Symposium Proceedings

Diversity, species composition, and richness of marine fish fauna in Isabela Waters, Philippines

Angel B. Encarnacion^{*}, Melanie A. Calicdan-Villarao, and Milagros C. Morales

Department of Agriculture - Bureau of Fisheries and Aquatic Resources, Regional Office No. 02, #02 Dalanna Angngicacua, Government Complex, Carig, 3500 Tuguegarao City, Philippins

Abstract

The Philippines is globally important hotspot for biological diversity particularly in the Northern coast of the country due to the presence of Kuroshio Current that brings high nutrients and contributes to high diversity of marine fish fauna in the area. Survey of marine fish fauna was conducted from July 2014 to June 2015 in Isabela Waters covering the four coastal municipalities of Isabela, Philippines. Data were collected from the fisherfolk unloading their catch using different types of fishing gears and was analyzed using the biological indices of Species richness, Diversity index, and Pielou's evenness index. Species dominance was computed using the Simpson's dominance index formula. In terms of total catch landings, *Thunnus obesus* dominated the total catch (18.63%) followed by *Decapterus macarellus* (14.27%) and *Terapon theraps* (13.66%). The total catch landing was shared by 286 fisherfolk using 15 different types of fishing gears. A total of 23,980 fish samples belonging to 54 families, 109 genera, and 238 species were recorded. As to conservation status, four species are nearly threatened, one vulnerable and one endangered. Diversity index of the study area was 3.77 with species evenness of 0.7 and dominance index value of 0.94 indicating high fish diversity and even distribution of species in the fishing ground. The study revealed that Isabela waters harbors a diverse community of marine fish fauna.

Key words: diversity, species richness, composition, Isabela Waters

INTRODUCTION

Isabela Waters is one of the marine fishing grounds of the Cagayan Valley Region, Philippines and located along the flow of the Kuroshio Current that has been known to contain the country's most diverse ecosystems enriched by nutrients leached from the land. The water is a home of diverse small and big oceanic species like marlins, dolphin fishes, and bill fishes. The lengthy range of seacoast is rich in untapped fisheries and marine resources. It has also extensive seagrass beds and coral reef that harbours a variety of pelagic and demersal species.

The province of Isabela is the biggest province of the Cagayan Valley, Region and the second largest province in the Philippines with four coastal municipalities namely: Palanan, Maconacon, Divilacan, and Dinapigue (Ayson and Encarnacion 2008). Fishing is the primary source of livelihood in the coastal area. There are 286 fishing boats operating throughout the year in the waters of Isabela using different types of fishing gears. With the increasing fishing pressure on the fish stocks, it is important to know the diversity of fish in the fishing ground, the abundance, and the status in order to develop management and conservation programs in the area. Information on biodiversity particularly on the natural resources which includes the marine fishes is important for the sustainability of the resource.

However, to date there is no available information on species composition and status, diversity, and abundance of marine species in the Isabela waters which is needed by policy makers and resource managers in making decisions for rational and sustainable fisheries management in the fishing ground.

^{*} E-mail: angel_nacion@yahoo.com

MATERIALS AND METHODS

Study area

The Province is politically bounded on the North by the Province of Cagayan, on the south by Nueva Vizcaya, and Aurora, on the West by the Cordillera Administrative Region and on the East by the Pacific Ocean (Fig. 1). It has a coastline of 208 kilometers inhabited by 3,693 fisherfolk from 45 coastal barangays (BFAR-R02 FishR 2017).

Fig.1. Map of Isabela showing the established landing centers.

Data collection

Trained NSAP enumerators were tapped to collect information on landed catch from fishers unloading their catch. Data were collected at established landing centers in Palanan, Divilacan, Maconacon, and Dinapigue. Sampling was done every other two days regardless of Saturdays, Sundays, and Holidays starting July 2014 to June 2015. Information on species composition, species weight, total species count, and the fishing gear used were recorded.

Fish species were identified using the books of White et al. (2013), Alava et al. (2014), Allen et al. (2003), Randall (2005), FAO species identification guide (1998), field guides on commercial marine fishes of the Philippines, and internet using the Fishbase website, World of Marine Species (WorMS), Encyclopedia of Life (EOL), and Catalogue of Life (COL).

Data analysis

Species richness was determined by the number of species present in the area. Based on the total landed catch (in kg.) relative abundance for each species was computed using the formula:

Relative Abundance =
$$\left(\frac{ni}{N}\right)$$
 100%

where: $n_i - is$ the number of individuals caught in the ith species, and N is the total number of species collected during the entire duration of the study.

