=\left[t_{1}^{p}-v_{1}^{p-1} t_{1}\right], \\
\delta_{(1,1), 2}\left(v_{2}^{2}\right) & =\left[2 v_{2} t_{1}^{p}+v_{1} t_{1}^{2 p}+v_{1}^{2} y\right], \quad \delta_{(1, p), 2}\left(v_{2}^{p}\right)=\left[t_{1}^{p^{2}}-v_{1}^{p^{2}-p} t_{1}^{p}\right] \quad \text { and } \\
\delta_{(1,1,1), 3}\left(v_{3}^{t}\right) & =\left[t v_{3}^{t-1} t_{1}^{p^{2}}+\binom{t}{2} v_{2} v_{3}^{t-2} t_{1}^{2 p^{2}}+\binom{t}{3} v_{2}^{2} v_{3}^{t-3} t_{1}^{3 p^{2}}+v_{2}^{3} z\right]=\bar{\gamma}_{t},
\end{aligned}
$$

for cochains $y \in \Omega_{B P_{*}(B P)}^{1} B P_{*} /(p)$ and $z \in \Omega_{B P_{*}(B P)}^{1} B P_{*} /\left(p, v_{1}\right)$. Here, $[x]$ denotes a cohomology class represented by a cocycle x. The first one shows $\alpha_{1}=h_{0}$, and the second gives the last statement of the lemma. We further see that $d\left(t_{1}^{p^{k}}\right)=-p b_{1, k-1}$ for $k \geq 1$ and $d\left(v_{k}\right) \equiv p t_{k} \bmod I((2,1,1), k)$ for $k=2,3$ by (1.2.1) in $\in \Omega_{B P_{*}(B P)}^{1} B P_{*}$. Moreover, $\left[b_{1, k}\right]^{\prime}$'s are assigned to b_{k} in $H^{*} L(3,3)$ under the projection π, and we obtain

$$
\begin{aligned}
& r \delta_{\left(1, p^{k-1}\right), 1}\left(h_{k}-v_{1}^{p^{k}-p^{k-1}} h_{k-1}\right)=-b_{k-1} \quad \text { for } k=1,2, \\
& r \delta_{(1,1), 1}\left(\left[2 v_{2} t_{1}^{p}+v_{1} t_{1}^{2 p}\right]\right)=-2 k_{0}, \\
& \delta_{(1,1,1), 2}\left(\bar{\gamma}_{t}\right)=\left[t(t-1) v_{3}^{t-2} t_{2}^{p} \otimes t_{1}^{p^{2}}+z\right]=\gamma_{t}^{\prime} \quad \text { and } \\
& r \delta_{(1,1,1), 1}\left(\gamma_{t}^{\prime}\right)=t(t-1)(t-2) h_{30} k_{1}+t(t-1) r \delta_{(1,1,1), 1}\left(k_{1}\right) .
\end{aligned}
$$

Here, z is a linear combination of terms in the ideal $\left(v_{1}, v_{2}\right)^{2}$ and of the form $v_{e} x \otimes y$ for $e \in\{1,2\}$ and $x, y \in\left\{t_{i}^{p^{k}} t_{j}^{p^{l}}, t_{1}^{3 p^{2}}: i, j, k, l \in\{1,2\}\right\}$. Thus the relations other than $r\left(\gamma_{t}\right)$ follows. Note that $b_{1}=h_{2} h_{30}+h_{22} h_{21}+h_{32} h_{2}$. Since $r \delta_{(1,1,1), 1}\left(k_{1}\right)=\left(h_{21} h_{30}+h_{31} h_{21}\right) h_{2}-h_{21} b_{1}=3 l-k_{1} \zeta_{3}$, we obtain the relation on $r\left(\gamma_{t}\right)$.

Recall the cofiber sequences (1.3.3) and the v_{3}-periodic element $\gamma \in[V(2), V(2)]_{q_{3}}$ $\left(q_{3}=\left(p^{2}+p+1\right) q\right)$ due to H. Toda. Then, the Greek letter elements in homotopy are defined by

$$
\begin{equation*}
\alpha_{t}=j \alpha^{t} i, \quad \beta_{t}=j \beta_{t}^{\prime} \quad \text { for } \beta_{t}^{\prime}=j_{1} \beta^{t} i_{1} i \quad \text { and } \quad \gamma_{t}=j j_{1} j_{2} \gamma^{t} i_{2} i_{1} i \tag{1.3.5}
\end{equation*}
$$

for $t>0$, and the Greek elements in the E_{2}-term survives to the same named one in homotopy by the Geometric Boundary Theorem (cf. [3]).

Proof of Theorem 3.1.10. We begin with noticing that the element b_{i} in $H^{*} L(3,3)$ is the image of the Massey product $\left\langle h_{i}, h_{i+1}, h_{i+2}, h_{i}\right\rangle$ under π, which is homologous to b_{i} represented by $b_{1, i}$ in (1.2.2). We further note that the Toda brackets $\left\langle\alpha_{1}, \alpha_{1}, \beta_{p / p}^{p}\right\rangle$ and $\left\langle\beta_{1}, p, \gamma_{t}\right\rangle$ are detected by $\alpha_{1} b_{2}$ and $h_{1} \gamma_{t}$ of $E_{2}^{*}(S)$, respectively. Indeed, in the first bracket, $d_{2 p-1}\left(b_{2}\right)=\alpha_{1} \beta_{p / p}^{p}$ by Corollary 1.4.4 below, and in the second bracket, $\left\langle\beta_{1}, p, \gamma_{t}\right\rangle=j\left\langle\beta_{1}^{\prime}, p, \gamma_{t}\right\rangle$. Under the condition on t, Lemmas 1.3.4, 1.2.7 and 1.2.8 imply that each element of $\alpha_{1} \gamma_{t}, \beta_{2} \gamma_{t}, \alpha_{1} b_{2} \gamma_{t} \beta_{1}$ and $h_{1} \gamma_{t}$, as well as $\beta_{1} \gamma_{t}$, generates a submodule isomorphic to \mathbb{Z} / p of the $E_{2^{-}}$ term $E_{2}^{*}(S)$. These are, of course, permanent cycles, and nothing kills them in the Adams-Novikov spectral sequence since each element has a filtration degree less than $2 p-1$.

$1.4 \beta_{p / p}^{p}$ in the homotopy of spheres

Let X and \bar{X} be the $(p-1) q$ - and $(p-2) q$-skeletons of the Brown-Peterson spectrum $B P$. Then, we have the cofiber sequences

$$
\begin{equation*}
S \xrightarrow{\iota} X \xrightarrow{\kappa} \Sigma^{q} \bar{X} \xrightarrow{\lambda} S^{1} \quad \text { and } \quad \bar{X} \xrightarrow{\iota^{\prime}} X \xrightarrow{\kappa^{\prime}} S^{(p-1) q} \xrightarrow{\lambda^{\prime}} \Sigma \bar{X} . \tag{1.4.1}
\end{equation*}
$$

Then,

$$
B P_{*}(X)=B P_{*}[x] /\left(x^{p}\right) \quad \text { and } \quad B P_{*}(\bar{X})=B P_{*}[x] /\left(x^{p-1}\right)
$$

as subcomodules of $B P_{*}(B P)$, where x corresponds to t_{1}. From [3, Chap.7], we read off the following:
(1.4.2) $b_{1}^{p}=0 \in E_{2}^{2 p, p^{3} q}(X)$, which implies

$$
E_{2}^{2 s+e, t q}(X)=0 \quad \text { if } s \geq p \text { and } t<(s-1) p^{2}+(s+1+e) p
$$

Lemma 1.4.3. $b_{0}: E_{2}^{2 s+e, t q}(S) \rightarrow E_{2}^{2 s+2+e,(t+p) q}(S)$ is monomorphic if $s \geq p$ and $t \leq(s-1) p^{2}+(s+e) p$.

Proof. Note that $b_{0}=\lambda \lambda^{\prime}$, and the lemma follows from (1.4.2) and the exact sequences

$$
\begin{gathered}
E_{2}^{2 s+e,(t+p-1) q}(X) \xrightarrow{\kappa^{\prime}} E_{2}^{2 s+e, t q}(S) \xrightarrow{\lambda^{\prime}} E_{2}^{2 s+1+e,(t+p-1) q}(\bar{X}) \\
E_{2}^{2 s+e+1,(t+p) q}(X) \xrightarrow{r} E_{2}^{2 s+e+1,(t+p-1) q}(\bar{X}) \xrightarrow{\lambda} E_{2}^{2 s+2+e,(t+p) q}(S)
\end{gathered}
$$

induced from the cofiber sequences in (1.4.1).
Ravenel showed that $d_{2 p-1}\left(\beta_{p^{2} / p^{2}}\right) \equiv \alpha_{1} \beta_{p / p}^{p} \bmod \operatorname{Ker} \beta_{1}^{p}$ in the AdamsNovikov spectral sequence for $\pi_{*}(S)(c f .[3,6.4 .1])$. Here, the mapping β_{1}^{p} on $E_{2}^{2 p+1,\left(p^{3}+1\right) q}(S)$ is a monomorphism by Lemma 1.4.3:

Corollary 1.4.4. In the Adams-Novikov spectral sequence for $\pi_{*}(S), d_{2 p-1}\left(\beta_{p^{2} / p^{2}}\right)=$ $\alpha_{1} \beta_{p / p}^{p} \in E_{2 p-1}^{2 p+1,\left(p^{3}+1\right) q}(S)=E_{2}^{2 p+1,\left(p^{3}+1\right) q}(S)$.

Proof of Theorem 1.1.1. Consider the first cofiber sequence in (1.4.1). Since the Adams-Novikov E_{2}-term $E_{2}^{s q+3,\left(p^{3}+s\right) q}(X)$ vanishes for $s>0$ by (1.4.2), the element $\iota_{*}\left(\beta_{p^{2} / p^{2}}\right) \in E_{2}^{2, p^{3} q}(X)$ survives to a homotopy element $X_{\beta_{p^{2} / p^{2}}} \in$ $\pi_{*}(X)$. In general, we see that
(1.4.5) Let $\bar{\iota}: S \rightarrow \bar{X}$ denote the inclusion to the bottom cell. Then, $\lambda_{*} \bar{\iota}(x)=$ $\alpha_{1} x$ for $x \in E_{2}^{*}(S)$.

Put $\bar{\beta}_{p / p}=\bar{\iota}_{*}\left(\beta_{p / p}\right) \in E_{2}^{2, p^{2} q}(\bar{X})$, and we see that $\lambda_{*}\left(\bar{\beta}_{p / p}^{p}\right)=\alpha_{1} \beta_{p / p}^{p}$, and so we see that $\bar{\beta}_{p / p}^{p}$ detects an essential homotopy element $\kappa_{*}\left(X_{\beta_{p^{2} / p^{2}}}\right) \in \pi_{*}(\bar{X})$ by Corollary 1.4.4, which we also denote by $\bar{\beta}_{p / p}^{p}$.

Now turn to the second cofiber sequence in (1.4.1). The relation $b_{1}^{p}=0$ of (1.4.2) yields a cochain $y=\sum_{i=0}^{p-1} x^{i} y_{i} \in \Omega^{2 p-1} B P_{*}(X)$ such that $d(y)=b_{1}^{p}$, where $y_{i} \in \Omega^{2 p-1} B P_{*}$. It follows that $d(\bar{y})=b_{1}^{p}-d\left(x^{p-1}\right) y_{p-1} \in \Omega^{2 p} B P_{*}(\bar{X})$ for $\bar{y}=\sum_{i=0}^{p-2} x^{i} y_{i} \in \Omega^{2 p-1} B P_{*}(\bar{X})$. In particular $d\left(y_{p-1}\right)=0 \in \Omega^{2 p-1} B P_{*}$ and $d\left(y_{p-2}\right)=(1-p) t_{1} \otimes y_{p-1}$. By definition, these imply $\lambda_{*}^{\prime}\left(y_{p-1}\right)=b_{1}^{p}$. Consider the exact sequence obtained by applying the homotopy groups to the second cofiber sequence. Then, $\iota_{*}^{\prime}\left(\bar{\beta}_{p / p}^{p}\right)=0$ by (1.4.2), and so $\bar{\beta}_{p / p}^{p}$ must be pulled back to an element $\xi \in \pi_{*}(S)$ detected by y_{p-1}. Since $b_{0}=\lambda \lambda^{\prime}, b_{0} y_{p-1}=h_{0} b_{1}^{p}$, and $\left\langle h_{0}, \ldots, h_{0}\right\rangle y_{p-1}=h_{0}\left\langle h_{0}, \ldots, h_{0}, y_{p-1}\right\rangle$, we see that

$$
b_{1}^{p} \equiv\left\langle h_{0}, \ldots, h_{0}, y_{p-1}\right\rangle \not \equiv 0 \in E_{2}^{2 p, p^{3} q}(S) \quad \bmod \operatorname{ker} h_{0} .
$$

Put $b_{1}^{p}=\left\langle h_{0}, \ldots, h_{0}, y_{p-1}\right\rangle+c$ for $c \in \operatorname{ker} h_{0} \subset E_{2}^{2 p, p^{3} q}(S)$. Then, $b_{1}^{p}-c$ survives to $\beta_{p / p}^{p} \in \pi_{*}(S)$.

The element $\alpha_{1} \beta_{p / p}^{p}$ is detected by $h_{0}\left(b_{1}^{p}-c\right)=h_{0} b_{1}^{p}$ in the Adams-Novikov E_{2}-term, which is killed by b_{2} by Corollary 1.4.4.

1.5 Remarks

1.5.1 A relation on Toda bracket

The relation $\left\langle\beta_{s}, p, \gamma_{t}\right\rangle=\left\langle\gamma_{t}, p, \beta_{s}\right\rangle$ follows immediately from results of Toda: By definition, $\left\langle\beta_{s}, p, \gamma_{t}\right\rangle=j \beta_{(s)} \gamma_{(t)} i$ and $\left\langle\gamma_{t}, p, \beta_{s}\right\rangle=j \gamma_{(t)} \beta_{(s)} i$ for $\beta_{(s)}=j_{1} \beta^{s} i_{1}$ and $\gamma_{(t)}=j_{1} j_{2} \gamma^{t} i_{2} i_{1}$. Since $V(2)$ and $V(3)$ are $V(0)$-module spectra, $\theta(\beta)=0$ and $\theta(\gamma)=0$ by [4, Lemma 2.3]. Similarly, $\theta\left(i_{k}\right)=0$ and $\theta\left(j_{k}\right)=0$ for $k=1,2$. Therefore, [4, Lemma 2.2] implies $\theta\left(\beta_{(s)}\right)=0$ and $\theta\left(\gamma_{(t)}\right)=0$. Therefore, $\beta_{(s)} \gamma_{(t)}=\gamma_{(t)} \beta_{(s)}$ by [4, Cor. 2.7] as desired.

1.5.2 On the action of γ_{1}

Note that $\gamma_{1}=\alpha_{1} \beta_{p-1}$. Then, $\alpha_{1} \gamma_{1}=\alpha_{1}^{2} \beta_{p-1}=0,\left\langle\alpha_{1}, \alpha_{1}, \beta_{p / p}^{p}\right\rangle \beta_{1} \gamma_{1}=$ $-\alpha_{1}\left\langle\alpha_{1}, \alpha_{1}, \beta_{p / p}^{p}\right\rangle \beta_{1} \beta_{p-1}=-\left\langle\alpha_{1}, \alpha_{1}, \alpha_{1}\right\rangle \beta_{p / p}^{p} \beta_{1} \beta_{p-1}=0$ since $\left\langle\alpha_{1}, \alpha_{1}, \alpha_{1}\right\rangle=0$, and $\left\langle\gamma_{1}, p, \beta_{1}\right\rangle=\beta_{p-1}\left\langle\alpha_{1}, p, \beta_{1}\right\rangle=\beta_{p-1} \underline{\alpha j_{1}} \beta i_{1} i=0$.

For $t \geq 2$,

$$
\begin{aligned}
\beta_{t} & =\delta_{(1,1), 1} \delta_{(1,1), 2}\left(v_{2}^{t}\right)=\delta_{(1,1), 1}\left(\left[t v_{2}^{t-1} t_{1}^{p}+\binom{t}{2} v_{1} v_{2}^{t-2} t_{1}^{2 p}+v_{1}^{2} x\right]\right) \\
& \equiv\left[t(t-1) v_{2}^{t-2} t_{2} \otimes t_{1}^{p}-t v_{2}^{t-1} b_{0}+\binom{t}{2} v_{2}^{t-2} t_{1} \otimes t_{1}^{2 p}\right] \bmod \left(p, v_{1}\right) \\
& \equiv t(t-1) v_{2}^{t-2} k_{0}-t v_{2}^{t-1} b_{0} \bmod \left(p, v_{1}\right)
\end{aligned}
$$

and $\alpha_{1} \beta_{2} \beta_{p-1} \in E_{2}^{5}\left(S^{0}\right)$ is projected to $h_{0}\left(2 k_{0}-2 v_{2} b_{0}\right)\left(2 v_{2}^{p-3} k_{0}+v_{2}^{p-2} b_{0}\right)=$ $-2 v_{2}^{p-2} h_{0} k_{0} b_{0}-2 h_{0} v_{2}^{p-1} b_{0}^{2}$ in $E_{2}^{5}(V(2))$ under the induced map i_{*} from the inclusion $i: S^{0} \rightarrow V(2)$ to the bottom cell. Here, $k_{0}=\left[t_{2} \otimes t_{1}^{p}+\frac{1}{2} t_{1} \otimes t_{1}^{2 p}\right]$. Then, this element is detected by $-2 v_{2}^{p-2} k_{0} \in E_{1}^{3}=E_{2}^{2,\left(p^{2}+p-1\right) q}(X \wedge V(2))$ in the small descent spectral sequence. The killer of this element, if any, stays in the E_{1}-terms $E_{1}^{2}=E_{2}^{2,\left(p^{2}+p\right) q}(X \wedge V(2)), E_{1}^{1}=E_{2}^{3,\left(p^{2}+2 p-1\right) q}(X \wedge V(2))$ and $E_{1}^{0}=E_{2}^{4,\left(p^{2}+2 p\right) q}(X \wedge V(2))$. These are zero, and we see that the product is not zero.

Bibliography

[1] H. R. Miller, D. C. Ravenel, and W. S. Wilson, Periodic phenomena in Adams-Novikov spectral sequence, Ann. of Math. 106 (1977), 469-516.
[2] S. Oka and K. Shimomura, On product of the β-elements in the stable homotopy of spheres, Hiroshima Math. J. 12 (1982), 611-626.
[3] D. C. Ravenel, Complex cobordism and stable homotopy groups of spheres, AMS Chelsea Publishing, Providence, 2004.
[4] H. Toda, Algebra of stable homotopy of Z_{p}-spaces and applications, J. Math. Kyoto Univ., 11 (1971), 197-251.
[5] A. Yamaguchi, The structure of the cohomology of Morava stabilizer algebra $S(3)$, Osaka J. Math 29 (1992), 347-359.

Chapter 2

The $T R$-groups of the sphere spectrum at the prime two

For the multiplicative group S^{1}, the circle, we have the topological Hochschild S^{1}-spectrum $T(\mathbb{S})$ of the sphere spectrum \mathbb{S}. For the finite cyclic group $C_{r}(\subset$ S^{1}) of order r, the $T R$-groups of \mathbb{S} at 2 are defined by the equivariant homotopy groups $T R_{k}^{n}(\mathbb{S} ; 2)=\left[S^{k} \wedge\left(S^{1} / C_{2^{n-1}}\right)_{+}, T(\mathbb{S})\right]_{S^{1}}$ for $k \geq 0$ and $n \geq 1$. By the "trace method", the groups are closely related with the algebraic K-groups of \mathbb{S}. In [1], Hesselholt determined the $T R$-groups for $0 \leq k \leq 5$, in order to obtain the homotopy groups of the topological Whitehead spectrum of the circle in dimensions less than 4 . In this chapter, we extend his result for the $T R$-groups to $k \leq 9$ by the mod 2 Adams spectral sequence as well as the Atiyah-Hirzebruch spectral sequence.

2.1 Introduction

Throughout this chapter, we fix a prime $p=2$ and denote by C_{r} the finite cyclic subgroup of the circle S^{1} of order r. Let $T(X)$ denote the topological Hochschild homology spectrum of a ring spectrum X. Since $T(X)$ is an S^{1} spectrum, we define the $T R$-spectrum $T R^{n}(X ; 2)$ of level n as the fixed point spectrum $T(X)^{C_{2 n-1}}$ for $n \geq 1$. The spectrum $T R(X ; 2)$ is given by

$$
T R(X ; 2)=\operatorname{holim}_{n} T R^{n}(X ; 2),
$$

the homotopy limit of the system $\left\{R: T R^{n}(X ; 2) \rightarrow T R^{n-1}(X ; 2)\right\}_{n}$ of the restriction maps. The Frobenius maps $F: T R^{n}(X ; 2) \rightarrow T R^{n-1}(X ; 2)$ induce a map $F: T R(X ; 2) \rightarrow T R(X ; 2)$, and $T C(X ; 2)$ is a spectrum fitting in the cofiber sequence

$$
T C(X ; 2) \xrightarrow{i} T R(X ; 2) \xrightarrow{i d-F} T R(X ; 2) \xrightarrow{\partial} \Sigma T C(X ; 2) .
$$

Consider the algebraic K-theory spectrum $K(X)$ of a ring spectrum X, and the cyclotomic trace map trc: $K(X) \rightarrow T C(X ; 2)$. The "trace method" is to study $K(X)$ through the composite

$$
t r_{n}: K(X) \xrightarrow{t r c} T C(X ; 2) \xrightarrow{i} T R(X ; 2) \rightarrow T R^{n}(X ; 2) .
$$

We call the homotopy groups $T R_{*}^{n}(X ; 2)=\pi_{*}\left(T R^{n}(X ; 2)\right)$ the (2-primary) $T R$ groups of X of level n.