Diversity index was computed using the formula of Shannon-Weinier diversity index (H') (Shannon and Weaver, 1949):

$$H' = -\sum_{t=1}^{s} pi \ln pi$$

where s is the number of species; p is the proportion of individuals found on the ith species and ln is the natural logarithm. Evenness index (J') was computed following the Shannon's diversity index:

$$J' = H' / \operatorname{In} S$$

where S is the total number of species. Species dominance was computed using the Simpson's index formula (λ) (Simpson 1949):

$$\lambda = \sum_{i=1}^{S} \frac{ni(ni-1)}{N(N-1)}$$

where s is the number of species, ni is he number of individuals in the ith species and N is the total number of individuals.

RESULTS AND DISCUSSION

Fishing gears used

There were 15 different types of fishing gears operating in Isabela waters (Fig.2). Majority of the fishing gears used are troll line (47.99%), followed by bottom set gillnet (15.5%),

Fig. 2. Fishing gears operating in Isabela Waters, Philippines.

multiple handline (11.14%), crab trap (7.43%), and fish trap (5.94%). Drift gill net only has 2.97% contribution and spear gun, hook and line, and longline have gear contribution of 1.7%, 1.6%, and 1.2%, respectively. Bottom set longline, surface gill net, gaff hook, ring net, and fish corral only accounted less than 1%. Lines and nets are the most predominant gears used along the coastal municipalities of Isabela. Pots and traps are the top four (4) fishing gears being operated in the area which is in contrast to the findings of Baleta and Bolaňos (2017) where fishing gears of this category are only few in Isabela Province.

Troll line locally known as "Hilada" or "Saliwsiw" is the major fishing gear used in the area. The length of mainline is 200 m with a length of branch line of 1 m - \oint - 0.45 m. The most common species caught by this gear are yellowfin tuna, big-eye tuna, skipjack tuna, other species of tuna, and dolphinfishes. The gear is operated by towing the baited hooks located on the astern portion of the boat. The speed on the boat during towing depends on the target species of the fishers. The fish is caught by snapping the baited hooks and eventually brought aboard as the line is hauled in.

Conversely, bottom set gill net locally known as "Palned/Sigay" or "Panting ilalim" is commonly used for demersal fishes. The depth ranges from 5 to 9 cm with a mesh size of 4 to 6 cm and a length of "banata" of 200 m to 1000 m. Common species caught by this gear are snappers, trevallies, emperor fish, and siganids. Sometimes, rays become by catch of this gear. It is being operated by simply setting the gear vertically in the water and kept stationary by the use of anchors and weights.

Multiple handline locally known as "Ug-ug" or "Birabira" has multiple hooks with an equal distance to a mainline with a length of 300 m, 0160 mm to 0180 mm line size and $0.35m - \dot{O} - 0.20$ m branchline length. Live fish or artificial bait made of silk is being used to attract fish. Operators simply tug the line in a vertical motion. The gear is being operated during dawn or dusk where there is a slight portion of sunlight that lights the surface but mostly the operation are being done at night with the use of lights. Majority of the catch is composed of oceanic and neritic tuna (i.e. *Thunnus albacares, Auxis* spp.), and other small pelagics and demersal species.

Moreover, crab trap and fish trap locally called "Bubu" is a very traditional fishing gear in the area. It is made of a very simple apical non-returning valve that serves as entrance for the fish. It is often baited with dead fish or artificial bait that is placed on the middle section of the gear to ensure that the bait is not consumed. Gear is deployed overnight or a day until such time there is a catch. The operators collect the catch and again deploy the gear in the area and wait again the next day for possible catch. Most common species caught by crab trap is mud crab while fish trap caught a variety of large pelagics, demersal, invertebrates and small pelagic species. Dolphinfishes, rays, and barracudas were also noted.

Ring net and fish corral known as "Sirot/Saprot" and "Tarik", respectively have the least number of gear. However, ring net contributed to the bulk of landed catch for small and large pelagic species in all landing areas.

Catch composition

The total catch was based on the total landed catch per species from the fisherfolk on the established landing area and the total counts of the species were based on the available length measurements taken from the landed catch as subsample. The percentage abundance of fishes in the landing area was determined based on the total kilograms of a particular species landed with the corresponding species identification.

Figure 3 shows that demersal species dominated the catch (21.9%) in Isabela waters followed by large pelagic species (13.68%), small pelagics (22.53%), oceanic tunas (29.35%), pelagics (7.66%), neritic tuna (3.86%), invertebrates (0.93%), rays (0.047%), and sharks (0.036%).

Fig. 3. Catch composition and abundance in Isabela Waters, Philippines.

Categorically, there were 28 families of demersal species belonging to Family Scianidae, Teraponidae, Scaridae, Lutjanidae, Acanthuridae, Lethrinidae, Nemipteridae, Serranidae, Mullidae, Siganidae, Haemulidae, Priacanthidae, Labridae, Chaetodontidae, Gerridae, Leiognathidae, Polynemidae, Mugillidae, Synodontidae, Kyphosidae, Ephippidae, Psettodidae, Holocentridae, Centropomidae, Sparidae, Drepanidae, Silliganidae, and Monocanthidae. Large pelagic species belong to four families to include Family Scombridae, Coryphaenidae, Istiophoridae, and Xiphiidae. Small pelagics has seven families belonging to Family Clupeidae, Carangidae, Exocoetidae, Scombridae, Caesionidae, Engraulidae, and Chirocentridae (Table 1).

Diversity, species composition, and richness of marine fish fauna in Isabela Waters, Philippines