Let \mathbb{S} denote the sphere spectrum localized at the prime two. In this chapter, we consider the $T R$-groups $T R_{*}^{n}(\mathbb{S} ; 2)$. We have the Segal-tom Dieck splitting $T R_{*}^{n}(\mathbb{S} ; 2) \cong \pi_{*}^{S}\left(\left(B C_{2^{n-1}}\right)_{+}\right) \oplus T R_{*}^{n-1}(\mathbb{S} ; 2)([1$, p. 137, p. 148 , p. 155$])$, where $B C_{2^{n-1}}$ denotes the classifying space of $C_{2^{n-1}}$. By definition, $T R_{*}^{1}(\mathbb{S} ; 2)=$ $\pi_{*}(T(\mathbb{S}))$, which is isomorphic to $\pi_{*}(\mathbb{S})([1$, p. 147]). These show an isomorphism

$$
\begin{equation*}
T R_{*}^{n}(\mathbb{S} ; 2) \cong \pi_{*}(\mathbb{S}) \oplus \bigoplus_{1 \leq k<n} \pi_{*}^{S}\left(\left(B C_{2^{k}}\right)_{+}\right) \tag{2.1.1}
\end{equation*}
$$

Hesselholt studied the Atiyah-Hirzebruch spectral sequence

$$
\begin{equation*}
E_{s, t}^{2}(n)=H_{s}\left(C_{2^{n}}, \pi_{t}(\mathbb{S})\right) \Rightarrow \pi_{*}^{S}\left(\left(B C_{2^{n}}\right)_{+}\right) \cong \pi_{*}(\mathbb{S}) \oplus \pi_{*}^{S}\left(B C_{2^{n}}\right) \tag{2.1.2}
\end{equation*}
$$

which is called the skeleton spectral sequence in [1, p. 148], to show the following theorem.

Theorem 2.1.3 (Hesselholt [1, Theorem 11]). The $T R$-groups $T R_{k}^{n}(\mathbb{S} ; 2)$ for $k \leq 5$ are given by

$$
\begin{aligned}
& T R_{0}^{n}(\mathbb{S} ; 2) \cong \mathbb{Z}_{(2)}^{\oplus n}, \\
& T R_{1}^{n}(\mathbb{S} ; 2) \cong \mathbb{Z} / 2^{\oplus n} \oplus \bigoplus_{1 \leq s<n} \mathbb{Z} / 2^{s}, \\
& T R_{2}^{n}(\mathbb{S} ; 2) \cong \mathbb{Z} / 2^{\oplus n} \oplus \bigoplus_{1 \leq s<n} \mathbb{Z} / 2, \\
& T R_{3}^{n}(\mathbb{S} ; 2) \cong \mathbb{Z} / 8^{\oplus n} \oplus \bigoplus_{1 \leq s<n} \mathbb{Z} / 2^{\max \{3, s+1\}} \oplus \bigoplus_{2 \leq s<n} \mathbb{Z} / 2, \\
& T R_{4}^{n}(\mathbb{S} ; 2) \cong \bigoplus_{1 \leq s<n} \mathbb{Z} / 2^{\min \{3, s\}} \\
& T R_{5}^{n}(\mathbb{S} ; 2) \\
& \cong \bigoplus_{2 \leq s<n} \mathbb{Z} / 2^{s} \oplus \bigoplus_{3 \leq s<n} \mathbb{Z} / 2
\end{aligned}
$$

Liulevicius determined the stable homotopy groups $\pi_{k}^{S}\left(B C_{2}\right)$ for $k \leq 9$ ([3, Theorem II.6]). We consider $\pi_{k}^{S}\left(B C_{2^{n}}\right)$ for $n>1$ and $k \leq 9$ in this chapter. In section 2, we determine the stable homotopy group $\pi_{6}^{S}\left(B C_{2^{n}}\right)$ by the Atiyah-Hirzebruch spectral sequence, and in section 3, we determine the stable homotopy groups $\pi_{*}^{S}\left(B C_{2^{n}}\right)$ in dimensions 7,8 and 9 by the mod 2 Adams spectral sequence as well as the results in section 2. The following theorem summarizes Corollary 2.2.10 and Propositions 2.3.12, 2.3.14 and 2.3.16.

Theorem 2.1.4. The $T R$-groups $T R_{k}^{n}(\mathbb{S} ; 2)$ for $6 \leq k \leq 9$ are given by

$$
\begin{aligned}
& T R_{6}^{n}(\mathbb{S} ; 2) \cong \mathbb{Z} / 2^{\oplus n} \oplus \bigoplus_{1 \leq s<n} \mathbb{Z} / 2 \\
& T R_{7}^{n}(\mathbb{S} ; 2) \cong \mathbb{Z} / 16^{\oplus n} \oplus \bigoplus_{1 \leq s<n} \mathbb{Z} / 2 \oplus \bigoplus_{1 \leq s<n} \mathbb{Z} / 2^{\max \{4, s+2\}} \oplus \bigoplus_{2 \leq s<n} \mathbb{Z} / 2 \\
& T R_{8}^{n}(\mathbb{S} ; 2) \\
& T R_{9}^{n}(\mathbb{S} ; 2) \cong \mathbb{Z} / 2^{\oplus 2 n} \oplus \bigoplus_{1 \leq s<n} \mathbb{Z} / 2^{\min \{4, s\}} \oplus \bigoplus_{1 \leq s<n} \mathbb{Z} / 2^{\oplus 2} \\
& \mathbb{Z} / 2^{\oplus 3 n} \oplus \bigoplus_{1 \leq s<n} \mathbb{Z} / 2^{\oplus 3} \oplus \bigoplus_{1 \leq s<n} \mathbb{Z} / 2^{\min \{4, s\}} \oplus \bigoplus_{2 \leq s<n} \mathbb{Z} / 2^{s-1}
\end{aligned}
$$

2.2 The Atiyah-Hirzebruch spectral sequences

In this section, $E_{s, t}^{r}(n)$ denotes an E^{r}-term of the Atiyah-Hirzebruch spectral sequence (2.1.2), and $E^{*}(n)$ stands for the spectral sequence. Since the $C_{2^{n}}$-action on the homotopy groups $\pi_{*}(\mathbb{S})$ is trivial ($[1$, p. 145]), the standard resolution gives rise to isomorphisms

$$
E_{s, t}^{2}(n)=H_{s}\left(C_{2^{n}}, \pi_{t}(\mathbb{S})\right) \cong \begin{cases}\pi_{t}(\mathbb{S}) & s=0 \tag{2.2.1}\\ \pi_{t}(\mathbb{S}) /\left(2^{n}\right) & s: \text { odd }>0 \\ \pi_{t}(\mathbb{S})\left[2^{n}\right] & s: \text { even }>0\end{cases}
$$

of groups, where $\pi_{t}(\mathbb{S})\left[2^{n}\right]$ denotes the kernel of $\pi_{t}(\mathbb{S}) \xrightarrow{2^{n}} \pi_{t}(\mathbb{S})$.
Theorem 2.2.2 (cf. Toda [5, p. 189-190]). The homotopy groups $\pi_{k}(\mathbb{S})$ for $k \leq 10$ are given by

k	0	1	2	3	4	5	6	7	8	9	10
$\pi_{k}(\mathbb{S})$	$\mathbb{Z}_{(2)}$	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	$\mathbb{Z} / 8$	0	0	$\mathbb{Z} / 2$	$\mathbb{Z} / 16$	$\mathbb{Z} / 2^{\oplus 2}$	$\mathbb{Z} / 2^{\oplus 3}$	$\mathbb{Z} / 2$
gen.	ι	η	η^{2}	ν			ν^{2}	σ	$\eta \sigma, \varepsilon$	$\eta \varepsilon, \mu, \nu^{3}$	$\eta \mu$

The generators satisfy the relations $\eta^{3}=4 \nu, \eta^{2} \sigma=\eta \varepsilon+\nu^{3}$ and $\nu \sigma=0$.
We notice that the spectral sequence (2.1.2) splits into the direct sum of two spectral sequences

$$
E_{0, *}^{2}(n) \Rightarrow \pi_{*}(\mathbb{S}) \quad \text { and } \quad \bigoplus_{s \geq 1} E_{s, *}^{2}(n) \Rightarrow \pi_{*}^{S}\left(B C_{2^{n}}\right)
$$

([1, p. 148]). We study the latter spectral sequence.
First we consider the case for $n=1$. By (2.2.1) and Theorem 2.2.2, the E^{2}-terms $E_{s, t}^{2}(1)$ for $s \geq 1$ and $s+t \leq 10$ are given by

Hereafter $2^{a} \mathbb{Z} / 2^{b}$ denotes the subgroup of $\mathbb{Z} / 2^{b}$ generated by 2^{a}, which is isomorphic to $\mathbb{Z} / 2^{b-a}$ if $a<b$, and zero otherwise. For example, in the above
chart, the boxed $4 \mathbb{Z} / 8$ at $(s, t)=(2,3)$ is the subgroup of $\mathbb{Z} / 8 \cdot \nu$ generated by 4ν.

We deduce

$$
\left(E_{s, t}^{2}(n) \xrightarrow{d^{2}} E_{s-2, t+1}^{2}(n)\right)= \begin{cases}\times \eta & 4 \leq s \equiv 0,1 \bmod (4) \tag{2.2.3}\\ 0 & \text { otherwise }\end{cases}
$$

from [1, p. 148]. This implies that the E^{3}-terms have a periodicity:
2.2.4 The E^{3}-term $E_{s, t}^{3}(n)$ is isomorphic to $E_{s+4, t}^{3}(n)$ if $s \geq 2$.

We obtain the E^{3}-terms $E_{s, t}^{3}(1)$ for $s \geq 1$ and $s+t \leq 9$ as follows by (2.2.3) and (2.2.4).

Theorem 2.2.5 (Liulevicius [3, Theorem II.6]). The stable homotopy groups of $B C_{2}=\mathbb{R} P^{\infty}$, the infinite real projective space, in dimensions less than 10 are given by

k	1	2	3	4	5	6	7	8	9
$\pi_{k}^{S}\left(\mathbb{R} P^{\infty}\right)$	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	$\mathbb{Z} / 8$	$\mathbb{Z} / 2$	0	$\mathbb{Z} / 2$	$\mathbb{Z} / 16 \oplus \mathbb{Z} / 2$	$\mathbb{Z} / 2^{\oplus 3}$	$\mathbb{Z} / 2^{\oplus 4}$

Corollary 2.2.6. The spectral sequence $E^{*}(1)$ collapses at E^{3} for $s+t \leq 9$.
We turn to the case for $n \geq 2$. By (2.2.3) and (2.2.4), we have the following
chart of E^{3}-terms of $E^{*}(n)$ for $s \geq 1$ and $s+t \leq 10$:

Here, $K_{t, n}=\pi_{t}(\mathbb{S})\left[2^{n}\right], \widetilde{K}_{t, n}=K_{t, n} /(\eta), C_{t, n}=\pi_{t}(\mathbb{S}) / 2^{n}$ and $Z_{n}=\operatorname{ker}\left(C_{2, n} \xrightarrow{\eta}\right.$ $C_{3, n}$), whose structures are:

$$
\begin{gathered}
K_{3, n} \cong 2^{\max \{3-n, 0\}} \mathbb{Z} / 8, \quad K_{7, n} \cong 2^{\max \{4-n, 0\}} \mathbb{Z} / 16, \quad \widetilde{K}_{3, n} \cong 2^{\max \{3-n, 0\}} \mathbb{Z} / 4 \\
\widetilde{K}_{8, n} \cong \mathbb{Z} / 2 \text { except for } \widetilde{K}_{8,2} \cong \widetilde{K}_{8,3} \cong \mathbb{Z} / 2^{\oplus 2}, \quad C_{3, n} \cong \mathbb{Z} / 2^{\min \{n, 3\}} \\
C_{7, n} \cong \mathbb{Z} / 2^{\min \{n, 4\}} \quad \text { and } \quad Z_{n}=0 \text { except for } Z_{2} \cong \mathbb{Z} / 2
\end{gathered}
$$

Lemma 2.2.7 ([1, p. 145, Lemma 6, p. 148]). The Verschiebung map $V: \pi_{*}^{S}\left(\left(B C_{2^{n-1}}\right)_{+}\right) \rightarrow$ $\pi_{*}^{S}\left(\left(B C_{2^{n}}\right)_{+}\right)$induces a map $V: E^{*}(n-1) \rightarrow E^{*}(n)$ of spectral sequences. Let $\{x\}_{n}$ denote an element of $E_{s, t}^{2}(n)$ represented by $x \in \pi_{t}(\mathbb{S})$. If s is even, then $V\left(\{x\}_{n-1}\right)=\{x\}_{n}$ for the map $V: E_{s, t}^{2}(n-1) \rightarrow E_{s, t}^{2}(n)$ of the E_{2}-terms.

Since the differentials $E_{6,1}^{3}(1) \xrightarrow{d^{3}} E_{3,3}^{3}(1)$ and $E_{4,6}^{3}(1) \xrightarrow{d^{3}} E_{1,8}^{3}(1)$ are trivial by Corollary 2.2.6, the differentials $E_{6,1}^{3}(n) \xrightarrow{d^{3}} E_{3,3}^{3}(n)$ and $E_{4,6}^{3}(n) \xrightarrow{d^{3}} E_{1,8}^{3}(n)$ for $n \geq 2$ are trivial by Lemma 2.2.7.

Recall [1, Lemma 8] that
2.2.8 $\left(E_{s, t}^{4}(n) \xrightarrow{d^{4}} E_{s-4, t+3}^{4}(n)\right)= \begin{cases}\times \nu & 4<s \equiv 0,1,2,3,8,9,10,11 \bmod (16), \\ \times 2 \nu & 4<s \equiv 6,7,12,13 \bmod (16), \\ 0 & \text { otherwise, },\end{cases}$
for $n \geq 1$. We then obtain the following chart of the E^{5}-terms for $n \geq 2$, except
for the underlined group $E_{7,3}^{5}(n)$.

By (2.2.1) and Theorem 2.2.2, we see that $E_{11,0}^{4}(n)=\mathbb{Z} / 2^{n} \cdot \iota$, and that $E_{7,3}^{4}(n)$ is a quotient of $E_{7,3}^{3}(n)=\mathbb{Z} / 4 \cdot \nu$. Thus, we deduce from (2.2.8) that the group $E_{7,3}^{5}(n)$ is zero.

Lemma 2.2.9. On $E_{s, t}^{r}(n)$ for $n \geq 2$ and $r \geq 5$, the only possibly nonzero differentials are $E_{6,3}^{5}(n) \xrightarrow{d^{5}} E_{1,7}^{5}(n), E_{9,0}^{7}(n) \xrightarrow{d^{7}} E_{2,6}^{7}(n)$ and $E_{9,0}^{8}(n) \xrightarrow{d^{8}} E_{1,7}^{8}(n)$ for $s+t \leq 10$.

Corollary 2.2.10. For $n \geq 2$, the stable homotopy groups $\pi_{*}^{S}\left(B C_{2^{n}}\right)$ in dimensions from 6 to 9 satisfy the following relations:

$$
\begin{aligned}
\pi_{6}^{S}\left(B C_{2^{n}}\right) & \cong \mathbb{Z} / 2 \\
\left|\pi_{7}^{S}\left(B C_{2^{n}}\right)\right| & =2^{n+4}, \\
\left|\pi_{8}^{S}\left(B C_{2^{n}}\right)\right| & \leq 2^{\min \{n+2,6\}}, \\
\left|\pi_{9}^{S}\left(B C_{2^{n}}\right)\right| & \leq 2^{\min \{2 n+2, n+6\}} .
\end{aligned}
$$

2.3 The mod 2 Adams spectral sequence

In this section, we consider the mod 2 Adams spectral sequence

$$
E_{2}^{s, t}(X)=\operatorname{Ext}_{\mathcal{A}}^{s, t}\left(\widetilde{H}^{*}(X), \mathbb{Z} / 2\right) \Rightarrow \pi_{t-s}^{S}(X)
$$

for a space X. Here $\widetilde{H}^{*}(X)$ denotes a reduced cohomology of X with coefficients $\mathbb{Z} / 2$, and \mathcal{A} denotes the Steenrod algebra. We assume that $n \geq 2$, and determine the stable homotopy groups $\pi_{*}^{S}\left(B C_{2^{n}}\right)$ in dimensions less than 10 by the \bmod 2 Adams spectral sequence for $B C_{2^{n}}$.

Proposition 2.3.1. The E_{2}-term $E_{2}^{*, *}\left(B C_{2^{n}}\right)$ is isomorphic to $x E_{2}^{*, *}\left(S^{0}\right) \oplus$ $E_{2}^{*, *}\left(\mathbb{C} P^{\infty}\right) \oplus x E_{2}^{*, *}\left(\mathbb{C} P^{\infty}\right)$ as a graded $E_{2}^{*, *}\left(S^{0}\right)$-module for a generator $x \in$ $E_{2}^{1,0}\left(B C_{2^{n}}\right)$. Here S^{0} and $\mathbb{C} P^{\infty}$ denote the 0 -dimensional sphere and the infinite complex projective space, respectively.

Proof. We claim that there exists a generator $x \in \widetilde{H}^{1}\left(B C_{2^{n}}\right)$ such that

$$
\begin{equation*}
\widetilde{H}^{*}\left(B C_{2^{n}}\right) \cong \mathbb{Z} / 2 \cdot x \oplus \widetilde{H}^{*}\left(\mathbb{C} P^{\infty}\right) \oplus x \widetilde{H}^{*}\left(\mathbb{C} P^{\infty}\right) \tag{2.3.2}
\end{equation*}
$$

as a graded \mathcal{A}-algebra. Indeed, the unreduced cohomology $H^{*}\left(B C_{2^{n}}, \mathbb{Z} / 2\right)$ is isomorphic to the group cohomology $H^{*}\left(C_{2^{n}}, \mathbb{Z} / 2\right) \cong E(x) \otimes P(y)$ with $|x|=1$ and $|y|=2$. Here $E(-)$ and $P(-)$ denote the exterior and the polynomial algebras, respectively. Furthermore, we see that the action of \mathcal{A} on the generators x and y is trivial except for $S q^{2}(y)=y^{2}$ by the fundamental properties of the Steenrod squares, other than $S q^{1}(y)=0$. Note that $S q^{1}$ fits in the exact sequence

$$
\begin{gathered}
H^{1}\left(B C_{2^{n}}, \mathbb{Z} / 2\right) \xrightarrow{S q^{1}} H^{2}\left(B C_{2^{n}}, \mathbb{Z} / 2\right) \rightarrow H^{2}\left(B C_{2^{n}}, \mathbb{Z} / 4\right) \\
\rightarrow H^{2}\left(B C_{2^{n}}, \mathbb{Z} / 2\right) \xrightarrow{S q^{1}} H^{3}\left(B C_{2^{n}}, \mathbb{Z} / 2\right)
\end{gathered}
$$

associated to the short exact sequence $0 \rightarrow \mathbb{Z} / 2 \rightarrow \mathbb{Z} / 4 \rightarrow \mathbb{Z} / 2 \rightarrow 0$. In the exact sequence, $H^{2}\left(B C_{2^{n}}, \mathbb{Z} / 2^{i}\right) \cong \mathbb{Z} / 2^{i}$ by the standard resolution. The first $S q^{1}$ is zero, and so is the second $S q^{1}$ as desired. We note that $\widetilde{H}^{*}\left(S^{0}\right) \cong \mathbb{Z} / 2$ and $\widetilde{H}^{*}\left(\mathbb{C} P^{\infty}\right) \cong \bar{P}(y)$ as graded \mathcal{A}-algebras for the augmented ideal $\bar{P}(y)$ of $P(y)$. Thus, the claim (2.3.2) is verified and hence the proposition follows.

The E_{2}-terms $E_{2}^{s, t}\left(S^{0}\right)$ are well known as follows ([4, Theorem 3.2.11]):

\vdots	\vdots									
5	h_{0}^{5}									
4	h_{0}^{4}							$h_{0}^{3} h_{3}$		$P h_{1}$
3	h_{0}^{3}			$h_{1}^{3}=h_{0}^{2} h_{2}$				$h_{0}^{2} h_{2}$	c_{0}	$h_{2}^{3}=h_{1}^{2} h_{3}$
2	h_{0}^{2}		h_{1}^{2}	$h_{0} h_{2}$			h_{2}^{2}	$h_{0} h_{3}$	$h_{1} h_{3}$	
1	h_{0}	h_{1}		h_{2}				h_{3}		
0	1									
	0	1	2	3	4	5	6	7	8	9

The generators satisfy the relations:

$$
\overrightarrow{t-s}
$$

$$
\begin{gather*}
h_{i} h_{i+1}=0 \text { for } i \geq 0, \quad h_{1}^{3}=h_{0}^{2} h_{2}, \quad h_{0} h_{2}^{2}=0, \quad h_{2}^{3}=h_{1}^{2} h_{3}, \tag{2.3.3}\\
h_{0}^{4} h_{3}=0, \quad h_{0} c_{0}=0, \quad h_{1}^{2} c_{0}=0 \quad \text { and } \quad h_{0} P h_{1}=0 .
\end{gather*}
$$

We see the following fact immediately.
2.3.4 The mod 2 Adams spectral sequence for S^{0} collapses at E_{2} for $t-s<10$.

The E_{2}-terms $E_{2}^{s, t}\left(\mathbb{C} P^{\infty}\right)$ are determined in [3, Prop. II.3] as follows:

\vdots			\vdots								
5			$h_{0}^{5} e_{2}$		$h_{0}^{4} e_{4}$		$h_{0}^{5} e_{6}$		$h_{0}^{2} e_{8}$		$h_{0}^{3} e_{10}$
4			$h_{0}^{4} e_{2}$		$h_{0}^{3} e_{4}$		$h_{0}^{4} e_{6}$		$h_{0} e_{8}$	$h_{0}^{3} h_{3} e_{2}$	$h_{0}^{2} e_{10}$
3			$h_{0}^{3} e_{2}$		$h_{0}^{2} e_{4}$		$h_{0}^{3} e_{6}$		e_{8}	$h_{0}^{2} h_{3} e_{2}$	$h_{0} e_{10}$
2			$h_{0}^{2} e_{2}$		$h_{0} e_{4}$	$h_{0} h_{2} e_{2}$	$h_{0}^{2} e_{6}$		$h_{1}^{2} e_{6}$	$h_{0} h_{3} e_{2}$	e_{10}
1			$h_{0} e_{2}$		e_{4}	$h_{2} e_{2}$	$h_{0} e_{6}$	$h_{1} e_{6}$		$h_{3} e_{2}$	
0			e_{2}				e_{6}				
	0	1	2	3	4	5	6	7	8	9	10

Remark 2.3.5. In [3], the generators $h_{0}, h_{i}(i>0), e_{2}, e_{4}, e_{6}, e_{8}$ and e_{10} here are denoted by $g_{0}, h_{i-1}, e_{0,2}, e_{1,5}, e_{0,6}, e_{3,11}$ and $e_{2,12}$, respectively.