Category	Family	Scientific Name	English Name	Local Name	Catch (Kg.)	% Abundance	Species Count (n)	Conservation status
		Acanthurus dussumieri	Eyestripe surgeonfish	Mungit	21.7	0.019	15	LC
		Acanthurus guttatus	White spotted surgeonfish	Mungit	45.0	0.039	20	LC
		Acanthurus lineatus	Lined surgeonfish	Mungit	70.1	0.060	4	LC
		Acanthurus mata	Elongate surgeonfish	Mungit	2.7	0.002	6	LC
	Acanthuridae	Acanthurus nigricauda	Blackstreak surgeonfish	Mungit	11.7	0.010	7	LC
		Ctenochaetus strigosus	Gold string bristle tooth	Mungit	729.6	0.629	2	LC
		Naso hexacanthus	Sleek unicornfish	Sarunguan	18.4	0.016	3	LC
		Naso lituratus	Orange spine surgeonfish	Sarunguan	20.1	0.017	8	LC
		Naso unicornis	Blue spine unicornfish	Sarunguan	2.5	0.002	14	LC
	Centropomidae	Lates calcalifer	Barramundi	Tul-wan/Kaka	10.0	0.009	7	NE
		Parachaetodon ocellatus	Sixspine butterflyfish	Bayang-bayang	35.3	0.030	4	LC
	Chaetodontidae	Parachaetodon sp.	Butterflyfishes	Bayang-bayang	5.2	0.004	7	NE
	Drepaneidae	Drepane punctata	Sickle fish	Bayang-bayang	7.5	0.006	3	NE
Demersal	Ephippidae	Platax orbicularis	Orbicular batfish	Alibangbang/Bayang- bayang	11.4	0.010	7	NE
		Platax teira	Longfin batfish	Alibangbang/Bayang- bayang	11.1	0.010	4	NE
		Gerres erythrourus	Deep-bodied mojarra	Salesi	2.8	0.002	7	LC
	Gerridae	Gerres filamentosus	Whipfin mojarra	Salesi	24.5	0.021	13	LC
		Gerres methueni	Striped silver biddy	Salesi	7.3	0.006	7	NE
		Plectorhinchus chaetodontoides	Harlequin sweetlips	Bibiran	13.5	0.012	3	NE
		Plectorhinchus diagrammus	Striped sweetlips	Bibiran	0.4	0.000	3	NE
	Haemulidae	Plectorhinchus gibbosus	Brown sweetlips	Bibiran	3.6	0.003	8	LC
	Haemandae	Plectorhinchus lineatus	Yellowbanded sweetlips	Bibiran	17.4	0.015	2	NE
		Plectorhinchus pictus	Trout sweetlips	Bibiran	53.6	0.046	1	NE
		Pomadasys argenteus	Silver javelin	Agut	0.7	0.001	2	LC
	Holocentridae	Myripristis adusta	Shadowfin soldierfish	Ter-ter/Siga-siga	9.0	0.008	7	LC
		Myripristis hexagona	Doubletooth soldierfish	Ter-ter/Siga-siga	2.1	0.002	9	LC
		Sargocentron rubrum	Redcoat	Bagsang	2.6	0.002	15	LC
	Kunhosidae	Kyphosus bigibbus	Brown chub	Umipos	11.8	0.010	2	LC
	Ryphosidae	Kyphosus cinerascens	Blue sea chub	Umipos	23.9	0.021	9	LC
	Labridae	Chlorurus bowersi	Bower's parrotfish	Mulmul	1.0	0.001	1	NT
		Chlorurus iapanensis	Palecheeck parrotfish	Mulmul	2.2	0.002	17	LC
		Chlorurus sordidus	Daisy parrotfish	Mulmul	12.0	0.010	12	LC
		Choerodon robustus	Robust tuskfish	Mulmul	3.5	0.003	7	LC
		Coris auricularis	Western king wrasse	Mulmul	2.8	0.002	3	LC
		Coris ballieui	Light colored wrasse	Mulmul	2.6	0.002	2	LC
		Coris flavovittata	Yellostripe coris	Mulmul	1.5	0.001	1	LC
		Cheilinus undulatus	Humphead wrasse	Mulmul	30.0	0.026	2	EN
		Gazza achlamys	Smalltoothed ponyfish	Sap-sap	3.4	0.003	2	LC
	Leiognathidae	Gazza minuta	Toothed ponyfish	Sap-sap	5.6	0.005	2	LC
		Leiognathus hindus	Orangefin ponyfish	Sap-sap	4.6	0.004	15	NE
		Leiognathus daura	Goldstripe ponyfish	Sap-sap	5.7	0.005	2	NE
		Leiognathus equulus	Common ponyfish	Sap-sap	5.1	0.004	4	LC
Damarcal		Leiognathus fasciatus	Threadfin ponyfish	Sap-sap	7.6	0.007	2	LC
Demersar		Leiognathus smithursti	Longfinned ponyfish	Sap-sap	4.3	0.004	1	NE
	Lethrinidae Lutjanidae	Lethrinus amboinensis	Ambon emperor	Dugso	20.8	0.018	4	LC
		Lethrinus atkinsoni	Pacific vellowtail emperor	Dugso	15.0	0.013	5	LC
		Lethrinus ervtronterus	Tail saddle emperor	Dugso	3.8	0.003	10	NE
		Lethrinus barak	Thumborint emperor	Dugso	45.9	0.040	6	IC
		Lethrinus Inntian	Pinkear emperor	Dugso	84.6	0.073	36	LC
		Lethrinus microdon	Smalltooth emperor	Dugso	31.1	0.027	70	LC
		Lethrinus miniatus	Trumpet emperor	Dugso	226.2	0.195	25	LC
		Lethrinus nehulosus	Spangled emperor	Dugso	62.0	0.053	68	LC
		Lethrinus alivaceus	Longface emperor	Dugso	6.0	0.005	42	LC
		Lethrinus comicinatus	Black spot emperor	Dugso	1.0	0.001	2	IC
		Leihrinus semeneus Leihrinus sp	Emperor fich	Dugso	2.7	0.002	5	NE
		Lathrinus op.	Slander amperor	Dugso	63.2	0.002	7	
		Monotaris arandoaulis	Humphose big-eve broom	Bigugo	3.0	0.003	1	NE
-		Apharaus putilans	Rusty jobfish	Maya-mayo	9.6	0.005	2	IC
		Etelis oculatus	Blear-eved snanner	Maya-maya	178.1	0.153	4	DD
1	1	LICIIS OCUITAINS	incar-cycu snapper	maya-maya	170.1	0.100	7	00

Table 1. Species composition and conservation status of marine fish species landed in Isabela Waters, Philippines.

Angel B. Encarnacion, Melanie A. Calicdan-Villarao, and Milagros C. Morales

				1				
		Lutjanus argentimaculatus	Mangrove red snapper	Maya-maya	35.7	0.031	52	LC
		Lutjanus bohar	Two spot red snapper	Maya-maya	14.0	0.012	4	LC
		Lutjanus decussatus	Crossbanded snapper	Tagpian	146.0	0.126	31	LC
		Lutjanus erythropterus	Crimson snapper	Maya-maya	108.5	0.093	56	NE
		Lutianus fulviflammus	Dory snapper	Mava-mava	0.8	0.001	39	LC
		Lutianus fulvus	Blacktail snapper	Mava-mava	101.3	0.087	3	LC
		Lutianus gibbus	Humpback red snapper	Maya-maya	67.6	0.058	43	LC
		Lutianus jobnii	John's snapper	Maya maya	51	0.004	10	LC
	Lutjanidae	Luijanus jonni	Common historica and an	Maya-maya	5.1	0.055	10	LC
		Luganus kasmira		Maya-maya	03.4	0.033	21	LC
		Lutjanus temniscatus	Y ellowstreaked snapper	Maya-maya	16.6	0.014	2	NE
		Lutjanus lunulatus	Lunartail snapper	Maya-maya	57.9	0.050	26	LC
		Lutjanus lutjanus	Bigeye snapper	Maya-maya	146.5	0.126	25	LC
		Lutjanus malabaricus	Malabar bloody snapper	Maya-maya	2.1	0.002	79	NE
		Lutjanus monostigma	One spot snapper	Maya-maya	8.7	0.007	7	LC
		Lutjanus quinquelineatus	Five-lined snapper	Maya-maya	268.1	0.231	7	LC
		Lutjanus rivulatus	Blubberlip snapper	Maya-maya	35.2	0.030	135	LC
		Lutjanus russellii	Russell's snapper	Maya-maya	25.7	0.022	29	LC
Demersal		Lutjanus sebae	Red emperor snapper	Maya-maya	18.8	0.016	14	LC
Demensar		Lutianus sp.	Snapper	Maya-maya	6.0	0.005	10	NE
		Lutianus timorensis	Timor snapper	Maya-maya	14.4	0.012	23	NE
		Lutianus vitta	Brownstrine red snonner	Maya maya	100.0	0.164	5	IC
	Managanthidag	Alutanus vina	Lucian lasthan is shot	Sama maya	190.0	0.002	1	LC
	Monocantnidae	Auterus monocerus	Unicorn leather jacket	Sarunguan	1.9	0.002	1	LC
	Mugillidae	Crenimugil crenilabis	Fringelip mullet	Gassak	8.5	0.007	10	LC
	magninate	Liza macrolepis	Largescale mullet	Gassak	2.0	0.002	23	LC
		Mugil cephalus	Flathead mullet	Gassak	17.1	0.015	75	LC
		Mulloidichthys vanicolensis	Yellowfin goatfish	Balaki	5.6	0.005	11	LC
		Parupeneus barberinus	Dash-and -dot goatfish	Kudong	8.0	0.007	13	LC
		Parupeneus cyclostomus	Gold-saddle goatfish	Kudong	11.9	0.010	10	LC
	Mullidae	Parupeneus indicus	Indian goatfish	Kudong	3.7	0.003	16	LC
		Parupeneus multifasciatus	Banded goatfish	Kudong	5.1	0.004	2	LC
		Parupeneus pleurostigma	Sidespot goatfish	Kudong	66.0	0.057	6	LC
		Uneneus mollucensis	Goldband goatfish	Balaki	16	0.001	2	NE
		Upanaus subhuraus	Sulphur goatfish	Balaki	171.8	0.148	20	IC
		Openeus suprimeus	Suprice goatrish	Kadaaa	1/1.8	0.148	50	LC
		Openeus vittatus	Y ellowstripe goatrish	Kudong	140.1	0.121	0.5	LC
		Nemipterus bathybius	Yellowbelly threadfin bream	Bisugo	251.3	0.217	5	NE
	Nemipteridae	Nemipterus furcosus	Fork-tailed threadfin bream	Bisugo	76.8	0.066	47	LC
		Nemipterus hexodon	Ornate threadfin bream	Bisugo	11.9	0.010	35	LC
		Nemipterus nematophorus	Doublewhip threadfin bream	Bisugo	85.6	0.074	4	NE
		Nemipterus nemurus	Redspine threadfin bream	Bisugo	7.6	0.007	38	LC
	Nemipteridae	Nemipterus sp.	Threadfin breams	Bisugo	3.1	0.003	12	NE
		Nemipterus zysron	Slender threadfin bream	Bisugo	95.0	0.082	5	LC
	Polynemidae	Eleutheronema tetradactylum	Blue threadfin bream	Bisugo	39.7	0.034	41	NE
		Heteropriacanthus cruentatus	Glasseve snapper	Bulan-bulan	76.0	0.065	5	LC
	Priacanthidae	Priacanthus hamrur	Moontail bullseve	Bulan-bulan	1.0	0.001	13	LC
		Prigranthus tavanus	Pumle-spotted bigeve	Bulan-bulan	1.4	0.001	3	LC
	Prottodidao	Protectoridae anomai	Spiny turbot	Dadali	1.4	0.001	2	NE
	rseuouluae		Spiny turbot	Dauan	14.0	0.013	3	NE
	Scaridae	Scarus jesuvas	Festive parrotinsn	Mulmul	0.8	0.001	1	LC NT
		Scarus hypselopterus	Yellow-tail parrotfish	Mulmul	1.0	0.001	1	NT
		Scarus microrhinos	Steephead parrotfish	Mulmul	145.0	0.125	3	LC
		Scarus rivulatus	Rivulated parrotfish	Mulmul	2697.5	2.324	22	LC
	Scianidae Serranidae	Pennehia anea	Donkey croaker	Tutu	1480.9	1.276	9	NE
Demersal		Otolithes ruber	Tigertooth croaker	Tuwel	0.8	0.001	2	NE
		Cephalopholis argus	Peacock grouper	Lapu-lapu	0.2	0.000	1	LC
		Cephalopholis boenak	Brown-banded seabass	Kakak	3.3	0.003	3	LC
		Cephalopholis cvanostigma	Blue spotted hind	Lapu-lapu	3.6	0.003	2	LC
		Cephalopholis miniata	Coral Hind	Lapu-lapu	25.0	0.022	1	LC
		Fninenhelus arealatus	A realate grouper	Lanu-lanu	5.8	0.005	3	IC
		Epinephelus blookovi	Duckatel grouper	Lapu-lapu	17.6	0.015	4	NT
				Lapu-lapu	17.0	0.013	4	NT
		Epinepneius coloides	Orange spotted grouper	Lapu-Iapu	37.9	0.033	17	IN I
		Epinephelus Jasciatus	Blacktip grouper	Lapu-lapu	2.1	0.002	13	LC
		Epinephelus faveatus	Barred-chest grouper	Lapu-lapu	49.3	0.042	2	DD
		Epinephelus fuscoguttatus	Brown-marbled grouper	Lapu-lapu	4.3	0.004	9	NT
		Epinephelus maculatus	Highfin grouper	Lapu-lapu	9.3	0.008	2	LC
		Epinephelus malabaricus	Malabar grouper	Lapu-lapu	7.3	0.006	5	NT
		Epinephelus morrhua	Comet grouper	Lapu-lapu	3.3	0.003	1	LC
		Epinephelus ongus	White-streaked grouper	Lapu-lapu	13.5	0.012	1	LC
1	1	L						