Therefore, we obtain the following chart of $E_{2}^{*, *}\left(B C_{2^{n}}\right)$ by Proposition 2.3.1.

		:	:			:					
6		$x h_{0}^{6}$	$h_{0}^{6} e_{2}$	$x h_{0}^{6} e_{2}$	$h_{0}^{5} e_{4}$	$x h_{0}^{5} e_{4}$	$h_{0}^{6} e_{6}$	$x h_{0}^{6} e_{6}$	$h_{0}^{3} e_{8}$	$x h_{0}^{3} e_{8}$	$h_{0}^{4} e_{10}$
5		$x h_{0}^{5}$	$h_{0}^{5} e_{2}$	$x h_{0}^{5} e_{2}$	$h_{0}^{4} e_{4}$	$x h_{0}^{4} e_{4}$	$h_{0}^{5} e_{6}$	$x h_{0}^{5} e_{6}$	$h_{0}^{2} e_{8}$	$x h_{0}^{2} e_{8}$	$\begin{aligned} & x P h_{1} \\ & h_{0}^{3} e_{10} \\ & \hline \end{aligned}$
4		$x h_{0}^{4}$	$h_{0}^{4} e_{2}$	$x h_{0}^{4} e_{2}$	$h_{0}^{3} e_{4}$	$x h_{0}^{3} e_{4}$	$h_{0}^{4} e_{6}$	$x h_{0}^{4} e_{6}$	$\begin{gathered} x h_{0}^{3} h_{3} \\ h_{0} e_{8} \end{gathered}$	$\begin{gathered} x h_{0} e_{8} \\ h_{0}^{3} h_{3} e_{2} \end{gathered}$	$\begin{gathered} x h_{1} c_{0} \\ x h_{0}^{3} h_{3} e_{2} \\ h_{0}^{2} e_{10} \\ \hline \end{gathered}$
3		$x h_{0}^{3}$	$h_{0}^{3} e_{2}$	$x h_{0}^{3} e_{2}$	$\begin{gathered} x h_{0}^{2} h_{2} \\ h_{0}^{2} e_{4} \end{gathered}$	$x h_{0}^{2} e_{4}$	$h_{0}^{3} e_{6}$	$x h_{0}^{3} e_{6}$	$\begin{gathered} x h_{0}^{2} h_{3} \\ e_{8} \end{gathered}$	$\begin{gathered} x c_{0} \\ x e_{8} \\ h_{0}^{2} h_{3} e_{2} \\ \hline \end{gathered}$	$\begin{gathered} x h_{2}^{3} \\ x h_{0}^{2} h_{3} e_{2} \\ h_{0} e_{10} \\ \hline \end{gathered}$
2		$x h_{0}^{2}$	$h_{0}^{2} e_{2}$	$\begin{gathered} x h_{1}^{2} \\ x h_{0}^{2} e_{2} \end{gathered}$	$x h_{0} h_{2}$ $h_{0} e_{4}$	$x h_{0} e_{4}$ $h_{0} h_{2} e_{2}$	$\begin{gathered} x h_{0} h_{2} e_{2} \\ h_{0}^{2} e_{6} \end{gathered}$	$\begin{gathered} x h_{2}^{2} \\ x h_{0}^{2} e_{6} \end{gathered}$	$x h_{0} h_{3}$ $h_{1}^{2} e_{6}$	$\begin{gathered} x h_{1} h_{3} \\ x h_{1}^{2} e_{6} \\ h_{0} h_{3} e_{2} \\ \hline \end{gathered}$	$\begin{gathered} x h_{0} h_{3} e_{2} \\ e_{10} \end{gathered}$
1		$x h_{0}$	$\begin{gathered} x h_{1} \\ h_{0} e_{2} \\ \hline \end{gathered}$	$x h_{0} e_{2}$	$\begin{gathered} x h_{2} \\ e_{4} \\ \hline \end{gathered}$	$\begin{gathered} x e_{4} \\ h_{2} e_{2} \\ \hline \end{gathered}$	$\begin{gathered} x h_{2} e_{2} \\ h_{0} e_{6} \\ \hline \end{gathered}$	$\begin{gathered} x h_{0} e_{6} \\ h_{1} e_{6} \\ \hline \end{gathered}$	$\begin{gathered} x h_{3} \\ x h_{1} e_{6} \\ \hline \end{gathered}$	$h_{3} e_{2}$	$x h_{3} e_{2}$
0		x	e_{2}	$x e_{2}$			e_{6}	$x e_{6}$			
	0	1	2	3	4	5	6	7	8	9	10

Recall a well known fact (cf. [4, Lemma 3.1.3]):
2.3.6 If $\alpha \in \pi_{*}^{S}\left(B C_{2^{n}}\right)$ is detected by an element a in $E_{2}^{*, *}\left(B C_{2^{n}}\right)$, then 2α is detected by $a h_{0}$.

Since $B C_{2^{n}}$ is a Hopf space ($c f$. [2]), the following holds (cf. [4, Theorem 2.3.3]).
2.3.7 The differentials of the mod 2 Adams spectral sequence for $B C_{2^{n}}$ are derivations.

By (2.1.1) and Theorem 2.2.2, the $T R$-groups in Theorem 2.1.3 give rise to the stable homotopy groups $\pi_{k}^{S}\left(B C_{2^{n}}\right)$ for $k \leq 5$ as follows:

$$
\begin{align*}
& \pi_{1}^{S}\left(B C_{2^{n}}\right) \cong \mathbb{Z} / 2^{n} \\
& \pi_{2}^{S}\left(B C_{2^{n}}\right) \cong \mathbb{Z} / 2 \tag{2.3.8}\\
& \pi_{3}^{S}\left(B C_{2^{n}}\right) \cong \mathbb{Z} / 2 \oplus \mathbb{Z} / 2^{n+1} \\
& \pi_{4}^{S}\left(B C_{2^{n}}\right) \cong \mathbb{Z} / 2^{\min \{3, n\}} \\
& \pi_{5}^{S}\left(B C_{2^{n}}\right) \cong \mathbb{Z} / 2^{\oplus \min \{1, n-2\}} \oplus \mathbb{Z} / 2^{n} .
\end{align*}
$$

We obtain the following lemma from (2.3.8).
Lemma 2.3.9. In the mod 2 Adams spectral sequence for $B C_{2^{n}}$, the elements $x, x e_{2}$ and $x e_{4}$ are permanent cycles,

$$
d_{n}\left(e_{2}\right)=x h_{0}^{n}, d_{n}\left(e_{4}\right)=x h_{0}^{n+1} e_{2} \text { and } d_{2}\left(e_{6}\right)= \begin{cases}h_{0} h_{2} e_{2}+x h_{0} e_{4} & n=2 \\ h_{0} h_{2} e_{2} & n>2\end{cases}
$$

Furthermore, $d_{2}\left(h_{2} e_{2}\right)=x h_{0}^{2} h_{2}$ if $n=2$, and $h_{2} e_{2}$ is a permanent cycle otherwise.
Lemma 2.3.10. The elements $h_{1} e_{6}$ and $x h_{0} e_{6}$ of $E_{2}^{1,8}\left(B C_{2^{n}}\right)$ are permanent cycles.

Proof. We note that $\pi_{6}^{S}\left(B C_{2^{n}}\right) \cong \mathbb{Z} / 2$ by Corollary 2.2.10. Since $x h_{2} e_{2}$ is a permanent cycle by Lemma 2.3.9, it detects a generator of $\pi_{6}^{S}\left(B C_{2^{n}}\right)$, and so $h_{0} e_{6}$ supports a nonzero differential. We deduce $d_{n}\left(h_{0} e_{6}\right)=x h_{0}^{n} e_{4}$ from the structure of $\pi_{5}^{S}\left(B C_{2^{n}}\right)$ in (2.3.8). Therefore $h_{0}^{i} e_{6}$ for $i \geq 1$ cannot be a target of any differential.

Lemma 2.3.11. $d_{n}\left(e_{8}\right)=x h_{0}^{n+3} e_{6}$.
Proof. By (2.3.4), (2.3.7), Lemmas 2.3.9 and 2.3.10, the elements $x h_{0} e_{6}, h_{1} e_{6}$ and $x h_{2}^{2}$ (resp. $x h_{1} e_{6}, x h_{3}$ and $h_{1}^{2} e_{6}$) detect generators of $\pi_{7}^{S}\left(B C_{2^{n}}\right)$ (resp. $\left.\pi_{8}^{S}\left(B C_{2^{n}}\right)\right)$. Since $\left|\pi_{7}^{S}\left(B C_{2^{n}}\right)\right|=2^{n+4}$ by Corollary 2.2.10, and the elements $h_{1} e_{6}$ and $x h_{2}^{2}$ generate the $\mathbb{Z} / 2$-summands, the element detected by $x h_{0}^{n+3} e_{6}$ is zero in the homotopy.
Proposition 2.3.12. $\pi_{7}^{S}\left(B C_{2^{n}}\right) \cong \mathbb{Z} / 2^{\oplus 2} \oplus \mathbb{Z} / 2^{n+2}$. The generators of summands are detected by $x h_{2}^{2}, h_{1} e_{6}$ and $x h_{0} e_{6}$, respectively.

Lemma 2.3.13. The element $h_{3} e_{2} \in E_{2}^{1,10}\left(B C_{2^{n}}\right)$ is a permanent cycle if $n>3$, and $d_{n}\left(h_{3} e_{2}\right)=x h_{0}^{n} h_{3}$ if $n=2,3$. The element $x e_{8}$ is a permanent cycle.

Proof. Since $d_{n}\left(e_{2}\right)=x h_{0}^{n}$ by Lemma 2.3.9, we have $d_{n}\left(h_{3} e_{2}\right)=x h_{0}^{n} h_{3}$ by (2.3.7), which is not zero if $n=2,3$, and zero if $n>3$. By (2.3.7) and Lemma 2.3.11, $h_{0}^{i} e_{8}$ supports a nontrivial differential, and so it cannot be a target of an Adams differential. Therefore $d_{r}\left(h_{3} e_{2}\right)=0$ for $r>n$ in the case for $n>3$.

Since $d_{n}\left(x e_{8}\right)=0$ by Lemma 2.3.11, we see that $d_{r}\left(x e_{8}\right)=0$ for $r>n$ similarly.

This together with Lemma 2.3.10 implies the following result.
Proposition 2.3.14. $\pi_{8}^{S}\left(B C_{2^{n}}\right) \cong \mathbb{Z} / 2^{\oplus 2} \oplus \mathbb{Z} / 2^{\min \{n, 4\}}$. The generators of summands are detected by $x h_{1} e_{6}, h_{1}^{2} e_{6}$ and $x h_{3}$, respectively.

Lemma 2.3.15. $\left|\pi_{9}^{S}\left(B C_{2^{n}}\right)\right|=2^{\min \{2 n+2, n+6\}}$.
Proof. Proposition 2.3 .14 shows that $\left|\pi_{8}^{S}\left(B C_{2^{n}}\right)\right|=2^{\min \{n+2,6\}}$, which implies that the undetermined differentials in Lemma 2.2.9 turn out to be trivial. We now see the lemma by the same argument as the proof of Corollary 2.2.10.

Proposition 2.3.16. $\pi_{9}^{S}\left(B C_{2^{n}}\right) \cong \mathbb{Z} / 2^{\oplus 3} \oplus \mathbb{Z} / 2^{\min \{n, 4\}} \oplus \mathbb{Z} / 2^{n-1}$. The generators of summands are detected by $x c_{0}, x h_{1}^{2} e_{6}, x h_{1} h_{3}, h_{0}^{\max \{4-n, 0\}} h_{3} e_{2}$ and $x e_{8}$, respectively.

Proof. Since $d_{2}\left(x h_{3} e_{2}\right)=0$ by Lemma 2.3.13, we see that $x c_{0}$ and $x h_{1} h_{3}$ generate $\mathbb{Z} / 2$-summands by (2.3.4) and (2.3.7). The element $x h_{1}^{2} e_{6}$ detects a generator of the other $\mathbb{Z} / 2$ summand by Lemma 2.3.10. Lemma 2.3 .13 shows that $h_{0}^{\max \{4-n, 0\}} h_{3} e_{2}$ generates the summand $\mathbb{Z} / 2^{\min \{n, 4\}}$. Lemmas 2.3.13 and 2.3.15 imply that $x e_{8}$ generates the summand $\mathbb{Z} / 2^{n-1}$.

Remark 2.3.17. This also implies a differential $d_{n}\left(e_{10}\right)=x h_{0}^{n-1} e_{8}$ for $n>2$, and $d_{2}\left(e_{10}\right) \equiv x h_{0} e_{8} \bmod \left(h_{0}^{3} h_{3} e_{2}\right)$ for $n=2$.

Bibliography

[1] L. Hesselholt, On the Whitehead spectrum of the circle, Algebraic topology, Abel Symp. Vol. 4, 2009, pp. 131-184.
[2] K. Ishiguro, Classifying spaces and homotopy sets of axes of parings, Proc. Amer. Math. Soc. 124 (1996), 3897-3903.
[3] A. Liulevicius, A theorem in homological algebra and stable homotopy of projective spaces, Trans. Amer. Math. Soc. 109 (1963), 540-552.
[4] D. C. Ravenel, Complex cobordism and stable homotopy groups of spheres, AMS Chelsea Publishing, Providence, 2004.
[5] H. Toda, Composition methods in homotopy groups of spheres, Annals of Mathematics Studies, No. 49, Princeton University Press, Princeton, N. J. 1962.

Chapter 3

The first line of the Bockstein spectral sequence on a monochromatic spectrum at an odd prime

The chromatic spectral sequence is introduced in [8] to compute the E_{2}-term of the Adams-Novikov spectral sequence for computing the stable homotopy groups of spheres. The E_{1}-term $E_{1}^{s, t}(k)$ of the spectral sequence is an Ext group of $B P_{*} B P$-comodules. There are a sequence of Ext groups $E_{1}^{s, t}(n-s)$ for non-negative integers n with $E_{1}^{s, t}(0)=E_{1}^{s, t}$, and Bockstein spectral sequences computing a module $E_{1}^{s, *}(n-s)$ from $E_{1}^{s-1, *}(n-s+1)$. So far, a small number of the E_{1}-terms are determined. Here, we determine the $E_{1}^{1,1}(n-1)=\operatorname{Ext}^{1} M_{n-1}^{1}$ for $p>2$ and $n>3$ by computing the Bockstein spectral sequence with E_{1}-term $E_{1}^{0, s}(n)$ for $s=1,2$. As an application, we study the non-triviality of the action of α_{1} and β_{1} in the homotopy groups of the second Smith-Toda spectrum $V(2)$. This is a joint work with Professor Shimomura.

3.1 Introduction

Let p be a prime number, \mathcal{S}_{p} the stable homotopy category of p-local spectra, and S the sphere spectrum localized at p. Understanding homotopy groups $\pi_{*}(S)$ of S is one of the principal problems in stable homotopy theory. The main vehicle for computing $\pi_{*}(S)$ is the Adams-Novikov spectral sequence based on the Brown-Peterson spectrum $B P . B P$ is the p-typical component of $M U$, the complex cobordism spectrum, and that it has homotopy groups $B P_{*}=$ $\pi_{*}(B P)=\mathbb{Z}_{(p)}\left[v_{1}, v_{2}, \cdots\right]$ where v_{n} is a canonical generator of degree $2 p^{n}-2$. In order to study the E_{2}-term of the Adams-Novikov spectral sequence, H. Miller, D. Ravenel and S. Wilson [8] introduced the chromatic spectral sequence. It
was designed to compute the E_{2}-term, but has the following deeper connotation. Let $L_{n}: \mathcal{S}_{p} \rightarrow \mathcal{S}_{p}$ denote the Bousfield-Ravenel localization functor with respect to $v_{n}^{-1} B P$ ($c f$. [12]). It gives rise the chromatic filtration $\mathcal{S}_{p} \rightarrow \cdots \rightarrow L_{n} \mathcal{S}_{p} \rightarrow$ $L_{n-1} \mathcal{S}_{p} \rightarrow \cdots \rightarrow L_{0} \mathcal{S}_{p}$ of the stable homotopy category of spectra, which is a powerful tool for understanding the category. The chromatic nth layer of the spectrum S can be determined from the homotopy groups of $L_{K(n)} S$, the Bousfield localization of S with respect to the nth Morava K-theory $K(n)$ that it has homotopy groups $K(n)_{*}=v_{n}^{-1} \mathbb{Z} / p\left[v_{n}\right]$ for $n>0$ and $K(0)_{*}=\mathbb{Q}$. By the chromatic convergence theorem of Hopkins-Ravenel [13], S is the inverse limit of the $L_{n} S$. Let $E(n)$ be the nth Johnson-Wilson spectrum $E(n)$ with $E(n)_{*}=$ $v_{n}^{-1} \mathbb{Z}_{(p)}\left[v_{1}, \cdots, v_{n}\right]$ for $n>0$ and $E(0)=K(0)$. It is Boufield equivalent to $v_{n}^{-1} B P$ and also to $K(0) \vee \cdots \vee K(n)$, i.e. $L_{E(n)}=L_{n}=L_{K(0) \vee \cdots \vee K(n)}$. We notice that $E(0)=H \mathbb{Q}$, the rational Eilenberg-MacLane spectrum, and $E(1)$ is the p-local Adams summand of periodic complex K-theory. Futhermore, $E(2)$ is closely related to elliptic cohomology. So far, we have no geometric interpretation of homology theories $K(n)$ or $E(n)$ when $n>2$.

From now on, we assume that the prime p is odd. We explain the E_{1}-term of the chromatic spectral sequence. The Brown-Peterson spectrum $B P$ is a ring spectrum that induces the Hopf algebroid $\left(B P_{*}, B P_{*}(B P)\right)=\left(B P_{*}, B P_{*}\left[t_{1}\right.\right.$, $\left.t_{2}, \ldots\right]$) in the standard way [14], and we have an induced Hopf algebroid

$$
\left(E(n)_{*}, E(n)_{*}(E(n))\right)=\left(E(n)_{*}, E(n)_{*} \otimes_{B P_{*}} B P_{*}(B P) \otimes_{B P_{*}} E(n)_{*}\right)
$$

where $E(n)_{*}$ is considered to be a $B P_{*}$-module by sending v_{k} to zero for $k>n$. Then, the E_{1}-term is given by

$$
E_{1}^{s, t}(n-s)=\operatorname{Ext}_{E(n)_{*}(E(n))}^{t}\left(E(n)_{*}, M_{n-s}^{s}\right) .
$$

Here, M_{n-s}^{s} denotes the $E(n)_{*}(E(n))$-comodule $E(n)_{*} /\left(I_{n-s}+\left(v_{n-s}^{\infty}, v_{n-s+1}^{\infty}, \ldots\right.\right.$, $\left.v_{n-1}^{\infty}\right)$), in which I_{k} denotes the ideal of $E(n)_{*}$ generated by v_{i} for $0 \leq i<k$ $\left(v_{0}=p\right)$, and $M /\left(w^{\infty}\right)$ for $w \in E(n)_{*}$ and an $E(n)_{*}$-module M denotes the cokernel of the localization map $M \rightarrow w^{-1} M$. In order to study the stable homotopy groups $\pi_{*}\left(L_{K(n)} S\right)$, we study here the homotopy groups of the monochromatic component $M_{n} S$ of S (see [12]). Then, the E_{2}-term $E_{2}^{s, t}\left(M_{n} S\right)$ of the Adams-Novikov spectral sequence for computing $\pi_{*}\left(M_{n} S\right)$ is the E_{1}-term $E_{1}^{n, s}(0)$ of the chromatic spectral sequence. In [8], the authors also introduced the v_{n-s}-Bockstein spectral sequence $E_{1}^{s-1, t+1}(n-s+1) \Rightarrow E_{1}^{s, t}(n-s)$ associated to a short exact sequence

$$
0 \rightarrow M_{n-s+1}^{s-1} \xrightarrow{\varphi} M_{n-s}^{s} \xrightarrow{v_{n-s}} M_{n-s}^{s} \rightarrow 0
$$

of $E(n)_{*}(E(n))$-comodules, where $\varphi(x)=x / v_{n-s}$. So far, the E_{1}-term $E_{1}^{s, t}(n-$
$s)$ is determined in the following cases (cf. [14]):

$$
\begin{aligned}
(s, t, n) & =(0, t, n) \text { for (a) } n \leq 2, \text { (b) } n=3, p>3, \text { (c) } t \leq 2 \text { by Ravenel }[11], \\
& (\text { Henn }[2] \text { for } n=2 \text { and } p=3), \\
& =(1,0, n) \text { for } n \geq 0 \text { by Miller, Ravenel and Wilson [8], } \\
& (s, t, n) \text { for } n \leq 2 \text { by Shimomura and his colaborators: Arita [1], } \\
& =(1,1,3) \text { by Shimomura [20], Yabe [21] and Wang [22], ([16], Hirata and Shimomura [18], [19]), } \\
& =(2,0, n) \text { for } n>3 \text { by Shimomura [17], for } n=3 \text { by Nakai [9], [10]. }
\end{aligned}
$$

In this chapter, we determine the structure of $E_{1}^{1,1}(n-1)$ for $n>3$. The case $n=3$, which is special, is treated in [16] and [3]. The result is the first step to understand $\pi_{*}\left(L_{K(n)} S\right)$ for $n>3$ as explained above. We proceed to state the result.

In this chapter, we consider only the cases $s=0$ and $s=1$, and, hereafter, put

$$
v=v_{n} \quad \text { and } \quad u=v_{n-1}
$$

Furthermore, we put

$$
F=\mathbb{Z} / p
$$

and consider the coefficient ring $K(n)_{*}=F\left[v_{n}^{ \pm 1}\right]=F\left[v^{ \pm 1}\right]=E(n)_{*} / I_{n}$,

$$
A=E(n)_{*} / I_{n-1} \quad \text { and } \quad B=M_{n-1}^{1}=A /\left(u^{\infty}\right)=\operatorname{Coker}\left(A \rightarrow u^{-1} A\right) .
$$

Since the ideal I_{n-1} is invariant, $(A, \Gamma)=\left(A, E(n)_{*}(E(n)) / I_{n-1}\right)$ is a Hopf algebroid, and we use the abbreviation

$$
\operatorname{Ext}^{s} M=\operatorname{Ext}_{\Gamma}^{s}(A, M)
$$

for a Γ-comodule M. Then, the chromatic E_{1}-terms are

$$
E_{1}^{0, t}(n)=\operatorname{Ext}^{t} K(n)_{*} \quad \text { and } \quad E_{1}^{1, t}(n-1)=\operatorname{Ext}^{t} B
$$

We have the u-Bockstein spectral sequence

$$
\begin{equation*}
E_{1}=\operatorname{Ext}^{*} K(n)_{*} \Longrightarrow \operatorname{Ext}^{*} B \tag{3.1.1}
\end{equation*}
$$

associated to the short exact sequence

$$
\begin{equation*}
0 \xrightarrow{K}(n)_{*} \xrightarrow{\varphi} B \xrightarrow{u} B \rightarrow 0, \tag{3.1.2}
\end{equation*}
$$

where φ is a homomorphism defined by $\varphi(x)=x / u$.
Let R be a ring, and let $R\langle g\rangle$ denote the R-module generated by g. The E_{1}-term of the u-Bockstein spectral sequence was determined by Ravenel [11] as follows:

Theorem 3.1.3. $\operatorname{Ext}^{0} K(n)_{*}=K(n)_{*}$ and

```
\(\operatorname{Ext}^{1} K(n)_{*}=K(n)_{*}\left\langle h_{i}, \zeta_{n}: 0 \leq i<n\right\rangle\),
\(\operatorname{Ext}^{2} K(n)_{*}=K(n)_{*}\left\langle\zeta_{n} h_{i}, b_{i}, g_{i}, k_{i}, h_{j} h_{k}: 0 \leq i<n, 0 \leq j<k-1<n-1\right\rangle\).
```

In the theorem, the generators h_{i} and b_{i} are represented by $t_{1}^{p^{i}}$ and $\sum_{k=1}^{p-1} \frac{1}{p}\binom{p}{k} t_{1}^{k p^{i}} \otimes$ $t_{1}^{(p-k) p^{i}}$ of the cobar complex $\Omega_{\Gamma}^{*} K(n)_{*}$, respectively, and g_{i} and k_{i} are given by the Massey products

$$
\begin{equation*}
g_{i}=\left\langle h_{i}, h_{i}, h_{i+1}\right\rangle \quad \text { and } \quad k_{i}=\left\langle h_{i}, h_{i+1}, h_{i+1}\right\rangle . \tag{3.1.4}
\end{equation*}
$$

In order to determine the module $\operatorname{Ext}^{0} B$, Miller, Ravenel and Wilson [8] introduced elements x_{i} and integers a_{i} in $[8,(5.11)$ and (5.13)], where they denoted them by $x_{n, i}$ and $a_{n, i}$, such that $x_{i} \equiv v^{p^{i}} \bmod I_{n}$ with the action of the connecting homomorphism δ given in [8, (5.18)]:
(3.1.5) $\delta\left(v^{s} / u\right)=s v^{s-1} h_{n-1} \quad$ and $\quad \delta\left(x_{i}^{s} / u^{a_{i}}\right)=s v^{(s p-1) p^{i-1}} h_{[i-1]}$ for $i \geq 1$.

Hereafter, we let

$$
[i] \in\{0,1, \ldots, n-2\}
$$

be the principal representative of the integer i module $n-1$. The elements x_{i} and the integers a_{i} are defined inductively by $x_{0}=v$ and $a_{0}=1$, and for $i>0$,

$$
\begin{align*}
& x_{i}= \begin{cases}x_{i-1}^{p} & \text { for } i=1 \text { or }[i] \neq 1, \\
x_{i-1}^{p}-u^{b_{n, i}} v^{p^{i}-p^{i-1}+1} & \text { for } i>1 \text { and }[i]=1, \text { and }\end{cases} \\
& a_{i}= \begin{cases}p a_{i-1} & \text { for } i=1 \text { or }[i] \neq 1, \\
p a_{i-1}+p-1 & \text { for } i>1 \text { and }[i]=1 .\end{cases} \tag{3.1.6}
\end{align*}
$$

Here, $b_{n, k(n-1)+1}=\left(p^{n}-1\right)\left(p^{k(n-1)}-1\right) /\left(p^{n-1}-1\right)$. The result (3.1.5) determines the differentials of the Bockstein spectral sequence, which implies:

Theorem 3.1.7. ([8, Th. 5.10]) As a k_{*}-module,

$$
\operatorname{Ext}^{0} B=L_{\infty} \oplus \bigoplus_{p \nmid s, i \geq 0} L_{a_{i}}\left\langle x_{i}^{s}\right\rangle
$$

Here, $k_{*}=k(n-1)_{*}=F[u], L_{i}=k_{*} /\left(u^{i}\right)$ and $L_{\infty}=k_{*} /\left(u^{\infty}\right)=\operatorname{colim}_{i} L_{i}$.
This theorem together with (3.1.5) implies the following:
Corollary 3.1.8. The cokernel of $\delta: \operatorname{Ext}^{0} B \rightarrow \operatorname{Ext}^{1} K(n)_{*}$ is the F-module generated by

$$
\begin{aligned}
v^{t} \zeta_{n}, & v^{t p-1} h_{n-1}, \quad h_{j} \quad \text { for } 0 \leq j<n-1, \text { and } \\
v^{s p^{k}} h_{j} & \text { for } 0 \leq j<n-1, \text { where }[k] \neq[j], s \not \equiv-1(p) \text {, or } s \equiv-1\left(p^{2}\right),
\end{aligned}
$$

for integers s and t with $p \nmid s$.
By Theorem 3.1.3, the module $\operatorname{Ext}^{1} K(n)_{*}$ is the direct sum of $\zeta_{n} \operatorname{Ext}^{0} K(n)_{*}=$ $\zeta_{n} K(n)_{*}, F\left\langle h_{j}\right\rangle$ for $j \in \mathbb{Z} /(n-1)$ and the modules

$$
V_{(i, j, s)}=F\left\langle v^{s p^{i}} h_{j}\right\rangle
$$

for $(i, j, s) \in \mathbb{N} \times \mathbb{Z} / n \times \overline{\mathbb{Z}}$. Here, \mathbb{N} denotes the set of non-negative integers, and $\overline{\mathbb{Z}}=\mathbb{Z} \backslash p \mathbb{Z}$. We partition $\mathbb{N} \times \mathbb{Z} / n$ as follows:

More precisely,

$$
\begin{aligned}
H= & \{(0, j): 1 \leq j<n-2\} \\
& \cup\{(i, j): i>0,[i] \neq n-3, n-2,2+[i] \leq j \leq n-2\} \\
& \cup\{(i, j): i>0,[i] \neq 0,1,0 \leq j \leq[i]-2\}, \\
G B= & \{(i,[i]): i \geq 0\}, \\
K= & \{(i,[i]-1): i>0,[i] \neq 0\} \text { and } \\
G= & \{(i,[i]-2): i>1,[i] \neq 0,1\} .
\end{aligned}
$$

We introduce notation

$$
\begin{aligned}
V_{(0, n-2)} & =\bigoplus_{s \in \overline{\mathbb{Z}}^{\prime}} V_{(0, n-2, s)}, \\
V_{(0, n-1)} & =\bigoplus_{t \in \mathbb{Z}} V_{(0, n-1, t p-1)}=F\left[v^{ \pm p}\right]\left\langle v^{-1} h_{n-1}\right\rangle, \\
C_{X} & =\bigoplus_{(i, j) \in X, s \in \mathbb{Z}} V_{(i, j, s)} \quad \text { for a subset } X \subset \mathbb{N} \times \mathbb{Z} / n, \\
\bar{C}_{G B} & =\bigoplus_{(i, j) \in G B}\left(\left(\bigoplus_{s \in \overline{\mathbb{Z}}} V_{(i, j, s)}\right) \oplus\left(\bigoplus_{t \in \mathbb{Z}} V_{\left(i, j, t p^{2}-1\right)}\right)\right) \\
& =\bigoplus_{(i,[i], s) \in \widetilde{G B}} V_{(i, j, s)} \oplus \bigoplus_{i \geq 0} F\left[v^{ \pm p^{i+2}}\right]\left\langle v^{-p^{i}} h_{[i]}\right\rangle \quad \text { and } \\
C_{O} & =F\left\langle\theta, h_{j}: j \in \mathbb{Z} /(n-1)\right\rangle .
\end{aligned}
$$

Here, for $e(i)=\left(p^{i}-1\right) /(p-1), \theta=v^{e(n-2)} h_{n-2}$,

$$
\begin{aligned}
\overline{\mathbb{Z}}^{\prime} & =\overline{\mathbb{Z}} \backslash\{e(n-2)\}, \overline{\overline{\mathbb{Z}}}=\{n \in \overline{\mathbb{Z}}: p \nmid(s+1)\} \quad \text { and } \\
\widetilde{G B} & =\{(i,[i], s): s \in \overline{\overline{\mathbb{Z}}}\} .
\end{aligned}
$$

We also consider the subset \boldsymbol{T} of $\mathbb{N} \times \mathbb{Z} / n \times \overline{\mathbb{Z}}$ defined by

$$
\begin{aligned}
\boldsymbol{T}=\left\{(i, j, s) \in \mathbb{N} \times \mathbb{Z} / n \times \overline{\mathbb{Z}}: p \nmid(s+1) \text { or } p^{2} \mid(s+1) \text { if }[i]=j,\right. \\
p \mid(s+1) \text { if }(i, j)=(0, n-1), \text { and } s \neq e(n-2) \text { if }(i, j)=(0, n-2)\} .
\end{aligned}
$$

In this notation, the cokernel of δ in Corollary 3.1.8 is given by (3.1.9)

$$
\begin{aligned}
& \text { Coker } \delta=\zeta_{n} K(n)_{*} \oplus C_{O} \oplus \bigoplus_{(i, j, s) \in \boldsymbol{T}} V_{(i, j, s)} \\
& \quad=\zeta_{n} K(n)_{*} \oplus C_{O} \oplus V_{(0, n-2)} \oplus V_{(0, n-1)} \oplus C_{H} \oplus C_{K} \oplus C_{G} \oplus \bar{C}_{G B}
\end{aligned}
$$

Finally, we consider the k_{*}-modules:

$$
\begin{aligned}
W_{(i, j, s)} & =L_{a(i, j, s)}\left\langle x_{i}^{s} h_{j}\right\rangle, \\
W_{(0, n-2)} & =\bigoplus_{s \in \overline{\mathbb{Z}}^{\prime}} W_{(0, n-2, s)}, \\
W_{(0, n-1)} & =\bigoplus_{t \in \mathbb{Z}} W_{(0, n-1, t p-1)}, \\
B_{X} & =\bigoplus_{(i, j) \in X, s \in \overline{\mathbb{Z}}} W_{(i, j, s)} \quad \text { for a subset } X \subset \mathbb{N} \times \mathbb{Z} / n, \\
\bar{B}_{G B} & =\bigoplus_{(i, j) \in G B}\left(\left(\bigoplus_{s \in \overline{\mathbb{Z}}} W_{(i, j, s)}\right) \oplus\left(\bigoplus_{t \in \mathbb{Z}} W_{\left(i, j, t p^{2}-1\right)}\right)\right) \quad \text { and } \\
C_{\infty} & =\left(K(n-1)_{*} / k_{*}\right)\left\langle\theta, h_{j}: j \in \mathbb{Z} /(n-1)\right\rangle .
\end{aligned}
$$

Here, $a(i, j, s)$ denotes an integer defined as follows: for $(i, j)=(0, n-2)$, $a(0, n-2, s)=2$ if $p \nmid s(s-1)$, and

$$
a(0, n-2, s)= \begin{cases}a_{l} & p \nmid t, l>0,[l] \neq 0, n-2 \\ a_{l}+e(n-2)+p^{n-3} & p \nmid t, l>0,[l]=n-2 \\ a_{l}+1 & p \nmid t, l>0,[l]=0\end{cases}
$$

if $s=t p^{l}+e(n-2)$; for $(i, j) \in\{(0, n-1)\} \cup H \cup K \cup G \cup G B$,

$$
a(i, j, s)= \begin{cases}p-1 & (i, j)=(0, n-1) \\ a_{i} & (i, j) \in H \\ a_{i}+a_{i-1} & (i, j) \in K \cup G \\ 2 a_{i} & (i, j, s) \in \widetilde{G B} \\ (p-1) a_{i+1} & (i, j) \in G B, p^{2} \mid(s+1)\end{cases}
$$

Theorem 3.1.10. The chromatic E_{1}-term $\operatorname{Ext}^{1} B=\operatorname{Ext}^{1} M_{n-1}^{1}$ is canonically isomorphic to the k_{*}-module

$$
\zeta_{n} \operatorname{Ext}^{0} B \oplus C_{\infty} \oplus W_{(0, n-2)} \oplus W_{(0, n-1)} \oplus B_{H} \oplus B_{K} \oplus B_{G} \oplus \bar{B}_{G B}
$$

Let $V(n)$ be the nth Smith-Toda spectrum defined by $B P_{*}(V(n))=B P_{*} / I_{n+1}$. As an application of the theorem, we study the action of α_{1} and β_{1} on the elements $u^{t}(t>0)$ in the Adams-Novikov E_{2}-term $E_{2}^{*}(V(n))$ in section 6. In particular, it leads us an geometric result for $n=4$. In [23], Toda constructed the self map γ on $V(2)$ to show the existence of $V(3)$ for the prime $p>5$. We notice that $\gamma^{t} i \in \pi_{*}(V(2))$ for the inclusion $i: S \rightarrow V(2)$ to the bottom cell is detected by $u^{t}=v_{3}^{t} \in B P_{*}(V(2))$ in the Adams-Novikov spectral sequence.

Theorem 3.1.11. Let $p>5$. Then $\gamma^{t} i \alpha_{1}$ and $\gamma^{t} i \beta_{1}$ are nontrivial in $\pi_{*}(V(2))$ for $t>0$.

3.2 Bockstein spectral sequence

We compute the Bockstein spectral sequence by use of the following lemma.

Lemma 3.2.1. Let $\delta: \operatorname{Ext}^{s} B \rightarrow \operatorname{Ext}^{s+1} K(n)_{*}$ be the connecting homomorphism associated to the short exact sequence (3.1.2). Suppose that Coker $\delta=\bigoplus_{k} V_{k} \subset$ $\operatorname{Ext}^{1} K(n)_{*}$ and $\bigoplus_{k} U_{k} \subset \operatorname{Ext}^{2} K(n)_{*}$ for F-modules V_{k} and U_{k}, and there exist u-torsion k_{*}-modules W_{k} fitting in a commutative diagram

of exact sequences. Then, $\operatorname{Ext}^{1} B=\bigoplus_{k} W_{k}$.
This follows immediately from [8, Remark 3.11].
Let $\widetilde{\theta}$ be an element of Corollary 3.5.8. Then, $\widetilde{\theta} / u^{k}$ and h_{j} / u^{k} for $j \in \mathbb{Z} /(n-$ 1) belong to $\operatorname{Ext}^{1} B$, and we define the map $f: C_{\infty} \rightarrow \operatorname{Ext}^{1} B$ by $f\left(\left(u^{-k}\right) \theta\right)=$ $\widetilde{\theta} / u^{k}$ and $f\left(\left(u^{-k}\right) h_{j}\right)=h_{j} / u^{k}$ for $\left(u^{-k}\right) \in K(n-1)_{*} / k_{*}$, so that the short exact sequence

$$
\begin{equation*}
0 \rightarrow C_{O} \xrightarrow{1 / u} C_{\infty} \xrightarrow{u} C_{\infty} \rightarrow 0 \tag{3.2.2}
\end{equation*}
$$

yields a summand of Lemma 3.2.1.
Note that if a cocycle z represents ζ_{n}, then so does z^{p}. Therefore, we have $\zeta_{n} / u^{j} \in \operatorname{Ext}^{1} B$ represented by $z^{p^{j}} / u^{j}$. The exact sequence (3.1.2) induces the exact sequence $0 \rightarrow \operatorname{Ext}^{0} K(n)_{*} \xrightarrow{\varphi_{*}} \operatorname{Ext}^{0} B \xrightarrow{u} \operatorname{Ext}^{0} B \xrightarrow{\delta} \operatorname{Ext}^{1} K(n)_{*}$, and we have an exact sequence

$$
\begin{equation*}
0 \rightarrow \zeta_{n} \operatorname{Ext}^{0} K(n)_{*} \xrightarrow{\varphi_{*}} \zeta_{n} \operatorname{Ext}^{0} B \xrightarrow{u} \zeta_{n} \operatorname{Ext}^{0} B \xrightarrow{\delta} \zeta_{n} \operatorname{Ext}^{1} K(n)_{*}, \tag{3.2.3}
\end{equation*}
$$

which is a summand of Lemma 3.2.1. Together with (3.2.2) and (3.2.3), Theorem 3.1.10 follows from Lemma 3.2.1 if the following sequence is exact for each $(i, j, s) \in \boldsymbol{T}$:

$$
\begin{equation*}
0 \rightarrow V_{(i, j, s)} \xrightarrow{\varphi_{*}^{\prime}} W_{(i, j, s)} \xrightarrow{u} W_{(i, j, s)} \xrightarrow{\delta^{\prime}} U_{(i, j, s)}, \tag{3.2.4}
\end{equation*}
$$

where $U_{(i, j, s)}$ denotes an F-module generated by a single generator as follows: for $(i, j)=(0, n-2), U_{(0, n-2, s)}=\mathbb{F}_{p} v^{s-2} k_{n-2}$ if $p \nmid s(s-1)$,

$$
U_{(0, n-2, s)}= \begin{cases}\mathbb{F}_{p} v^{s-p^{l-1}} h_{[l-1]} h_{n-2} & p \nmid t, l>0,[l] \neq 0, n-2 \\ \mathbb{F}_{p} v^{s-p^{l-1}} b_{2 n-5} & p \nmid t, l>0,[l]=n-2 \\ \mathbb{F}_{p} v^{s-p^{l-1}-1} g_{n-2} & p \nmid t, l>0,[l]=0\end{cases}
$$

if $s=t p^{l}+e(n-2)$; for $(i, j) \in\{(0, n-1)\} \cup H \cup K \cup G \cup G B$,

$$
U_{(i, j, s)}= \begin{cases}\mathbb{F}_{p} v^{s-p+1} b_{n-1} & (i, j)=(0, n-1), \\ F\left\langle v^{(s p-1) p^{i-1}} h_{[i-1]} h_{j}\right\rangle & (i, j) \in H, \\ \mathbb{F}_{p} v^{(s-2) p} k_{n-1} & (i, j)=(1,0) \in K, \\ \mathbb{F}_{p} v^{\left(s p^{2}-p-1\right) p^{i-2}} k_{[i-2]} & (i, j) \in K, i>1, \\ \mathbb{F}_{p} v^{\left(s p^{2}-p-1\right) p^{i-2}} g_{[i-2]} & (i, j) \in G, \widetilde{ } \\ \mathbb{F}_{p} v^{s-p-1} g_{n-1} & (i, j, s) \in \widetilde{G B}, i=0, \\ \mathbb{F}_{p} v^{(s p-2) p^{i-1}} g_{[i-1]} & (i, j, s) \in \widetilde{G B}, i>0, \\ F\left\langle v^{(s+1-p) p^{i}} b_{j}\right\rangle & (i, j) \in G B, p^{2} \mid(s+1) .\end{cases}
$$

Since the mapping $\boldsymbol{T} \rightarrow\left\{U_{(i, j, s)}:(i, j, s) \in \boldsymbol{T}\right\}$ assigning (i, j, s) to $U_{(i, j, s)}$ is an injection, we see the following:

Lemma 3.2.5. The direct sum of $\zeta_{n} \operatorname{Ext}^{1} K(n)_{*}$ and $U_{(i, j, s)}$ for $(i, j, s) \in \boldsymbol{T}$ is a sub-F-module of $\operatorname{Ext}^{2} K(n)_{*}$.

The homomorphism f_{k} in Lemma 3.2.1 on $W_{(i, j, s)}$ for $(i, j, s) \in \boldsymbol{T}$ is explicitly given by

$$
f_{(i, j, s)}(x)=x / u^{a(i, j, s)} .
$$

It follows that the homomorphism δ^{\prime} on it is given by the composite $\delta\left(1 / u^{a(i, j, s)}\right)$. Hereafter we denote it by $\delta_{(i, j, s)}^{\prime}$, that is, $\delta_{(i, j, s)}^{\prime}=\delta\left(1 / u^{a(i, j, s)}\right)$, and consider a condition:
$(3.2 .6)_{(i, j, s)} \quad \delta_{(i, j, s)}^{\prime}(x)=y$ for the generators $x \in W_{(i, j, s)}$ and $y \in U_{(i, j, s)}$.
Note that $\varphi_{*}^{\prime}(\bar{x})=u^{a(i, j, s)-1} x$ for the generators $\bar{x} \in V_{(i, j, s)}$ and $x \in W_{(i, j, s)}$, since $f_{k} \varphi_{*}^{\prime}(\bar{x})=\varphi_{*}(\bar{x})=x / u$. Then,

Lemma 3.2.7. For each $(i, j, s) \in \boldsymbol{T}$, if the condition $(3.2 .6)_{(i, j, s)}$ holds, then (3.2.4) for (i, j, s) is exact and yields a summand of Lemma 3.2.1.

The relations in (3.1.5) show immediately
(3.2.8) The condition $(3.2 .6)_{(i, j, s)}$ holds for $(i, j) \in H$.

Proof of Theorem 3.1.10. The theorem follows from Lemmas 3.2.1, 3.2.5 and 3.2.7 together with (3.2.2), (3.2.3), (3.2.8), Lemmas 3.3.7, 3.3.8, 3.4.1 and 3.5.9, in which the lemmas are proved below. Indeed, the direct sum of $\zeta_{n} \operatorname{Ext}^{0} K(n)_{*}$, C_{O} and $V_{(i, j, s)}$ for $(i, j, s) \in \boldsymbol{T}$ is the cokernel of δ by (3.1.9).