Diversity, species composition, and richness of marine fish fauna in Isabela Waters, Philippines

		Hyporthodus quernus	Hawaiian grouper	Lapu-lapu	9.9	0.009	1	NT
		Epinephelus quoyanus	Longfin grouper	Lapu-lapu	8.9	0.008	1	LC
		Epinephelus summana	Summan grouper	Lapu-lapu	128.7	0.111	56	DD
		Epinephelus tauvina	Greasy grouper	Lapu-lapu	37.7	0.032	22	DD
		Plectropomus leopardus	Leonard coral grouper	Lanu-lanu	49.0	0.042	20	NT
		Variola alhimarginata	White-edged lyre tail	Lapu-lapu	19.8	0.017	12	IC
		Siamus araphaus	Forktail rabbitfish	Magerabu	23.8	0.021	64	LC
		Sigunus argenieus	White control coincident	Magerabu	12.0	0.021	20	LC
		Siganis cananculatis	White-spotted spinetoot	Magerabu	13.9	0.012	38	
	Serranidae	Siganus fuscescens	Mottled spinetoot	Magerabu	118.5	0.102	22	LC
		Siganus guttatus	Golden rabbitfish	Magerabu	20.3	0.017	102	LC
		Siganus javus	Java rabbitfish	Magerabu	13.2	0.011	27	LC
		Siganus punctatus	Gold-spotted rabbitfish	Magerabu	47.1	0.041	17	LC
Demersal		Siganus spinus	Scribbled rabbitfish	Magerabu	58.8	0.051	9	LC
		Siganus vermiculatus	Vermiculated spinefoot	Magerabu	4.8	0.004	6	LC
	Sillaganidae	Sillago maculata	Trumpeter whiting	Uso-os/Al-alibut	0.5	0.000	5	NE
	-	Sillago sihama	Silver sillago	Uso-os/Al-alibut	2.0	0.002	24	LC
	Sparidae	Acanthopagrus australis	Yellowfin bream	Bisugo	13.6	0.012	4	LC
	Synodontidae	Saurida gracilis	Gracile lizardfish	Buttar	15.4	0.013	13	LC
	Synodonnade	Saurida nebulosa	Clouded lizardfish	Buttar	3.6	0.003	21	LC
	Tarananidaa	Terapon jarbua	Tiger perch	Tuwel	11.8	0.010	6	LC
	rerapoindae	Teranon therans	Largescaled teranon	Tuwel	15851.8	13 659	8	LC
	Saambridaa	Acanthombium solandri	Wahaa	Tanggigi	820.0	0.707	51	LC
	Scombridge	Acaminocyotam solandi t	Demons delabirGeb	Taliggigi Davada	820.0 4802.6	0.707	220	LC
	Coryphaenidae	Coryphaena equiseus	Pampano dolphinish	Dorado	4802.6	4.138	320	LC
Large Pelagics		Coryphaena hippurus	Common dolphinfish	Dorado	2701.6	2.328	145	LC
	Istionhoridae	Istiompax indica	Black Marlin	Malasugi	3993.7	3.441	70	DD
	istiophoridae	Istiophorus platypterus	Sailfish	Malasugi	3265.4	2.814	102	LC
		Istiompax mazara	Pacific blue marlin	Malasugi	156.7	0.135	6	NE
	Xiphiidae	Xiphias gladius	Swordfish	Malasugi	136.4	0.118	7	LC
	Caesionidae	Caesio cunning	Redbelly yellowtail fusilier	Dalagang bukid	2.0	0.002	10	NE
		Pterocaesio chrysozona	Golband fusilier	Dalagang bukid	18.2	0.016	41	LC
Small Pelagics		Atule mate	Yellowtail scad	Galunggong	1057.6	0.911	2560	LC
	Carangidae	Decapterus kurroides	Redtail scad	Galunggong	764.6	0.659	812	NE