3.3 The summands on $V_{(0, n-1)}$ and $\bar{C}_{G B}$

We begin with stating some formulae on the Hopf algebroid (A, Γ) :

$$
\begin{array}{rlr}
0 & =v t_{k}^{p^{n}}+u t_{k+1}^{p^{n-1}}-u^{p^{k+1}} t_{k+1}-t_{k} \eta_{R}\left(v^{p^{k}}\right) \in \Gamma \quad \text { for } k<n, \tag{3.3.1}\\
\eta_{R}(u) & =u, \quad \eta_{R}(v)=v+u t_{1}^{p^{n-1}}-u^{p} t_{1}, \\
\Delta\left(t_{k}\right) & =\sum_{i=0}^{k} t_{i} \otimes t_{k-i}^{p^{i}} \quad \text { for } k<n, \text { and } \\
\Delta\left(t_{n}\right) & =\sum_{i=0}^{n} t_{i} \otimes t_{n-i}^{p^{i}}-u b_{n-2} .
\end{array}
$$

Then the connecting homomorphism $\delta: \operatorname{Ext}^{1} B \rightarrow \operatorname{Ext}^{2} K(n)_{*}$ is computed by the differential $d: \Omega_{\Gamma}^{1} A \rightarrow \Omega_{\Gamma}^{2} A$ of the cobar complex modulo an ideal, which is defined by

$$
\begin{equation*}
d(x)=1 \otimes x-\Delta(x)+x \otimes 1 \tag{3.3.2}
\end{equation*}
$$

We also use the differential $d: \Omega_{\Gamma}^{0} A \rightarrow \Omega_{\Gamma}^{1} A$ defined by $d(w)=\eta_{R}(w)-\eta_{L}(w)$.
For $w, w^{\prime} \in \Omega_{\Gamma}^{0} A$ and $x \in \Omega_{\Gamma}^{1} A$, these differentials satisfy
(3.3.3)

$$
\begin{aligned}
& d\left(w w^{\prime}\right)=d(w) \eta_{R}\left(w^{\prime}\right)+w d\left(w^{\prime}\right), d(w x)=d(w) \otimes x+w d(x), \text { and } \\
& \quad d\left(x \eta_{R}(w)\right)=d(x) \eta_{R}(w)-x \otimes d(w)
\end{aligned}
$$

We also use the Steenrod operations P^{0} and βP^{0} on $\operatorname{Ext}^{*} C(j)$ for $j \geq 1$ and $\operatorname{Ext}^{*} B\left(c f .[6]\right.$, [14]). Here, $C(j)$ denotes the comodule $A /\left(u^{j}\right)$, and we notice that $C(1)=K(n)_{*}$. Let $\widetilde{\Omega}^{s} M=\widetilde{\Omega}_{E(n)_{*}(E(n))}^{s} M$ for an $E(n)_{*}(E(n))$-comodule M. Given a cocycle $x(j)$ of $\widetilde{\Omega}^{s} C(j), \widetilde{x}(j)$ denotes a cochain of $\widetilde{\Omega}{ }^{s} E(n)_{*}$ such that $\pi_{j}(\widetilde{x}(j))=x(j)$ for the projection $\pi_{j}: \widetilde{\Omega}^{s} E(n)_{*} \rightarrow \widetilde{\Omega}^{s} C(j)$. Since $x(j)$ is a cocycle, $d\left(\widetilde{x}(j)^{p}\right)=p y_{j}+\sum_{i=1}^{n-2} v_{i}^{p} z_{j, i}+u^{j p} z_{j, n-1}$ for some elements y_{j} and $z_{j, i} \in \widetilde{\Omega}^{s+1} E(n)_{*}$. Under this situation, the Steenrod operations are defined by

$$
\begin{gathered}
P^{0}([x(j)])=\left[x(j)^{p}\right] \quad \text { and } \quad \beta P^{0}([x(j)])=\left[y_{j}\right] \in \operatorname{Ext}^{*} C(j p), \quad \text { and } \\
P^{0}\left(\left[x(j) / u^{j}\right]\right)=\left[x(j)^{p} / u^{j p}\right] \quad \text { and } \beta P^{0}\left(\left[x(j) / u^{j}\right]\right)=\left[y_{j} / u^{j p}\right] \in \operatorname{Ext}^{*} B .
\end{gathered}
$$

Here, $[x]$ denotes the homology class represented by a cocycle x. In particular, the operation acts on our elements as follows:

$$
\begin{align*}
P^{0}\left(x_{i}^{s} h_{k} / u^{j}\right) & =\left\{\begin{array}{ll}
x_{i+1}^{s} h_{k+1} / u^{j p} & k \neq n-2, \\
x_{i+1}^{s} h_{0} / u^{j p-p+1} & k=n-2 ;
\end{array} \quad \text { in } \operatorname{Ext}^{1} B ;\right. \text { and } \tag{3.3.5}\\
\beta P^{0}\left(x_{i}^{s} h_{k}\right) & =x_{i+1}^{s} b_{k} \quad \text { in } \operatorname{Ext}^{2} K(n)_{*} .
\end{align*}
$$

The following is a folklore (cf. [14, Corollary A1.5.5]):

$$
\begin{equation*}
P^{0} \delta=\delta P^{0} \quad \text { and } \quad \beta P^{0} \delta=-\delta \beta P^{0} \quad \text { in } \operatorname{Ext}^{*} K(n)_{*} . \tag{3.3.6}
\end{equation*}
$$

Lemma 3.3.7. The condition $(3.2 .6)_{(i, j, s)}$ holds for each $(i, j, s) \in\{(0, n-$ $\left.1, t p-1),\left(i, j, t p^{2}-1\right): t \in \mathbb{Z},(i, j) \in G B\right\}$.
Proof. For $k \geq-1$, consider a generator $x(k, t)=x_{k}^{t p^{2}-1} h_{[k]}$ for $k \geq 0$ and $x(-1)=x_{0}^{t p-1} h_{n-1}$, and $\overline{(k, t)}$ denotes a triple $\left(k,[k], t p^{2}-1\right)$ if $k \geq 0$ and $(0, n-1, t p-1)$ if $k=-1$. Then, $\left(1 / u^{a \overline{(k, t)}}\right)(x(k, t))=x_{k+2}^{t-1} \beta P^{0}\left(x_{k+1} / u^{a_{k+1}}\right)$ for $k \geq-1$ by (3.3.4). Now, $\delta_{(k, t)}^{\prime}(x(k, t))$ equals

$$
x_{k+2}^{t-1} \delta\left(\beta P^{0}\left(x_{k+1} / u^{a_{k+1}}\right)\right)=-x_{k+2}^{t-1}\left(\beta P^{0}\left(x_{k}^{p-1} h_{\overline{[k]}}\right)\right)=-x_{k+1}^{\nu(t)} b_{\overline{[k]}}
$$

by (3.3.6), (3.1.5) and (3.3.5). Here, $(\nu(t), \overline{[k]})=(t p-1,[k])$ if $k \geq 0$ and $=((t-1) p, n-1)$ if $k=-1$.

Lemma 3.3.8. The condition $(3.2 .6)_{(i,[i], s)}$ holds for $(i,[i], s) \in \widetilde{G B}$.
Proof. We prove this by induction on i. By (3.3.1) and (3.3.2), we compute $\bmod \left(u^{3}\right)$

$$
\begin{aligned}
d\left(v^{s+1-p} t_{1}^{p^{n}}\right) & \equiv(s+1) u v^{s-p} t_{1}^{p^{n-1}} \otimes t_{1}^{p^{n}}+\left({ }_{2}^{s+1}\right) u^{2} v^{s-p-1} t_{1}^{2 p^{n-1}} \otimes t_{1}^{p^{n}} \\
d\left((s+1) u v^{s-p} t_{2}^{p^{n-1}}\right) & \equiv s(s+1) u^{2} v^{s-p-1} t_{1}^{p^{n-1}} \otimes t_{2}^{p^{n-1}}-(s+1) u v^{s-p} t_{1}^{p^{n-1}} \otimes t_{1}^{p^{n}}
\end{aligned}
$$

to obtain $\delta\left(v^{s} h_{0} / u^{2}\right)=s(s+1) v^{s-p-1} g_{n-1}$ and so

$$
\delta_{(0,0, s)}^{\prime}\left(v^{s} h_{0}\right)=s(s+1) v^{s-p-1} g_{n-1} .
$$

Apply P^{0} to it, and we obtain

$$
\begin{aligned}
\delta_{(1,1, s)}^{\prime}\left(v^{s p} h_{1}\right) & =\delta\left(P^{0}\left(v^{s} h_{0} / u^{2}\right)\right)=P^{0} \delta\left(v^{s} h_{0} / u^{2}\right)=s(s+1) P^{0}\left(v^{s-p-1} g_{n-1}\right) \\
& =s(s+1) v^{s p-p^{2}-p} g_{n}=s(s+1) v^{s p-2} g_{0} .
\end{aligned}
$$

Here, we notice that $g_{n}=v^{p^{2}+p-2} g_{0}$ in $\operatorname{Ext}^{2} K(n)_{*}$ by (3.3.1). Suppose inductively that $\delta_{(i, 1, s)}^{\prime}\left(x_{i}^{s} h_{1}\right)=s(s+1) v^{(s p-2) p^{i-1}} g_{0}$ for $[i]=1$, which is $(3.2 .6)_{(i, 1, s)}$. Note that $a_{i+j}=p a_{i+j-1}$ if $0<j<n-2$, and we see that $P^{0} \delta_{(i, j, s)}^{\prime}=$ $\delta_{(i+1, j+1, s)}^{\prime} P^{0}$ by (3.3.6). Therefore, $\left(P^{0}\right)^{j}$ for $j<n-2$ yields the equation for $\delta_{a(i+j, j+1, s)}^{\prime}\left(x_{i+j}^{s} h_{j+1}\right)$. At $i^{\prime}=i+n-2$, for $t=\left(i^{\prime}, 0, s\right), \delta_{t}^{\prime}\left(x_{i^{\prime}}^{s} h_{0}\right)=$ $\delta P^{0}\left(x_{i^{\prime}-1}^{s} h_{n-2} / u^{a\left(i^{\prime}-1, n-2, s\right)}\right)($ by $(3.3 .5))=s(s+1) v^{(s p-2) p^{i+n-3}} g_{n-2}$ by (3.3.6) and inductive hypothesis.

Note that $a_{i+n-1}=p^{n-1} a_{i}+p-1$. Consider the connecting homomorphism $\delta_{j}: \operatorname{Ext}^{1} M_{n-1}^{1} \rightarrow \operatorname{Ext}^{2} C(j)$ associated to the short exact sequence $0 \rightarrow$ $C(j) \xrightarrow{1 / u^{j}} M_{n-1}^{1} \xrightarrow{u^{j}} M_{n-1}^{1} \rightarrow 0$. Then, $u^{j-1} \delta=\delta_{j} u^{j-1}$. Besides, $\delta_{j}\left(P^{0}\right)^{k}=$ $\left(P^{0}\right)^{k} \delta$ if $p^{k} \geq j$. Now in $\operatorname{Ext}^{2} C\left(p^{2}+p-1\right), u^{p^{2}+p-2} \delta_{(i+n-1,1, s)}^{\prime}\left(x_{i+n-1}^{s} h_{1}\right)$ equals

$$
\begin{aligned}
& u^{p^{2}+p-2} \delta\left(x_{i+n-1}^{s} h_{1} / u^{p^{n-1} a+2(p-1)}\right)=\delta_{p^{2}+p-1}\left(P^{0}\right)^{n-1}\left(x_{i}^{s} h_{1} / u^{a}\right) \\
& =\left(P^{0}\right)^{n-1}\left(s(s+1) v^{(s p-2) p^{i-1}} g_{0}\right)=s(s+1) v^{(s p-2) p^{i+n-2}} g_{n-1}
\end{aligned}
$$

for $a=a(i,[i], s)$, which equals $s(s+1) u^{p^{2}+p-2} v^{(s p-2) p^{i+n-2}} g_{0}$ by the relation $u^{p+2} g_{n-1}=u^{p^{2}+2 p} g_{0}$. This relation follows from (3.1.4) and $u h_{n-1}=u^{p} h_{0}$ given by $d(v)$.

3.4 The summands C_{G} and C_{K}

We study the action of the connecting homomorphism δ by use of the Massey product. We notice that this is also shown by use of P^{0}-operation considered in the previous section, but we use the Massey product for the sake of simplicity.

Lemma 3.4.1. The condition $(3.2 .6)_{(i, j, s)}$ holds for $(i, j) \in G \cup K$.
Proof. We consider the element $\left(1 / u^{a(i, j, s)}\right)\left(x_{i}^{s} h_{j}\right)$ the Massey product $\left\langle s x_{i-1}^{s p-1} / u^{a_{i-1}}, h_{[i-1]}, h_{j}\right\rangle$.
Then, $\delta_{(i, j, s)}^{\prime}\left(x_{i}^{s} h_{j}\right)=\delta\left\langle s x_{i-1}^{s p-1} / u^{a_{i-1}}, h_{[i-1]}, h_{j}\right\rangle=\left\langle s \delta\left(x_{i-1}^{s p-1} / u^{a_{i-1}}\right), h_{[i-1]}, h_{j}\right\rangle$,
which equals $-\left\langle s v^{s p-2} h_{n-1}, h_{0}, h_{0}\right\rangle=-s v^{(s-2) p} k_{n-1}$ if $i=1$, and $-\left\langle s v^{\left(s p^{2}-p-1\right) p^{i-2}} h_{[i-2]}, h_{[i-1]}, h_{j}\right\rangle=$ $\left\{\begin{array}{ll}-s v^{\left(s p^{2}-p-1\right) p^{i-2} k_{j-1}} & j=[i-1], \\ -2 s v^{\left(s p^{2}-p-1\right) p^{i-2}} g_{j} & j=[i-2]\end{array}\right.$ otherwise. Here, we note that $\left\langle h_{i}, h_{i+1}, h_{i}\right\rangle=$ $2 g_{i}$.

3.5 The summand $V_{(0, n-2)}$

Consider the elements $c_{i}=u^{p^{i}} h_{n-1+i}$ and $c_{i}^{\prime}=u^{p^{i+1}} h_{i}$ of $\operatorname{Ext}^{1} A$. The elements have internal degrees $\left|c_{i}\right|=\left|c_{i}^{\prime}\right|=p^{i} e(n) q$ for $q=2 p-2$, and satisfy

$$
c_{i}=c_{i}^{\prime}, \quad c_{i} c_{i+1}=0, \quad h_{n+i} c_{i}=0 \quad \text { and } \quad h_{i+1} c_{i}=h_{i+1} c_{i}^{\prime}=0 .
$$

We consider the cochains $\bar{w}_{k}=u^{e(k-1)} c t_{k}^{p^{n-1}}$ of the cobar complex $\Omega_{\Gamma}^{1} A$. Then,

$$
\begin{equation*}
\bar{w}_{k}=-\bar{w}_{k-1}^{p} \eta_{R}(v)+u^{p e(k-2)} v^{p^{k-1}} c t_{k-1}+u^{p^{k}+p e(k-2)} c t_{k} \tag{3.5.1}
\end{equation*}
$$

for $k>1$ by (3.3.1). Let w_{k} be a cochain of the cobar complex $\Omega_{\Gamma}^{1} A$ defined inductively by:

$$
\begin{align*}
& w_{1}=t_{1}^{p^{n-1}}-u^{p-1} t_{1}=-\bar{w}_{1}+u^{p-1} c t_{1} \quad \text { and } \tag{3.5.2}\\
& w_{k}=w_{k-1}^{p} \eta_{R}(v)+(-1)^{k} u^{p e(k-2)} v^{p^{k-1}} c t_{k-1}
\end{align*}
$$

and put

$$
\begin{align*}
& m_{k}^{\prime}=-\sum_{i=1}^{k-1}(-1)^{i} u^{p^{i-1}} w_{k-i}^{p^{i}} \otimes \bar{w}_{i} \text { and } \tag{3.5.3}\\
& m_{k}=u^{p^{k-1}} w_{k}+\sum_{i=1}^{k-1}(-1)^{i} u^{p^{i-1}} v^{p^{i} e(k-i)} \bar{w}_{i} .
\end{align*}
$$

Lemma 3.5.4. $d\left(v^{e(k)}\right)=m_{k}$. Besides, $d\left(w_{k}\right)=m_{k}^{\prime}$ if $k \leq n$.

Proof. We prove the lemma inductively. Since $d(v)=u w_{1}=m_{1}$, we see the case for $k=1$. Indeed, $m_{1}^{\prime}=0$. Suppose that the equalities hold for $k-1$. Then, we compute by (3.3.3), (3.5.1) and (3.5.2),

$$
\begin{aligned}
& d\left(v^{e(k)}\right)=d\left(v^{p e(k-1)}\right) \eta_{R}(v)+v^{p e(k-1)} d(v) \\
& =\left(u^{p^{k-1}} w_{k-1}^{p}+\sum_{i=1}^{k-2}(-1)^{i} u^{p^{i}} v^{p^{i+1} e(k-1-i)} \bar{w}_{i}^{p}\right) \eta_{R}(v)-u v^{p e(k-1)}\left(\bar{w}_{1}-u^{p-1} c t_{1}\right) \\
& =u^{p^{k-1}}\left(w_{k}-(-1)^{k} u^{p e(k-2)} v^{p^{k-1}} c t_{k-1}\right)-u v^{p e(k-1)}\left(\bar{w}_{1}-u^{p-1} c t_{1}\right) \\
& \quad+\sum_{i=1}^{k-2}(-1)^{i} u^{p^{i}} v^{p^{i+1} e(k-1-i)}\left(-\bar{w}_{i+1}+\left(u^{p e(i-1)} v^{p^{i}} c t_{i}+u^{p^{i+1}+p e(i-1)} c t_{i+1}\right)\right),
\end{aligned}
$$

which equals m_{k}, and similarly,

$$
\begin{aligned}
d\left(w_{k}\right)= & -\sum_{i=1}^{k-2}(-1)^{i} u^{p^{i}} w_{k-1-i}^{p^{i+1}} \otimes \bar{w}_{i}^{p} \eta_{R}(v)+u w_{k-1}^{p} \otimes\left(\bar{w}_{1}-u^{p-1} c t_{1}\right) \\
& +(-1)^{k} u^{p e(k-2)}\left(u^{p^{k-1}} w_{1}^{p^{k-1}} \otimes c t_{k-1}+v^{p^{k-1}} d\left(c t_{k-1}\right)\right) \\
=\quad- & \sum_{i=1}^{k-2}(-1)^{i} u^{p^{i}} w_{k-1-i}^{p^{i+1}} \otimes\left(-\bar{w}_{i+1}+u^{p e(i-1)} v^{p^{i}} c t_{i}+u^{p^{i+1}+p e(i-1)} c t_{i+1}\right) \\
& +u w_{k-1}^{p} \otimes\left(\bar{w}_{1}-u^{p-1} c t_{1}\right) \\
& +(-1)^{k} u^{e(k-2)}\left(u^{p^{k-1}} w_{1}^{p^{k-1}} \otimes c t_{k-1}+v^{p^{k-1}} d\left(c t_{k-1}\right)\right)=m_{k}^{\prime}
\end{aligned}
$$

Here, the underlined terms cancel each other if $k \leq n$ by (3.5.2) and (3.3.1) with the relation $\Delta(c x)=T(c \otimes c) \Delta(x)$ for the switching map $T: \Gamma \otimes \Gamma \rightarrow \Gamma \otimes \Gamma$.

We also introduce an element

$$
\bar{c}_{k}=h_{n+k-1}-u^{(p-1) p^{k}} h_{k} \in \operatorname{Ext}^{1} A .
$$

Corollary 3.5.5. For each $0<k<n$, the Massey products $\mu_{k}=\left\langle u^{p^{k}}, \bar{c}_{k}, c_{k-1}, c_{k-2}, \ldots, c_{1}, c_{0}\right\rangle$ and $\mu_{k}^{\prime}=\left\langle\bar{c}_{k}, c_{k-1}, c_{k-2}, \ldots, c_{1}, c_{0}\right\rangle$ are defined. In fact, the cocycles m_{k+1} and m_{k+1}^{\prime} represent elements of the Massey products μ_{k} and μ_{k}^{\prime}, respectively.

In particular, we have
Corollary 3.5.6. The Massey product $\left\langle u^{p^{n-3}}, \bar{c}_{n-3}, c_{n-4}, \ldots, c_{0}\right\rangle \subset \operatorname{Ext}^{1} A$ is defined and contains zero.

Lemma 3.5.7. The Massey product $\left\langle\bar{c}_{n-3}, c_{n-4}, \ldots, c_{0}, h_{n-2}\right\rangle \subset \operatorname{Ext}^{2} A$ contains zero.

Corollary 3.5.8. The Massey product $\mu=\left\langle u^{p^{n-3}}, \bar{c}_{n-3}, c_{n-4}, \ldots, c_{0}, h_{n-2}\right\rangle$ is defined and contain an element whose leading term is $v^{e(n-2)} h_{n-2}$.

Lemma 3.5.9. The condition $(3.2 .6)_{(i, j, s)}$ holds for $(i, j)=(0, n-2)$.
Proof. If $p \nmid s(s-1)$, it follows from the computation

$$
\begin{aligned}
d\left(v^{s} t_{1}^{p^{n-2}}\right) & \equiv s u v^{s-1} t_{1}^{p^{n-1}} \otimes t_{1}^{p^{n-2}}+\binom{s}{2} u^{2} t_{1}^{2 p^{n-1}} \otimes t_{1}^{p^{n-2}} \bmod \left(u^{3}\right) \\
d\left(s u v^{s-1} c t_{2}^{p^{n-2}}\right) & \equiv s(s-1) u^{2} t_{1}^{p^{n-1}} \otimes c t_{2}^{p^{n-2}}-s u v^{s-1} t_{1}^{p^{n-1}} \otimes t_{1}^{p^{n-2}} \bmod \left(u^{3}\right) .
\end{aligned}
$$

Suppose $s=t p^{l}+e(n-2)$ with $p \nmid t$ and $l>0$. Let $\tilde{\theta}$ denote an element of Corollary 3.5.8. We take a generator corresponding to $v^{s} h_{n-2}$ to be $v^{s-e(n-2)} \widetilde{\theta}$. We denote a representative of $\tilde{\theta}$ by m, which is congruent to $v^{e(n-2)} t_{1}^{p^{n-2}}+$ $u v^{p e(n-3)} c t_{2}^{p^{n-2}}$ modulo $\left(u^{2}\right)$. Then, $d\left(v^{s-e(n-2)} m\right)=t u^{a_{l}} v^{s-e(n-2)-p^{l-1}} t_{1}^{p^{[l-1]}} \otimes$ $m \equiv t u^{a_{l}} v^{s-p^{l-1}} t_{1}^{p^{[l-1]}} \otimes t_{1}^{p^{n-2}}$. This shows the case for $[l] \neq 0, n-2$.

For $[l]=0$, the similar computation shows that $d\left(v^{s-e(n-2)} m\right) \equiv t u^{a_{l}} v^{s-p^{l-1}}\left(t_{1}^{p^{n-2}} \otimes\right.$ $t_{1}^{p^{n-2}}+u v^{-1} t_{1}^{p^{n-1}+p^{n-2}} \otimes t_{1}^{p^{n-2}}+u v^{-1} t_{1}^{p^{n-2}} \otimes c t_{2}^{p^{n-2}}$), which yields $v^{s-1-p^{l-1}} g_{n-2}$. For $[l]=n-2, \widetilde{\theta} h_{n-3} \in u^{e(n-2)}\left\langle h_{2 n-4}, h_{2 n-5}, \ldots, h_{n-2}, h_{n-3}\right\rangle=\left\{u^{e(n-2)+p^{n-3}} b_{2 n-5}\right\}$ in $C\left(p^{n-2}\right)$. Indeed, $u^{e(n-3)} t_{n}^{p^{n-3}}$ yields the equality by (3.3.1).

3.6 On the action of α_{1} and β_{1} on Greek letter elements

In this section, let $H^{*} M$ for a $B P_{*}(B P)$-comodule M denote an Ext group $\operatorname{Ext}_{B P_{*}(B P)}^{*}\left(B P_{*}, M\right)$. Consider the comodule $N_{k-1}(j)=B P_{*} /\left(I_{k-1}+\left(v_{k-1}^{j}\right)\right)$ $\left(v_{0}=p\right)$, and the connecting homomorphism $\delta_{k, j}$ associated to the short exact sequence $0 \rightarrow B P_{*} / I_{k-1} \xrightarrow{v_{k-1}^{j}} B P_{*} / I_{k-1} \rightarrow N_{k-1}(j) \rightarrow 0$. We abbreviate $\delta_{k, 1}$ to δ_{k}. Here we consider the Greek letter elements of $H^{*} B P_{*} / I_{n-1}$ defined by

$$
\begin{aligned}
\bar{\alpha}_{t}^{(n-1)} & =u^{t} \in H^{0} B P_{*} / I_{n-1} \quad \text { and } \\
\alpha_{(t / j)}^{(n)} & =\delta_{n, j}\left(v^{t}\right) \in H^{1} B P_{*} / I_{n-1} \quad \text { for } v^{t} \in H^{0} N_{n-1}(j)
\end{aligned}
$$

for $t>0$, and

$$
\alpha_{1}=\delta_{1}\left(v_{1}\right)=h_{0} \in H^{1} B P_{*} \quad \text { and } \quad \beta_{1}=\delta_{1} \delta_{2}\left(v_{2}\right)=b_{0} \in H^{2} B P_{*} .
$$

Proposition 3.6.1. The elements α_{1} and β_{1} act on the Greek letter elements as follows:

$$
\alpha_{1} \bar{\alpha}_{t}^{(n-1)} \neq 0 \in H^{1} B P_{*} / I_{n-1}, \quad \beta_{1} \bar{\alpha}_{t}^{(n-1)} \neq 0 \in H^{2} B P_{*} / I_{n-1} ;
$$

and if the Greek letter elements $\alpha_{\left(s p^{i} / j\right)}^{(n)}$ has an internal degree greater than $2\left(p^{n}-1\right)(e(n-1)-1)$, then

$$
\begin{aligned}
& \alpha_{1} \alpha_{\left(s p^{i} / j\right)}^{(n)} \neq 0 \in H^{2} B P_{*} / I_{n-1} \text { if }[i] \neq 0, p \nmid(s+1) \text { or } p^{2} \mid(s+1) ; \text { and } \\
& \beta_{1} \alpha_{\left(s p^{i} / j\right)}^{(n)} \neq 0 \in H^{3} B P_{*} / I_{n-1} \text { if } n \neq 5,[i] \neq 1 \text { or } p \nmid(s+1) .
\end{aligned}
$$

In order to prove this, we make a chromatic argument: Let N_{k}^{0} denote the $B P_{*} B P$-comodule $B P_{*} / I_{k}$, and put $M_{k}^{0}=v_{k}^{-1} N_{k}^{0}$. We denote the cokernel of the inclusion $N_{k}^{0} \rightarrow M_{k}^{0}$ by N_{k}^{1}, so that $0 \rightarrow N_{k}^{0} \rightarrow M_{k}^{0} \xrightarrow{\psi} N_{k}^{1} \rightarrow 0$ is an exact sequence. Let $\widetilde{\delta}_{k+1}: H^{s} N_{k}^{1} \rightarrow H^{s+1} N_{k}^{0}$ be the connecting homomorphism associated to the short exact sequence. We notice that $N_{k}^{1}=\operatorname{colim}_{j} N_{k}(j)$ with inclusion $\varphi_{j}: N_{k}(j) \rightarrow N_{k}^{1}$ given by $\varphi_{j}(x)=x / u^{j}$, and that the connecting homomorphism $\delta_{n, j}: H^{s} N_{n-1}(j) \rightarrow H^{s+1} N_{n-1}^{0}$ factorizes to $\widetilde{\delta}_{n} \varphi_{j}$.

Lemma 3.6.2. For an element $x_{i}^{s} / u^{j} \in H^{0} N_{n-1}^{1}$ for $0<j \leq a_{i}\left(j \leq p^{i}\right.$ if $s=1), \alpha_{1}$ and β_{1} act on it as follows:

$$
\begin{aligned}
& x_{i}^{s} \alpha_{1} / u^{j} \neq 0 \in H^{1} N_{n-1}^{1} \quad \text { if }[i] \neq 0, p \nmid(s+1) \text { or } p^{2} \mid(s+1) ; \text { and } \\
& x_{i}^{s} \beta_{1} / u^{j} \neq 0 \in H^{2} N_{n-1}^{1} \quad \text { if } n \neq 5,[i] \neq 1 \text { or } p \nmid(s+1) .
\end{aligned}
$$

Proof. A change of rings theorem of Miller and Ravenel [7] shows that the module $H^{s} M_{n-1}^{1}$ is isomorphic to $\operatorname{Ext}^{s} B$. By (3.1.5), we see that $x_{i}^{s} h_{0} / u \neq$ $0 \in \operatorname{Ext}^{1} B$ unless $[i]=0, p \mid(s+1)$ and $p^{2} \nmid(s+1)$. This shows the first non-triviality. Similarly, since we have shown that (3.2.4) is exact, we see that $x_{i}^{s} \beta_{1} / u \neq 0 \in \operatorname{Ext}^{2} B$ unless $n=5,[i]=1$ and $p \mid(s+1)$.

Lemma 3.6.3. Let ξ_{1} denote α_{1} or β_{1}, and $x \in H^{0} N_{n-1}^{1}$, and suppose that $x \xi_{1}$ has an internal degree greater than $2\left(p^{n-1}-1\right)(e(n-1)-1)$. If $x \xi_{1} \in$ $H^{s} N_{n-1}^{1} \neq 0$, then $\widetilde{\delta}_{n}(x) \xi_{1} \neq 0 \in H^{s+1} N_{n-1}^{0}$.
Proof. It suffices to show that $x \xi_{1}$ is not in the image of $\psi_{*}: H^{s} M_{n-1}^{0} \rightarrow$ $H^{s} N_{n-1}^{1}$. Again the change of rings theorem shows that the module $H^{s} M_{n-1}^{0}$ is isomorphic to the module of Lemma 3.1.3 with substituting $n-1$ for n. Note that every generator of it except for ζ_{n-1} belongs to $H^{s} N_{n-1}^{0}$, and also is $u^{e(n-1)} \zeta_{n-1}\left(c f\right.$. [14]). It follows that every element of the image of ψ_{*} has an internal degree no greater than $2(e(n-1)-1)\left(p^{n-1}-1\right)$. Thus the lemma follows.

Proof of Proposition 3.6.1. The module $H^{s} M_{n-1}^{0}$ contains a submodule $k_{*}\left\langle h_{0}\right\rangle$ if $s=1$ and $k_{*}\left\langle b_{0}\right\rangle$ if $s=2$. Therefore, the first two relations hold. The other relations follow from Lemmas 3.6.2 and 3.6.3.

Proof of Theorem 3.1.11. Note that $\bar{\alpha}_{t}^{(3)}=\bar{\gamma}_{t}=v_{3}^{t}$, and we obtain the theorem from Proposition 3.6.1 at $n=4$.

Bibliography

[1] Y. Arita and K. Shimomura, The chromatic E_{1}-term $H^{1} M_{1}^{1}$ at the prime 3. Hiroshima Math. J. 26 (1996), 415-431.
[2] H.-W. Henn, Centralizers of elementary abelian p-subgroups and mod-p cohomology of profinite groups, Duke Math. J. 91 (1998), 561-585.
[3] H. Hirata and K. Shimomura, The chromatic E_{1}-term $H^{1} M_{2}^{1}$ for an odd prime, in preparation.
[4] D. Kraines, Massey higher products, Trans. Amer. Math. Soc. 124 (1966), 431-449.
[5] J. P. May, Matric Massey products, J. Alg. 12 (1969), 533-568.
[6] J. P. May, A general algebraic approach to Steenrod operations, The Steenrod Algebra and its Applications, Lecture Notes in Mathematics 168 (1970), 153-231.
[7] H. R. Miller and D. C. Ravenel, Morava stabilizer algebras and the localization of Novikov's E2-term, Duke Math. J. , 44 (1977), 433-447.
[8] H. R. Miller, D. C. Ravenel, and W. S. Wilson, Periodic phenomena in Adams-Novikov spectral sequence, Ann. of Math. 106 (1977), 469-516.
[9] H. Nakai, The chromatic E_{1}-term $H^{0} M_{1}^{2}$ for $p>3$, New York J. Math. 6 (2000), 21-54 (electronic).
[10] H. Nakai, The structure of $\operatorname{Ext}_{\mathrm{BP}_{*} \mathrm{BP}}^{0}\left(\mathrm{BP}_{*}, M_{1}^{2}\right)$ for $p=3$, Mem. Fac. Sci. Kochi Univ. Ser. A Math. 23 (2002), 27- 44.
[11] D. C. Ravenel, The cohomology of the Morava stabilizer algebras, Math. Z. 152 (1977), 287-297.
[12] D. C. Ravenel, Localization with respect to certain periodic homology theories, Amer. J. Math., 106 (1984), 351-414.
[13] D. C. Ravenel, Nilpotence and periodicity in stable homotopy theory, Annals of Mathematics Studies, vol. 128, Princeton University Press, 1992.
[14] D. C. Ravenel, Complex cobordism and stable homotopy groups of spheres, AMS Chelsea Publishing, Providence, 2004.
[15] K. Shimomura, On the Adams-Novikov spectral sequence and products of β-elements, Hiroshima Math. J. 16 (1986), 209-224.
[16] K. Shimomura, The chromatic E_{1}-term $H^{1} M_{2}^{1}$ and its application to the homology of the Toda-Smith spectrum V(1), J. Fac. Educ. Tottori Univ. (Nat. Sci.) 39 (1990), 63-83. Corrections to "The chromatic E_{1}-term $H^{1} M_{2}^{1}$ and its application to the homology of the Toda-Smith spectrum $V(1)$ ", J. Fac. Educ. Tottori Univ. (Nat. Sci.) 41 (1992), 7-11.
[17] K. Shimomura, The chromatic E_{1}-term $H^{0} M_{n}^{2}$ for $n>1$, J. Fac. Educ. Tottori Univ. (Nat. Sci.) 39 (1990), 103-121.
[18] K. Shimomura, The homotopy groups of L_{2}-localized Toda-Smith spectrum $V(1)$ at the prime 3, Trans. Amer. Math. Soc. 349 (1997), 1821-1850.
[19] K. Shimomura, The homotopy groups of the L_{2}-localized mod 3 Moore spectrum, J. Math. Soc. of Japan 51 (2000), 65-90.
[20] K. Shimomura and H. Tamura, Non-triviality of some compositions of β elements in the stable homotopy of the Moore spaces, Hiroshima Math. J. 16 (1986), 121-133.
[21] K. Shimomura and A. Yabe, The homotopy groups $\pi_{*}\left(L_{2} S^{0}\right)$, Topology 34 (1995), 261-289.
[22] K. Shimomura and X. Wang, The homotopy groups $\pi_{*}\left(L_{2} S^{0}\right)$ at the prime 3, Topology 41 (2002), 1183-1198.
[23] H. Toda, On spectra realizing exterior parts of the Steenrod algebra, Topology 10 (1971), 53-65.

Chapter 4

Generalized Bousfield lattices and a generalized retract conjecture

In [1], Bousfield studied a lattice (Bousfield lattice) on the stable homotopy category of spectra, and in [5], Hovey and Palmieri made the retract conjecture on the lattice. In this chapter we generalize the Bousfield lattice and the retract conjecture to the ones on a monoid. We also determine the structure of typical examples of them, which satisfy the generalized retract conjecture. In particular we give the structure of the Bousfield lattice of the stable homotopy category of harmonic spectra explicitly. This is joit work with Professor Shimomura and Yotaro Tatehara.

4.1 Introduction

Let \mathcal{M} be a closed symmetric monoidal category with zero object, and consider an object M of it. We call the full subcategory $\langle M\rangle$ of \mathcal{M} the Bousfield class of M if it consists of objects A of \mathcal{M} such that $M A=0$ by its monoidal structure. Then we have a partial order on Bousfield classes by $\langle M\rangle \leq\langle N\rangle$ if every object of $\langle N\rangle$ is an object of $\langle M\rangle$. Then the subcategories $\langle S\rangle$ and $\langle O\rangle$ of the unit S and the zero O are the greatest and the least ones in the order, respectively. We call the collection of all Bousfield classes a Bousfield lattice, and denote it by $\mathbb{B}(\mathcal{M})$. In a case where a Bousfield lattice is a set, the partial order introduces a lattice structure to it, and we may investigate it algebraically.

In a sense, the stable homotopy theory is analyzing stable homotopy categories (cf. [6]). A stable homotopy category is a symmetric monoidal category, and so we may consider its Bousfield lattice. In particular, T. Ohkawa [8] (cf. $[2]$) showed that the Bousfield lattice \mathbb{B} of the stable homotopy category of spectra is a set, and then Iyengar and Krause [7] generalized it to a stable homotopy
category.
In order to investigate a category, we sometimes classify special subcategories of it. From this viewpoint, we study a Bousfield lattice by classifying localizing subcategories (see [6]). Indeed, every Bousfield class is a localizing subcategory.

In [5], Hovey and Palmieri studied the Bousfield lattice \mathbb{B} deeply. Furthermore, they proposed many conjectures on the structure of \mathbb{B}. Among them, there is the retract conjecture, which is one of our main topics. Dwyer and Palmieri [3] constructed a stable homotopy category, where the conjecture does not hold. So far, there seems no nontrivial category in which the conjecture holds. In this chapter, we give some examples of categories with the affirmative answer to the conjecture.

As stated above, a Bousfield lattice $\mathbb{B}(\mathcal{M})$ is a set in some cases. In this case, it is a monoid with multiplication compatible with its order. We introduce the notion of monoidal posets and define a functor β from a subcategory of commutative monoids to the category of monoidal posets in Section two. Then we define a Bousfield lattice of a monoid to be an object in the image of β, which is an analogy of Bousfield lattices of stable homotopy categories. In particular, \mathbb{B} has not only a structure of a monoidal poset, but also a Bousfield lattice associated to \mathbb{B} itself. In section three, we show analogous properties on a Bousfield lattice to those given by Hovey and Palmieri [5] including the following:

Conjecture 4.1.1 (Original retract conjecture [5, Conj. 3.12]). Let h be the Bousfield class of the mod p Eilenberg-MacLane spectrum $H \mathbb{Z} / p$ in the Bousfield lattice \mathbb{B}. Then, there is a lattice isomorphism $r_{*}: \mathbb{B} / J(h) \rightarrow \mathbb{D L}$. Here, $J(h)$ is an ideal related to h (see Notation 4.3.1).

We generalize it to generalized retract conjectures on a monoidally distributive poset (Conjectures 4.3 .18 and 4.3.19) and show some facts relating to them. Section four is devoted to determine Bousfield lattices obtained from principal ideal domains, and to show the conjecture true for them. In section five, we study about Bousfield lattices of stable homotopy categories of Bousfield localized spectra, and construct isomorphisms between the Bousfield lattice and a Bousfield lattice given in section four. In particular, we have the following:

Theorem 4.1.2. The generalized retract conjectures holds on the stable homotopy category of harmonic spectra.

One of our final goals is to determine the lattice structure of \mathbb{B}, which seems difficult so much. In the last section, we propose problems on the functor β, whose answers may help us to understand the Bousfield lattice \mathbb{B}. We expect that these problems give us hints to reach the goal.

4.2 Monoidal posets and Bousfield lattices

Let M be commutative monoid with unit 1 . We call M a monoid with 0 if M admits an element $0 \in M$ such that $0 \cdot x=0=x \cdot 0$ for any $x \in M$.

A typical example of it is a commutative ring ignoring addition. We denote by \mathcal{M}_{0} the category consisting of commutative monoids with 0 and monoid homomorphisms preserving zero.

For $M \in \mathcal{M}_{0}, \beta(M)$ denotes a set consisting of subsets

$$
\langle x\rangle=\{y \in M: x y=0\}
$$

of M for $x \in M$.
Lemma 4.2.1. $\beta(M)$ for $M \in \mathcal{M}_{0}$ is also a monoid with 0 with inherited multiplication. Therefore, we have the canonical epimorphism $M \rightarrow \beta(M)$ in \mathcal{M}_{0}.

Proof. Define a multiplication of $\beta(M)$ by $\langle x\rangle\langle y\rangle=\langle x y\rangle$. We verify it well defined as follows: Assume that $\left\langle x_{0}\right\rangle=\left\langle x_{1}\right\rangle$ and $\left\langle y_{0}\right\rangle=\left\langle y_{1}\right\rangle$. Then

$$
\begin{aligned}
z x_{0} y_{0}=0 & \Leftrightarrow z x_{1} y_{0}=0 \quad \text { by }\left\langle x_{0}\right\rangle=\left\langle x_{1}\right\rangle \\
& \Leftrightarrow z x_{1} y_{1}=0 \quad \text { by }\left\langle y_{0}\right\rangle=\left\langle y_{1}\right\rangle,
\end{aligned}
$$

and $\left\langle x_{0} y_{0}\right\rangle=\left\langle x_{1} y_{1}\right\rangle$. The elements $\langle 1\rangle$ and $\langle 0\rangle$ are the unit and the zero elements.

Remark 4.2.2. We notice that $\beta(R)=\mathbb{Z} / 2$ if R is a domain.
Lemma 4.2.3. Let M be a monoid with 0 . Then $\beta(M)$ admits a partial order ' \leq ' on M defined by $\langle x\rangle \leq\langle y\rangle$ if $\langle x\rangle \supset\langle y\rangle$. Besides, $\langle 1\rangle$ and $\langle 0\rangle$ are the greatest and the least elements, respectively.

Proof. This is trivial since $\langle 1\rangle=\{0\}$ and $\langle 0\rangle=M$.
By the lemma, a commutative monoid $\beta(M)$ has also a poset structure. Then we define the following notion by taking its crucial properties.

Definition 4.2.4. A monoidal poset $P=(P, \leq, \cdot, 1,0)$ is defined by the following data.
(1) $(P, \cdot, 1,0)$ is a monoid with 0 .
(2) (P, \leq) is a poset.
(3) The following are equivalent.
(a) $x \leq y$.
(b) $c y=0$ for $c \in P$ implies $c x=0$.

A monoidal poset map $f: P \rightarrow P^{\prime}$ is an order preserving monoid homomorphism with $f(0)=0$.

Lemma 4.2.3 implies the following.
Corollary 4.2.5. $\beta(M)$ for $M \in \mathcal{M}_{0}$ is a monoidal poset with $1=\langle 1\rangle$ and $0=\langle 0\rangle$.

Lemma 4.2.6. Let M be a monoidal poset. Then, $\beta(M)=M$ as monoidal posets.
Remark 4.2.7. A monoidal poset seems a lattice, but unfortunately it is not true. Indeed, we have an example: Consider a monoidal poset $M=\left\{1, x_{i}, y_{i}, w, 0: i=\right.$ $1,2\}$ with multiplication

1	x_{1}	x_{2}	y_{1}	y_{2}	w
x_{1}	w	w	0	w	0
x_{2}	w	w	w	0	0
y_{1}	0	w	0	0	0
y_{2}	w	0	0	0	0
w	0	0	0	0	0

Then, the join of y_{1} and y_{2} does not exist.
Let $\mathcal{M P}$ denote the category of monoidal posets and monoidal poset maps. Then $\mathcal{M P} \subset \mathcal{M}_{0}$.

Lemma 4.2.8. Let M be a monoidal poset. Then, $x z \leq y w$ if $x \leq y$ and $z \leq w$. In particular, if $x \leq y$, then $x z \leq y z$ for any z.

Proposition 4.2.9. The category $\mathcal{M P}$ admits direct products.
Proof. Let $\left\{M_{\lambda}\right\}$ be a family of monoidal posets. Then, we have a direct product $\prod_{\lambda} M_{\lambda}$ of monoids. Consider an order ' \leq ' on $\prod_{\lambda} M_{\lambda}$ defined by $\left(x_{\lambda}\right) \leq\left(y_{\lambda}\right)$ if $\left(c_{\lambda}\right)\left(y_{\lambda}\right)=(0)$ implies $\left(c_{\lambda}\right)\left(x_{\lambda}\right)=(0)$. It is straightforward to verify this is the desired direct product.

Lemma 4.2.10. Let $\left\{M_{\lambda}\right\}$ be a family of monoidal posets. Then, $\left\langle x_{\lambda}\right\rangle \leq$ $\left\langle y_{\lambda}\right\rangle$ for all λ if and only if $\left\langle\left(x_{\lambda}\right)\right\rangle \leq\left\langle\left(y_{\lambda}\right)\right\rangle$. Here, $\left\langle x_{\lambda}\right\rangle,\left\langle y_{\lambda}\right\rangle \in \beta\left(M_{\lambda}\right)$ and $\left\langle\left(x_{\lambda}\right)\right\rangle,\left\langle\left(y_{\lambda}\right)\right\rangle \in \beta\left(\prod_{\lambda} M_{\lambda}\right)$.