		Decapterus macarellus	Mackerel scad	Galunggong	16556.8	14.267	217	LC
		Decapterus macrosoma	Shortfin scad	Galunggong	2057.6	1.773	450	LC
		Decanterus maruadsi	Jananese scad	Galunggong	164.4	0.142	210	NE
		Decaptor us mai maini Dacaptarus russalli	Indian scad	Galunggong	2.2	0.002	6	IC
		Salar hoons	Oveve scad	Mataan	1.3	0.002	8	LC
		Setur boops	Diseve sead	Mataan	27.0	0.001	221	LC
		Setur crumenoprinaimus	Netternet in and	Mataan	37.9	0.033	407	LC
		Selarotaes ieptoiepts	Y enowstripe scad	Mataan	3/1.4	0.320	48/	
	Chirocentridae	Chirocentrus dorab	Dorab wolf-herring	Bilis	2.1	0.002	6	NE
	Clupeidae	Amblygaster leiogaster	Smoothbelly sardinella	Tamban/Bilis	60.7	0.052	51	NE
		Amblygaster sirm	Spotted sardinella	Tamban/Bilis	7.0	0.006	23	NE
		Anodontostoma chacunda	Chacunda gizzard shad	Kabasi	57.4	0.049	99	NE
		Dussumieria acuta	Rainbow sardine	Balid-bid	3438.9	2.963	4265	NE
		Sardinella albella	White sardinella	Tamban-hubad	10.3	0.009	46	LC
		Spratilloides gracilis	Silverstripe round herring	Buwan-buwan	353.1	0.304	559	NE
	Engraulidae	Stolephorus japonicus	Japanese anchovy	Munamun	4.4	0.004	425	NE
Small Pelagics		Cheilopogon sp.	Flying fish	Isdang lawin	2.0	0.002	15	NE
		Cheilopogon suttoni	Sutton's flyingfish	Isdang lawin	8.2	0.007	34	NE
	Exocoetidae	Cypselurus naresii	Pharao flyingfish	Isdang lawin	818.1	0.705	938	NE
		Cypselurus oligolepis	Largescale flyingfish	Isdang lawin	8.9	0.008	21	NE
		Cypselurus poecilopterus	Yellowing flyingfish	Isdang lawin	49.4	0.043	50	NE
		Rastrelliger faughni	Island macketel	Alumahan	10.3	0.009	41	DD
	Scombridae	Scomhar australasieus	Blue mackerel	Alumahan	23	0.002	16	LC
		Scomber australiancus	Basifia shuk mashanal	Alumahan	2.5	0.002	242	LC
		Scomber juponicus	Pacific chub macketei	Alumanan	279.0	0.240	342	LC
Oceanic Tuna	Scombridae	Kaisuwonus peiamis	Skipjack tuna	Duiyasan	9240.1	7.962	4/3	
Occanie Fana		Thunnus albacares	Yellowfin tuna	Tangi/Yellow fin	3195.3	2.753	829	NI
		Thunnus obesus	Bigeye tuna	Tangi/Dumadara	21625.2	18.634	444	VU
	Albulidae	Albula neoguinaica	Sharpjaw bonefish	Purung	47.8	0.041	125	DD
[Belonidae	Tylosurus acus melanotus	Keel-jawed needlefish	Siriw/Layalay	25.0	0.022	60	NE
		Alectis indicus	Indian threadfish	Talakitok	4.5	0.004	111	NE
Pelagics		Alepes djedaba	Shrimp scad	Mangarmang	21.7	0.019	90	LC
	Carangidae	Atropus atropos	Cleftbelly trevally	Talakitok	132.1	0.114	229	NE
		Carangoides dinema	Shadow trevally	Talakitok	14.4	0.012	41	LC
		Carangoides ferdau	Blue trevally	Talakitok	6.6	0.006	16	LC
		Carangoides fulvoguttatus	Yellowspotted trevally	Talakitok	454.7	0.392	568	LC
1	1	L						

Angel B. Encarnacion, Melanie A. Calicdan-Villarao, and Milagros C. Morales

i.	1		1	1	1			1
		Carangoides hedlandensis	Bumpnose trevally	Talakitok	346.0	0.298	459	LC
		Carangoides sp.	Trevallies	Talakitok	3.2	0.003	5	NE
		Caranx ignobilis	Giant trevally	Talakitok	20.6	0.018	44	LC
		Caranx melampygus	Bluefin trevally	Talakitok	105.6	0.091	154	LC
		Caranx sexfasciatus	Bigeye trevally	Talakitok	330.2	0.284	423	LC
		Caranx tille	Tille trevalley	Talakitok	7.2	0.006	52	LC
		Elagatis bipinnulata	Rainbow runner	Salmon	5736.7	4.943	78	LC
		Gnathanodon speciosus	Golden trevally	Talakitok	81.8	0.070	146	LC
		Megalaspis cordyla	Torpedo scad	Sikkaran	13.5	0.012	16	LC
		Pampus argenteus	Silver pompfret	Pampano	3.8	0.003	5	NE
		Parastromateus niger	Black pompfret	Pampano	38.2	0.033	95	NE
	Carangidae	Scomberoides tol	Needlescaled queenfish	Lapis	8.0	0.007	16	LC
		Trachinotus carolinus	Florida pampano	Lapis	143.0	0.123	181	LC
		Trachurus declivis	Greenback horse mackerel	Alumahan	305.7	0.263	452	NE
	Gempylidae	Ruvettus pretiosus	Oilfish	Kintara	236.7	0.204	342	LC
	Hemiramphidae	Hemiramphus far	Black-barred halfbeak	Barasut	6.2	0.005	24	NE
Pelagics	Megalopidae	Megalops cyprinoides	Indo-pacific tarpon	Bulan-bulan	477.3	0.411	624	DD
5	Mennidae	Mene maculata	Mene maculata	Tiyad-tiyad	62.6	0.054	95	NE
	Mugillidae	Moolgarda buchanani	Bluetail mullet	Gassak	5.3	0.005	9	NE
	5	Moolgarda seheli	Bluespot mullet	Gassak	116.1	0.100	201	NE
	Sphyraenidae	Sphyraena barracuda	Great barracuda	Batag	73.4	0.063	48	LC
		Sphyraena jello	Pinkhandle barracuda	Batag	13.7	0.012	59	NE
		Sphyraena obtusata	Obtuse barracuda	Batag	0.5	0.000	1	NE
		Sphyraena putnamei	Sawtooth barracuda	Batag	38.0	0.033	53	NE
	Trichiuridae	Trichiurus lepturus	Largehead hairtail	Espada	11.0	0.010	49	NE
		Auxis rochei rochei	Bullet tuna	Tulingan	3440.8	2.965	899	NE
	Scombridae	Auxis thazard thazard	Frigate tuna	Tulingan	632.5	0.545	824	NE
Neritic Tuna		Euthynnus affinis	Kawakawa	Tangi	36.3	0.031	70	LC
		Scomberomorus commerson	