Proof. Assume that $\left\langle x_{\lambda}\right\rangle \leq\left\langle y_{\lambda}\right\rangle$ for any λ. Then

$$
\begin{aligned}
\left(c_{\lambda}\right)\left(y_{\lambda}\right)=0 & \Rightarrow c_{\lambda} y_{\lambda}=0 \text { for any } \lambda \\
& \Rightarrow c_{\lambda} x_{\lambda}=0 \text { for any } \lambda\left(\because\left\langle x_{\lambda}\right\rangle \leq\left\langle y_{\lambda}\right\rangle\right) \\
& \Rightarrow\left(c_{\lambda}\right)\left(x_{\lambda}\right)=0,
\end{aligned}
$$

Conversely, suppose that $\left\langle\left(x_{\mu}\right)\right\rangle \leq\left\langle\left(y_{\mu}\right)\right\rangle$. Then, for any λ,

$$
\begin{aligned}
y_{\lambda} c_{\lambda}=0 & \Rightarrow\left(y_{\lambda}\right)\left(c_{\lambda}\right)_{0}=0 \\
& \Rightarrow\left(x_{\lambda}\right)\left(c_{\lambda}\right)_{0}=0\left(\because\left\langle\left(x_{\mu}\right)\right\rangle \leq\left\langle\left(y_{\mu}\right)\right\rangle\right) \\
& \Rightarrow x_{\lambda} c_{\lambda}=0
\end{aligned}
$$

in M_{λ}, where $\left(c_{\lambda}\right)_{0}$ denotes an element $\left(x_{\mu}\right)$ such that $x_{\lambda}=c_{\lambda}$ and $x_{\mu}=0$ for $\mu \neq \lambda$.

Corollary 4.2.11. Let $\left\{M_{\lambda}\right\}$ be a family of monoidal posets. Define an order \leq^{\prime} on the set $\prod_{\lambda} M_{\lambda}$ by $\left(x_{\lambda}\right) \leq^{\prime}\left(y_{\lambda}\right)$ if $x_{\lambda} \leq y_{\lambda}$ for all λ. Then it is equivalent to the order in the proof of Proposition 4.2.9.

Corollary 4.2.12. Let $\left\{M_{\lambda}\right\}$ be a family of monoidal posets. Then, $\bigvee_{\mu}\left(x_{\lambda}^{\mu}\right)=$ $\left(\bigvee_{\mu} x_{\lambda}^{\mu}\right)$ for any subset $\left\{\left(x_{\lambda}^{\mu}\right)\right\}_{\mu} \subset \prod_{\lambda} M_{\lambda}$.

Proof. Since $\left(x_{\lambda}^{\mu}\right) \leq\left(\bigvee_{\mu} x_{\lambda}^{\mu}\right)$ for all $\mu, \bigvee_{\mu}\left(x_{\lambda}^{\mu}\right) \leq\left(\bigvee_{\mu} x_{\lambda}^{\mu}\right)$. If $\left(x_{\lambda}^{\mu}\right) \leq\left(z_{\lambda}\right)$, then $x_{\lambda}^{\mu} \leq z_{\lambda}$, and so $\bigvee_{\mu} x_{\lambda}^{\mu} \leq z_{\lambda}$, that is, $\left(\bigvee_{\mu} x_{\lambda}^{\mu}\right) \leq\left(z_{\lambda}\right)$. Therefore, $\bigvee_{\mu}\left(x_{\lambda}^{\mu}\right)=$ $\left(\bigvee_{\mu} x_{\lambda}^{\mu}\right)$ by definition.

We call an epimorphism $f: M \rightarrow N$ of \mathcal{M}_{0} strong if $f(x)=0$ if and only if $x=0$.

We define a map $\beta(f): \beta(M) \rightarrow \beta(N)$ by sending $\langle x\rangle$ to $\langle f(x)\rangle$.
Lemma 4.2.13. For a strong epimorphism $f: M \rightarrow N$, the map $\beta(f)$ is not only a monoidal poset map but also a strong epimorphism.

Proof. Since f is a strong epimorphism, $c \cdot f(x)=0 \Leftrightarrow f\left(c^{\prime}\right) \cdot f(x)=0 \Leftrightarrow$ $f\left(c^{\prime} \cdot x\right)=0 \Leftrightarrow c^{\prime} \cdot x=0$ for an element c^{\prime} such that $f\left(c^{\prime}\right)=c$. This shows that $\langle x\rangle=\langle y\rangle$ implies $\langle f(x)\rangle=\langle f(y)\rangle$. It is easy to see that $\beta(f)$ is a strong epimorphism.

We also consider the subcategories \mathcal{M} and $\mathcal{M} \mathcal{P}^{e p i}$ of \mathcal{M}_{0} and $\mathcal{M P}$, respectively, obtained by restricting morphisms to strong epimorphisms.

Corollary 4.2.14. The operation β above defines a functor $\beta: \mathcal{M} \rightarrow \mathcal{M P}^{e p i} \subset$ \mathcal{M}.

By the above argument, we redefine Bousfield lattices as follows. The definition is one of our main topics in this chapter.

Definition 4.2.15. For a monoid $M \in \mathcal{M}$ we call a monoidal poset $\beta(M)$ the Bousfield lattice associated to M.

In earlier papers, a Bousfield lattice is made from a closed symmetric monoidal category with a zero object. However, its set theoretic confusion complicates our argument too much. Our new definition settles this problem, and the following proposition says that this argument is consistent.

Proposition 4.2.16. The Bousfield lattice \mathbb{B} of the stable homotopy category of spectra is a Bousfield lattice in the sense of our definition.

Proof. By forgetting the ordering on \mathbb{B}, we regard \mathbb{B} as a monoid with $1=\langle S\rangle$ and $0=\langle *\rangle$. Then it is clear that $\beta(\mathbb{B})=\mathbb{B}$.

Proposition 4.2.17. The functor β satisfies the following:
(1) $\beta\left(\prod_{\lambda} M_{\lambda}\right)=\prod_{\lambda} \beta\left(M_{\lambda}\right)$.
(2) $\beta \beta(M)=\beta(M)$.

Proof. (1) Let $\left\{p_{\lambda}: \beta\left(\prod_{\lambda} M_{\lambda}\right) \rightarrow \beta\left(M_{\lambda}\right)\right\}$ be a family of epimorphisms defined by $\left\langle\left(x_{\lambda}\right)\right\rangle \mapsto\left\langle x_{\lambda}\right\rangle$, and $\left\{f_{\lambda}: W \rightarrow \beta\left(M_{\lambda}\right)\right\}$ a family of poset maps. We notice that p_{λ} is well defined by Lemma 4.2.10. For an element $w \in W$, we take an element $w_{\lambda} \in W_{\lambda}$ so that $f_{\lambda}(w)=\left\langle w_{\lambda}\right\rangle$, and define $g: W \rightarrow \beta\left(\prod_{\lambda} M_{\lambda}\right)$ by $g(w)=\left\langle\left(w_{\lambda}\right)\right\rangle$. Then g is also a well defined poset map by Lemma 4.2.10 and

$$
p_{\lambda} g(w)=p_{\lambda}\left(\left\langle\left(w_{\lambda}\right)\right\rangle\right)=\left\langle w_{\lambda}\right\rangle=f_{\lambda}(w)
$$

Suppose that there is another poset map $g^{\prime}: W \rightarrow \beta\left(\prod_{\lambda} M_{\lambda}\right)$ satisfying $p_{\lambda} g^{\prime}(w)=$ $f_{\lambda}(w)$ for $w \in W$, and g^{\prime} assigns w to $\left\langle\left(w_{\lambda}^{\prime}\right)\right\rangle$. Then

$$
\begin{aligned}
p_{\lambda} g^{\prime}(w)=f_{\lambda}(w) \text { for any } \lambda & \Leftrightarrow\left\langle w_{\lambda}^{\prime}\right\rangle=\left\langle w_{\lambda}\right\rangle \text { for any } \lambda \\
& \Leftrightarrow\left\langle\left(w_{\lambda}^{\prime}\right)\right\rangle=\left\langle\left(w_{\lambda}\right)\right\rangle \text { (by Lemma 4.2.10) } \\
& \Leftrightarrow g^{\prime}(w)=g(w) .
\end{aligned}
$$

Therefore, $\beta\left(\prod_{\lambda} M_{\lambda}\right)$ is the product $\prod_{\lambda} \beta\left(M_{\lambda}\right)$.
(2) is seen by Lemma 4.2.6.

4.3 Retract conjecture

From now on, we assume that every monoidal poset considered is a complete lattice.

Since a monoidal poset M is a sup-lattice with the least element $0=\langle 0\rangle, M$ is a bounded lattice.

Notation 4.3.1. For a monoidal poset M, we define the following notations.

$$
\begin{aligned}
a_{M}(x) & :=\bigvee\{y \in M: x y=0\} \text { for } x \in M, \\
B A(M) & :=\{x \in \beta(X): x \vee a(x)=1\}, \\
D L(M) & :=\left\{x \in M: x^{2}=x\right\}, \\
r_{M}(x) & :=\bigvee\{w \in D L(M): w \leq x\} \text { for } x \in M, \\
J_{M}(x) & :=\left\{y \in M: y \leq x \cdot a_{M}(x)\right\} \text { for } x \in M, \\
N(M) & :=\left\{x \in M: x^{n}=0 \text { for some } n \geq 1\right\}, \\
A(M) & :=\left\{x \in M: r_{M}(x)=0\right\} .
\end{aligned}
$$

We will omit M from notations, if M is clear from the context.
It is well known that the subposet $D L(M)$ is also a complete lattice. Indeed the following holds.

Proposition 4.3.2. $D L(M)$ is closed under arbitrary joins.
Proof. By Lemma 4.2.8, $\left(\bigvee_{\lambda \in \Lambda} x_{\lambda}\right)^{2} \leq\left(\bigvee_{\lambda \in \Lambda} x_{\lambda}\right)$. Suppose that x_{λ} is in $D L$ for $\lambda \in \Lambda$. Then, $x_{\lambda}=x_{\lambda}^{2} \leq\left(\bigvee_{\lambda \in \Lambda} x_{\lambda}\right)^{2}$, and so $\bigvee_{\lambda \in \Lambda} x_{\lambda} \leq\left(\bigvee_{\lambda \in \Lambda} x_{\lambda}\right)^{2}$.

Lemma 4.3.3. In $D L(M)$, the meet of x and y is $x y$.
Proof. Since $x \wedge y \leq x$ and $x \wedge y \leq y$, if $x \wedge y \in D L(M)$ then $x \wedge y \leq x y$.
Remark 4.3.4. $D L(M)$ is not always sublattice of M by Lemma 4.3.3.

For investigating the original Bousfield lattice \mathbb{B}, the operations r and a play important roles (see [5]). Hereafter we try to give their properties analogously on monoidal posets.
Proposition 4.3.5. Let M be a monoidal poset, and $r=r_{M}: M \rightarrow M$ be the map defined in Notation 4.3.1.
(1) r is order-preserving i.e. $x \leq y$ implies $r(x) \leq r(y)$.
(2) $r(x)^{2}=r(x)$ and $r^{2}(x)=r(x)$ for $x \in M$.
(3) $r(x) \leq x^{n}$ for any $n \geq 1$.
(4) $r(x y)=r(x) r(y)=r(x \wedge y)$ for $x, y \in M$.

Proof. (1) is trivial, and (2) follows from Proposition 4.3.2. For (3), $r(x) \leq x$ by definition, and we have $r(x)=r(x)^{n} \leq x^{n}$.

Since $r(x) r(y) \leq x y$ and $r(x) r(y) \in D L(M)$, we have $r(x) r(y) \leq r(x y)$. We also see $r(x \wedge y) \leq r(x) r(y)$, since $r(x \wedge y) \leq r(x)$ and $r(x \wedge y) \leq r(y)$. Therefore, $r(x y) \leq r(x \wedge y) \leq r(x) r(y) \leq r(x y)$, and obtain (4).

The behavior of the map r is the same as the one on \mathbb{B}, but not that of the operation a. Indeed, for any $x \in M$ and $\left\{y_{\lambda}\right\}_{\lambda} \subset M$, the relation $x\left(\bigvee_{\lambda} y_{\lambda}\right) \geq$ $\bigvee_{\lambda}\left(x y_{\lambda}\right)$ is not always an equality. To make the operator a have good properties, we introduce a following notion.
Definition 4.3.6. A monoidal poset M is a monoidally distributive poset if M satisfies that $x\left(\bigvee_{\lambda} y_{\lambda}\right)=\bigvee_{\lambda}\left(x y_{\lambda}\right)$ for any $x \in M$ and $\left\{y_{\lambda}\right\}_{\lambda} \subset M$.
Remark 4.3.7. $D L(M)$ is a distributive lattice if M is a monoidally distributive poset by Lemma 4.3.3.

In the same way as [5], we have
Proposition 4.3.8. Let M be a monoidally distributive poset. Then,
(1) $a(-)$ is order-reversing.
(2) $x y=0$ if and only if $x \leq a(y)$.
(3) $a a(x)=x$.

Lemma 4.3.9. Let M be a monoidally distributive poset. Fix $c \in M$ such that $c^{n}=0$ for a positive integer n. Then, for any $x \in M,(x \vee c)^{n} \leq x$ and $r(x \vee c)=r(x)$.

Proof. Under the assumption, we compute

$$
\begin{aligned}
(x \vee c)^{n} & =x^{n} \vee x^{n-1} c \vee \cdots \vee x c^{n-1} \\
& =x\left(x^{n-1} \vee x^{n-2} c \vee \cdots \vee c^{n-1}\right) \leq x
\end{aligned}
$$

for any $x \in M$. So, if $z \leq x \vee c$ for $z \in D L(M)$, then $z \leq x$. Thus, $r(x \vee c)=r(x)$ by definition of r.

Proposition 4.3.10. Let M be a monoidally distributive poset. Then $J_{M}(x) \subset$ $N(M) \subset A(M)$ for any $x \in M$.

Proof. Since $\left(x \cdot a_{M}(x)\right)\left(x \cdot a_{M}(x)\right) \leq x a_{M}(x)=0$ by Proposition 4.3.8(2), we have $J_{M}(x) \subset N(M)$. Suppose that $x^{n}=0$, then $r(x)=r(x)^{n}=r\left(x^{n}\right)=$ $r(0)=0$ by Proposition 4.3.5 (4). So we have $N(M) \subset A(M)$.

Proposition 4.3.11. Let M_{λ} be a monoidal poset for any $\lambda \in \Lambda$. Then,
(1) $r\left(\left(x_{\lambda}\right)\right)=\left(r\left(x_{\lambda}\right)\right)$ for any $\left(x_{\lambda}\right) \in \prod_{\lambda} M_{\lambda}$.
(2) r preserves arbitrary joins on M_{λ} for any $\lambda \in \Lambda$ if and only if r preserves arbitrary joins on $\prod_{\lambda} M_{\lambda}$

Proof. (1) is given by Corollary 4.2.12.
(2) Suppose that r preserves arbitrary joins on M_{λ} for any $\lambda \in \Lambda$. Then, for $\left\{\left(x_{\lambda}^{\mu}\right)\right\}_{\mu} \subset \prod_{\lambda} M_{\lambda}$,

$$
\begin{aligned}
r\left(\bigvee_{\mu}\left(x_{\lambda}^{\mu}\right)\right) & =r\left(\left(\bigvee_{\mu} x_{\lambda}^{\mu}\right)\right) \quad \text { (by Corollary 4.2.12) } \\
& =\left(r\left(\bigvee_{\mu} x_{\lambda}^{\mu}\right)\right) \quad(\text { by }(1)) \\
& =\left(\bigvee_{\mu} r\left(x_{\lambda}^{\mu}\right)\right) \\
& =\bigvee_{\mu}\left(r\left(x_{\lambda}^{\mu}\right)\right) \quad \text { (by Corollary 4.2.12). }
\end{aligned}
$$

Therefore, r preserves arbitrary joins on $\prod_{\lambda} M_{\lambda}$.
Conversely, if r preserves arbitrary joins on $\prod_{\lambda} M_{\lambda}$, then

$$
\begin{aligned}
\left(r\left(\bigvee_{\mu} x_{\lambda}^{\mu}\right)\right) & =r\left(\left(\bigvee_{\mu} x_{\lambda}^{\mu}\right)\right) \quad(\text { by }(1)) \\
& =r\left(\bigvee_{\mu}\left(x_{\lambda}^{\mu}\right)\right) \quad \text { (by Corollary 4.2.12) } \\
& =\bigvee_{\mu}\left(r\left(x_{\lambda}^{\mu}\right)\right) \\
& =\left(\bigvee_{\mu} r\left(x_{\lambda}^{\mu}\right)\right) \quad \text { (by Corollary 4.2.12). }
\end{aligned}
$$

It follows that r preserves arbitrary joins on M_{λ} for any $\lambda \in \Lambda$ as desired.
Remark 4.3.12. We notice that M_{λ} is a monoidally distributive poset for any $\lambda \in \Lambda$ if and only if $\prod_{\lambda \in \Lambda} M_{\lambda}$ is a monoidally distributive poset. Indeed, if M_{λ} is a monoidally distributive poset for any $\lambda \in \Lambda$, then $\left(c_{\lambda}\right)\left(\bigvee_{\mu}\left(x_{\lambda}^{\mu}\right)\right)=$ $\left(c_{\lambda}\right)\left(\bigvee_{\mu} x_{\lambda}^{\mu}\right)=\left(c_{\lambda}\left(\bigvee_{\mu} x_{\lambda}^{\mu}\right)\right)=\left(\bigvee_{\mu} c_{\lambda} x_{\lambda}^{\mu}\right)=\bigvee_{\mu}\left(c_{\lambda} x_{\lambda}^{\mu}\right)$ for $\left(c_{\lambda}\right) \in \prod_{\lambda} M_{\lambda}$ and $\left\{\left(x_{\lambda}^{\mu}\right)\right\}_{\mu} \subset \prod_{\lambda} M_{\lambda}$ by Corollary 4.2.12. Thus, $\prod_{\lambda} M_{\lambda}$ is a monoidally distributive poset. Conversely, if $\prod_{\lambda} M_{\lambda}$ is a monoidally distributive poset, then $\left(c_{\lambda}\left(\bigvee_{\mu} x_{\lambda}^{\mu}\right)\right)=\left(c_{\lambda}\right)\left(\bigvee_{\mu} x_{\lambda}^{\mu}\right)=\left(c_{\lambda}\right)\left(\bigvee_{\mu}\left(x_{\lambda}^{\mu}\right)\right)=\bigvee_{\mu}\left(c_{\lambda} x_{\lambda}^{\mu}\right)=\left(\bigvee_{\mu} c_{\lambda} x_{\lambda}^{\mu}\right)$ by Corollary 4.2.12. Therefore, M_{λ} is a monoidally distributive poset for any $\lambda \in \Lambda$ by Lemma 4.2.10.

Recall that an ideal I of a poset is any subset of M such that:
(1) If $x \in I$, and $y \leq x$, then $y \in I$, and
(2) For $x, y \in I$, there is an element $z \in I$ such that $x \leq z$ and $y \leq z$.

Suppose that a monoidal poset M is an ordinary lattice. Then, an ideal of M is also an ideal as a lattice, and for an ideal $I, M / I$ is the lattice of equivalent classes under the equivalence relation defined by

$$
\begin{equation*}
x \sim y \quad \text { if and only if } x \vee c=y \vee c \text { for some } c \in I \tag{4.3.13}
\end{equation*}
$$

with order given by $[x] \leq[y] \Leftrightarrow x \vee c \leq y \vee c$ for some $c \in I$. We notice that M / I is complete if M and I are complete. If M is monoidally distributive, then M / I has the multiplication $[x][y]:=[x y]$. Indeed, if $x \vee i=x^{\prime} \vee i$ and $y \vee j=y^{\prime} \vee j$ for $x, x^{\prime}, y, y^{\prime} \in M$ and $i, j \in I$, then $(x \vee i)(y \vee j)=\left(x^{\prime} \vee i\right)\left(y^{\prime} \vee j\right)$ turns into

$$
\begin{aligned}
x y \vee(x \vee i) j \vee(y \vee j) i & =x^{\prime} y^{\prime} \vee\left(x^{\prime} \vee i\right) j \vee\left(y^{\prime} \vee j\right) i \\
& =x^{\prime} y^{\prime} \vee(x \vee i) j \vee(y \vee j) i .
\end{aligned}
$$

Since $(x \vee i) j \vee(y \vee j) i \in I$, the multiplication is well defined.
Remark 4.3.14. M / I is not always a monoidal poset. Indeed, we have an example: Let $M=\{1, x, y, 0\}$ be a monoidal poset with multiplication $x^{2}=x, x y=$ $0, y^{2}=0$. Then, for the ideal $I=\{y, 0\}, M / I=\{1, x, 0\}$ and $\beta(M / I)=\{1,0\}$. Since $M / I \neq \beta(M / I), M / I$ is not a monoidal poset by Lemma 4.2.6.

Lemma 4.3.15. Let M be a monoidally distributive poset. Then, $N(M)$ is an ideal of M and $J_{M}(x)$ is a principal ideal of M for any $x \in M$.

Proof. Suppose that $x^{n}=0$ and $y^{m}=0$. Then, $(x \vee y)^{n+m}=\bigvee_{a+b=n+m} x^{a} y^{b}$. Since if $a<n$ then $b \geq m,(x \vee y)^{n+m}=0$. So $N(M)$ is an ideal of M. By definition, $J_{M}(x)$ is a principal ideal of M.

Here, consider the following correspondence:

$$
r_{*}: M / I \rightarrow D L(M) ;[x] \mapsto\{r(y): y \in[x]\}
$$

We notice that if r_{*} is a mapping (i.e. a single-valued mapping), then it is a surjection.

Theorem 4.3.16. Let M be a monoidally distributive poset and I an ideal in M.
(1) If I is contained in N, then r_{*} is a mapping.
(2) If r_{*} is a mapping, then $I \subset A$.
(3) If r_{*} is an injection, then $I=A$.
(4) If r_{*} is an injection and $I \subset N$, then:
(a) For any x and y in $M, r(x \vee y)=r(x) \vee r(y)$ holds. In particular, if I is a principal ideal, then r preserves arbitrary joins.
(b) For any $x \in M$, there exists an integer n such that $x^{n}=r(x)$.

Proof. (1) If $x \vee c=y \vee c$ for $x, y \in M$ and $c \in I \subset N$, then $r(x)=r(y)$ by Lemma 4.3.9.
(2) For $x \in I,[x]=0=[0]$ in M / I, and so $r(x)=r_{*}([x])=r_{*}([0])=r(0)=$ 0 . Thus, $x \in A$.
(3) For $x \in A, r_{*}([x])=r(x)=0=r_{*}([0])$. It follows that $[x]=[0]$, since r_{*} is an injection, which implies $x \in I$. So we obtain $A=I$ by (2).
(4) For $x \in M, r_{*}([x])=r(x)=r^{2}(x)=r_{*}([r(x)])$ and $[x]=[r(x)]$, since r_{*} is an injection. So we have an element $c_{x} \in N$ such that $x \vee c_{x}=r(x) \vee c_{x}$, and then:
(a) Since $x \vee y \vee c_{x} \vee c_{y}=r(x) \vee r(y) \vee c_{x} \vee c_{y}, r(x \vee y)=r(x) \vee r(y)$ by Lemma 4.3.9. Suppose that I is a principal ideal and take a generator m of I. Then, $\left(\bigvee_{\lambda} x_{\lambda}\right) \vee m=\left(\bigvee_{\lambda} r\left(x_{\lambda}\right)\right) \vee m$ for any subset $\left\{x_{\lambda}\right\}_{\lambda} \subset M$. Therefore $r\left(\bigvee_{\lambda \in \Lambda} x_{\lambda}\right)=\bigvee_{\lambda \in \Lambda} r\left(x_{\lambda}\right)$ by Lemma 4.3.9.
(b) Since there exists an integer n such that $c_{x}^{n}=0$,

$$
x^{n} \leq\left(x \vee c_{x}\right)^{n}=\left(r(x) \vee c_{x}\right)^{n} \leq r(x)
$$

by Lemma 4.3.9.
Hovey and Palmieri introduced a map $r_{*}: M / J(h) \rightarrow D L$, and proposed Conjecture 1.1 in the introduction. Here, we generalize the map to our setting.
Lemma 4.3.17. The map $r_{M}: M \rightarrow M$ for a monoidal poset M factors through $D L(M)$. Furthermore, it induces the map $r_{*}: M / J_{M}(y) \rightarrow D L(M)$ for $y \in M$ assigning the class $[x]$ to $r_{M}(x)$.
Proof. The former statement follows from Proposition 4.3.5(2), and the latter from Proposition 4.3.10 and Proposition 4.3.16(1).

By Theorem 4.3.16, we see that $J(h)=A$ if Conjecture 4.1.1 holds. This makes us conjecture the following:
Conjecture 4.3.18 (Generalized retract conjecture 1 (GRC1)). Let M be a monoidal poset. If M is a complete lattice and is monoidally distributive, and if $A=A(M)$ is an ideal of M, then $r_{*}: M / A \rightarrow D L$ is a lattice isomorphism.

Conjecture 4.3.19 (Generalized retract conjecture 2 (GRC2)). Let M be a monoidal poset. If M is a complete lattice and monoidally distributive, then $r_{*}: M / N \rightarrow D L(M)$ is a lattice isomorphism.

By Theorem 4.3.16 (3), we see the following:
Corollary 4.3.20. GRC2 implies GRC1.
Example 4.3.21. Consider the monoidal poset $M=\beta\left(\mathbb{Z} / 2^{m} \mathbb{Z}\right)$. Then,

$$
\begin{aligned}
M & =\left\{1,2,2^{2}, \cdots, 2^{m-1}, 2^{m}=0\right\} \\
D L(M) & =\{1,0\} \text { and } \\
N(M) & =\left\{2,2^{2}, \cdots, 2^{m-1}, 0\right\}
\end{aligned}
$$

And so $M / N(M) \cong D L(M)$. That is, GRC2 holds on $\beta\left(\mathbb{Z} / 2^{m} \mathbb{Z}\right)$.

Theorem 4.3.22. For a monoidally distributive poset M, the following are equivalent.
(1) $r_{*}: M / N \rightarrow D L$ is an isomorphism.
(2) Any class $[x] \in M / N$ satisfies $\left[x^{2}\right]=[x]$.

Proof. The statement (1) implies (2), since $r_{*}([x])=r_{*}\left(\left[x^{2}\right]\right)$.
For the converse, it suffices to show that r_{*} is injective. If $\left[x^{2}\right]=[x]$, then $[x]=\left[x^{n}\right]$ for any $n>0$ by induction. So, we have an element $c_{x} \in N$ for each $x \in M$ such that

$$
\begin{equation*}
x \vee c_{x}=x^{n} \vee c_{x} \text { for any } n>0 \tag{4.3.23}
\end{equation*}
$$

Since $c_{x} \in N$, we have an integer $L=L(x)>0$ such that $c_{x}^{L}=0$. Then

$$
x^{L} \leq\left(x \vee c_{x}\right)^{L}=\left(x^{n} \vee c_{x}\right)^{L} \leq x^{n}
$$

for any $n>0$ by Lemma 4.3.9. In particular, $x^{L}=\left(x^{L}\right)^{2}$ and so

$$
\begin{equation*}
x^{L(x)}=r(x) \tag{4.3.24}
\end{equation*}
$$

by Proposition 4.3.5.
Now suppose that $r_{*}([x])=r_{*}([y])$. Then $r(x)=r(y)$, and $x^{L(x)}=y^{L(y)}$ by (4.3.24). By (4.3.23),

$$
x \vee c_{x} \vee c_{y}=x^{L(x)} \vee c_{x} \vee c_{y}=y^{L(y)} \vee c_{y} \vee c_{x}=y \vee c_{x} \vee c_{y}
$$

and $[x]=[y]$ by the definition (4.3.13).
Furthermore, Proposition 4.3.11 leads us to the following.
Proposition 4.3.25. Let $\left\{M_{\lambda}\right\}_{\lambda \in \Lambda}$ be a family of monoidally distributive posets. Then, the following are equivalent.
(1) GRC holds on M_{λ} for any $\lambda \in \Lambda$.
(2) GRC holds on $\prod M_{\lambda}$.

Here, GRC is GRC1 or GRC2.
As an application, we extend a result of Dwyer and Palmieri:
Theorem 4.3.26 (Dwyer-Palmieri [3]). There is a ring Λ such that the original retract conjecture does not hold on the derived category $D(\Lambda)$ of Λ.

In the proof of it, Dwyer and Palmieri define Λ to be a truncated polynomial ring over a field k, and take $\langle k\rangle$ instead of $h=\langle H \mathbb{Z} / p\rangle$. Here $\langle k\rangle$ denotes a Bousfield class of a complex $\left\{X_{i}\right\}$ with $X_{0}=k$, and $X_{i}=0$ if $i \neq 0$. By a similar argument of Hovey and Palmieri in [5], if r_{*} is an isomorphism from $\mathbb{B}(D(\Lambda)) / J(\langle k\rangle)$ to $D L$, then any Bousfield class $x \in \mathbb{B}(D(\Lambda))$ satisfies $x^{2}=x^{3}$. They show the theorem by constructing a Bousfield class $y \in \mathbb{B}(D(\Lambda))$ such that $y>y^{2}>\cdots>y^{n}>\cdots$. By Theorem 4.3.16, the existence of the class y implies further the following:
Theorem 4.3.27. The map $r_{*}: \mathbb{B}(D(\Lambda)) / N \rightarrow D L$ is not isomorphic.

4.4 A Bousfield lattice associated to a quotient of PID

We abbreviate 'principal ideal domain' to 'PID'. Furthermore, we write x for $\langle x\rangle \in \beta(M)$, where no confusion arises.

Theorem 4.4.1. Let P be a PID and put $q=p_{0}^{e_{0}} \cdots p_{m-1}^{e_{m-1}} \in P$ for prime elements p_{i} and integers $e_{i}>0$. Let B denote a Bousfield lattice $\beta(P / q P)$. Then,
(1) $B=\{x \in P: x \mid q\}$ as sets. In particular q is the zero element 0 .
(2) $x \geq y$ if and only if $x \mid y$.
(3) $D L=\left\{p_{0}^{s_{0}} \cdots p_{m-1}^{s_{m-1}}: s_{i}=0\right.$ or $\left.e_{i}\right\}$.
(4) $N=\left\{x \in B: p_{0} \cdots p_{m-1} \mid x\right.$ in $\left.P\right\}$.
(5) $B=\prod_{i=0}^{n-1} \beta\left(P / p_{i}^{e_{i}} P\right)$.

Proof. For an element $x \in P$, we consider an integer $e_{i}(x)$ and an element $x_{(q)}$ defined by

$$
e_{i}(x):=\max \left\{e: e \leq e_{i} \text { and } p_{i}^{e} \mid x\right\}, \quad \text { and } \quad x_{(q)}:=\prod_{0 \leq i<m} p_{i}^{e_{i}(x)}
$$

We see that

$$
\begin{equation*}
x=x_{(q)} \in \beta(P / q P) \quad \text { for any } x \in P . \tag{4.4.2}
\end{equation*}
$$

Indeed, $x_{(q)}$ divides x, and so $x \leq x_{(q)}$. If $x y=0$ in $P / q P$, then $x y$ is divisible by q in P. Therefore, $q \mid x_{(q)} y_{(q)}$ and so $q \mid x_{(q)} y$. Hence $x_{(q)} y=0$ in $P / q P$ and so $x_{(q)} \leq x$.

The statements (1)-(4) follow immediately from (4.4.2), and (5) from (1).

Corollary 4.4.3. We have isomorphisms of monoidal posets

$$
\begin{gathered}
\beta\left(P / p_{0}^{e_{0}} \cdots p_{n-1}^{e_{n-1}} P\right)=\prod_{i=0}^{n-1} \beta\left(\mathbb{Z} / 2^{e_{i}} \mathbb{Z}\right) \quad \text { and } \\
D L\left(\beta\left(P / p_{0}^{e_{0}} \cdots p_{n-1}^{e_{n-1}} P\right)\right)=\prod_{i=0}^{n-1} \mathbb{Z} / 2 .
\end{gathered}
$$

Corollary 4.4.4. For any PID P and a non-zero element $q \in P$, the Bousfield lattice $\beta(P / q P)$ is monoidally distributive.

Proof. Noticing the relation

$$
\left(p_{0}^{s_{0}} \cdots p_{n-1}^{s_{n-1}}\right) \vee\left(p_{0}^{t_{0}} \cdots p_{n-1}^{t_{n-1}}\right)=p_{0}^{l_{0}} \cdots p_{n-1}^{l_{n-1}} \text { with } l_{i}=\min \left\{s_{i}, t_{i}\right\}
$$

the proof is straightforward.
Theorem 4.4.5. If P is a PID and $q \in P \backslash\{0\}$, then $G R C 2$ holds on $\beta(P / q P)$, and so does GRC1.

Proof. The ideal $N(\beta(P / q P))$ has the greatest element $g=p_{0} \cdots p_{n-1}$. We compute

$$
\begin{aligned}
\left(p_{0}^{s_{0}} \cdots p_{n-1}^{s_{n-1}}\right) \vee g & =p_{0}^{\min \left\{s_{0}, 1\right\}} \cdots p_{n-1}^{\min \left\{s_{n-1}, 1\right\}}=p_{0}^{\min \left\{2 s_{0}, 1\right\}} \cdots p_{n-1}^{\min \left\{2 s_{n-1}, 1\right\}} \\
& =\left(p_{0}^{2 s_{0}} \cdots p_{n-1}^{2 s_{n-1}}\right) \vee g=\left(p_{0}^{s_{0}} \cdots p_{n-1}^{s_{n-1}}\right)^{2} \vee g
\end{aligned}
$$

So the theorem follows from Theorem 4.3.22.
Remark 4.4.6. We have another proof of the theorem. Since $\beta(P / q P)=\prod_{i=0}^{n-1} \beta\left(\mathbb{Z} / 2^{e_{i}} \mathbb{Z}\right)$ and GRC2 holds on $\beta\left(\mathbb{Z} / 2^{e_{i}} \mathbb{Z}\right)$, GRC2 holds on $\beta(P / q P)$ by Proposition 4.3.25.

4.5 Bousfield lattices of stable homotopy categories

Let Λ_{E} for a spectrum E denote the stable homotopy category of E-local spectra, and $\mathbb{B}\left(\Lambda_{E}\right)$ the Bousfield lattice in the sense of Bousfield. Then we have the Bousfield localization functor $L_{E}: \mathcal{S} \rightarrow \mathcal{L}_{E}$. The monoidal structure of \mathcal{L}_{E} is given by $X Y=L_{E}(X \wedge Y)$. We consider the Johnson-Wilson spectra $E(n)$ and the Morava K-theories $K(n)$ for $n \geq 0$. By the chromatic viewpoint, investigating the categories $\Lambda_{n}\left(=\Lambda_{E(n)}\right)$ and $\Lambda_{K(n)}$ is one of main targets of stable homotopy theory. We determine the Bousfield lattices of these categories.

We begin with a simple category. A spectrum F is called a field if it is a ring spectrum and $F \wedge X=\bigvee \Sigma^{a} F$ for all spectra X.

Proposition 4.5.1. Let F be a field. Then, $\mathbb{B}\left(\Lambda_{F}\right)=\mathbb{Z} / 2$.
Proof. Since F is a ring spectrum, we have $F X=F \wedge X$. We see easily $\langle X\rangle \geq$ $\langle F X\rangle$. Suppose that $(F X) C=0$. Then, $X C$ is F-acyclic and so $X C=0$. It follows that $\langle X\rangle=\langle F X\rangle=\left\langle\bigvee \Sigma^{i} F\right\rangle=0$ or $\langle F\rangle$, which shows the lemma.

By [4], the Eilenberg-MacLane spectrum $H \mathbb{Z} / p$ and the Morava K-theories $K(n)$ are fields.

Corollary 4.5.2. $\mathbb{B}\left(\Lambda_{H \mathbb{Z} / p}\right)=\mathbb{Z} / 2=\mathbb{B}\left(\Lambda_{K(n)}\right)$.
Theorem 4.5.3. Let p_{0}, \ldots, p_{n} be $n+1$ distinguished prime numbers. Then $\mathbb{B}\left(\Lambda_{n}\right)$ is isomorphic to $\beta\left(\mathbb{Z} / p_{0} \cdots p_{n}\right)=\prod_{i=0}^{n} \mathbb{Z} / 2$ in $\mathcal{M} \mathcal{P}$.
Proof. The Bousfield lattice $\mathbb{B}\left(\mathcal{L}_{n}\right)$ consists of $\left\langle L_{n} X\right\rangle$ for all spectra X, which equals, by Ravenel [9],

$$
\begin{aligned}
\left\langle L_{n} X\right\rangle & =\left\langle L_{n} S^{0}\right\rangle \cdot\langle X\rangle=\langle E(n)\rangle \cdot\langle X\rangle \\
& =\left(\bigvee_{0 \leq i \leq n}\langle K(i)\rangle\right) \cdot\langle X\rangle=\bigvee_{0 \leq i \leq n \text { and } K(i) \wedge X \neq 0}\langle K(i)\rangle .
\end{aligned}
$$

since L_{n} is smashing and $K(n)$ is a field. Here $\langle X\rangle \cdot\langle Y\rangle$ is the Bousfield class of the smash product $X \wedge Y$. We define a map $f: \mathbb{B}\left(\mathcal{L}_{n}\right) \rightarrow \beta\left(\mathbb{Z} / p_{0} \cdots p_{n}\right)$ by
$f\left(\bigvee_{i \in S}\langle K(i)\rangle\right)=\prod_{i \notin S} p_{i}$ for $S \subset\{0,1, \cdots, n\}$. Then f preserves multiplication, since

$$
\begin{aligned}
&\left(\bigvee_{i \in S}\langle K(i)\rangle\right)\left(\bigvee_{j \in T}\langle K(j)\rangle\right)=\bigvee_{i \in S \cap T}\langle K(i)\rangle, \\
&\left(\prod_{i \notin S} p_{i}\right)\left(\prod_{j \notin T} p_{j}\right)=\prod_{i \notin S} \text { or } i \notin T \\
& p_{i}
\end{aligned}=\prod_{i \notin S \cap T} p_{i} .
$$

Moreover, for the order, we have

$$
\begin{aligned}
\bigvee_{i \in S}\langle K(i)\rangle \leq \bigvee_{i \in T}\langle K(i)\rangle & \Leftrightarrow S \subset T \Leftrightarrow I(n)-S \supset I(n)-T \\
& \Leftrightarrow \prod_{i \notin S} p_{i} \leq \prod_{i \notin T} p_{i},
\end{aligned}
$$

and f is a monoidal poset map.
A similar argument shows the following
Theorem 4.5.4. Let $E=\bigvee_{i \in F} K(i)$ be a spectrum for a finite subset F of $\mathbb{Z}_{\geq 0}$. Then $\mathbb{B}\left(\mathcal{L}_{E}\right)$ is isomorphic to $\prod_{i \in F} \mathbb{Z} / 2$.

This together with Theorem 4.4.5 implies
Corollary 4.5.5. GRC2 holds on $\mathbb{B}\left(\Lambda_{E}\right)$ for a spectrum $E=\bigvee_{i \in F} K(i)$ on a finite subset F of $\mathbb{Z}_{\geq 0}$.

The chromatic tower $\Lambda_{0} \leftarrow \Lambda_{1} \leftarrow \Lambda_{2} \leftarrow \cdots$ induces the inverse system

$$
\begin{equation*}
\mathbb{B}\left(\Lambda_{0}\right) \leftarrow \mathbb{B}\left(\Lambda_{1}\right) \leftarrow \mathbb{B}\left(\Lambda_{2}\right) \leftarrow \cdots \tag{4.5.6}
\end{equation*}
$$

Moreover, we notice that $B_{\infty}:=\lim _{n} \mathbb{B}\left(\Lambda_{n}\right)=\prod_{n} \mathbb{Z} / 2$ in $\mathcal{M P}$. We call a spectrum harmonic if it is $\left(\bigvee_{i \geq 0} K(i)\right)$-local.

Theorem 4.5.7. Let \mathcal{H} be the stable homotopy category of harmonic spectra. Then $\mathbb{B}(\mathcal{H})$ is isomorphic to B_{∞} in $\mathcal{M P}$.

Proof. Let $f: \Pi \mathbb{Z} / 2 \rightarrow \mathbb{B}(\mathcal{H})$ be the poset map defined by $\left(x_{n}\right) \mapsto \bigvee_{x_{n}=1}\langle K(n)\rangle$ and let $p_{n}: \mathbb{B}(\mathcal{H}) \rightarrow \mathbb{B}\left(\Lambda_{n}\right)$ be the poset map defined by $\langle X\rangle \mapsto\langle X\rangle \cdot\langle E(n)\rangle$. Then, we have the following commutative diagram

$$
\begin{aligned}
& \mathbb{B}\left(\Lambda_{i}\right) \longleftarrow \mathbb{B}\left(\Lambda_{j}\right) \\
& p_{i} \uparrow{ }^{*} \uparrow \uparrow \\
& \mathbb{B}(\mathcal{H}) \longleftarrow \llbracket \mathbb{Z} / 2
\end{aligned}
$$

for any i and j with $i \leq j$, since

$$
\begin{aligned}
p_{i} f\left(\left(x_{n}\right)\right) & =p_{i}\left(\bigvee_{x_{n}=1}\langle K(n)\rangle\right)=\bigvee_{x_{n}=1}\langle K(n)\rangle \cdot\langle E(i)\rangle \\
& =\bigvee_{i \geq n, x_{n}=1}\langle K(n)\rangle .
\end{aligned}
$$

Therefore, $\mathbb{B}(\mathcal{H})$ is the inverse limit of the above system (4.5.6) by definition.

Proof of Theorem 4.1.2. This follows from Theorem 4.5.7 and Proposition 4.3.25.

In the same way, we obtain
Theorem 4.5.8. Let T be a set of field spectra, and put $\bigvee T=\bigvee_{F \in T} F$. Then, $\mathbb{B}\left(\mathcal{L}_{\bigvee T}\right)=\prod \mathbb{Z} / 2$.

4.6 Problems

We leave some problems in this section.
Problem 4.6.1. What is a condition on $X \xrightarrow{f} Y$ in \mathcal{M}, under which $\beta(f)$ is an isomorphism?

Suppose that the problem is settled and we find a map from \mathbb{B} to a commutative monoid Y such that $\beta(f)$ is an isomorphism. Then, we may study $\mathbb{B}=\beta(\mathbb{B})$ by observing $\beta(Y)$ by virtue of Proposition 4.2 .16 , which may let us consider the lattice from a different viewpoint.

Problem 4.6.2. Let M be a monoid with 0 . Then, is there a ring R such that $\beta(M)$ is isomorphic to R as a monoid?

Example 4.6.3. Let p_{0}, \ldots, p_{n} be $n+1$ distinguished primes. Then $\beta\left(\mathbb{Z} / p_{0} \ldots p_{n}\right)=$ $\prod_{i=0}^{n} \mathbb{Z} / 2$ as monoids by Theorem 4.5.3.

If this is possible, we may approach these from the ring theoretic viewpoint.
Problem 4.6.4. Are $\mathbb{B} / J(h)$ and $\mathbb{D L}$ monoidal posets?

Bibliography

[1] A. K. Bousfield, The Boolean algebra of spectra, Comment. Math. Helv. 54 (1979), 368-377.
[2] W. G. Dwyer and J. H. Palmieri, Ohkawa's theorem: there is a set of Bousfield classes. Proc. Amer. Math. Soc., 129 (2001), 881-886.
[3] W. G. Dwyer and J. H. Palmieri, The Bousfield lattice for truncated polynomial algebras, Homology, Homotopy and Applications, 10 (2008), 413-436.
[4] M. J. Hopkins and J. H. Smith, Nilpotence and stable homotopy theory. II, Ann. Math. 148 (1998), 1-49.
[5] M. Hovey and J. H. Palmieri, The structure of the Bousfield lattice, Contemp. Math. 239 (1999), 175-196.
[6] M. Hovey, J. H. Palmieri and N. P. Strickland, Axiomatic stable homotopy theory, Mem. Am. Math. Soc. 610 (1997).
[7] S. B. Iyengar and H. Krause, The Bousfield lattice of a triangulated category and stratification, Math. Z. 273 (2013), 1215-1241.
[8] T. Ohkawa, The injective hull of homotopy types with respect to generalized homology functors, Hiroshima Math. J. 19 (1989), 631-639.
[9] D. C. Ravenel, Localization with respect to certain periodic homology theories, Amer. J. Math. , 106 (1984), 351-414.

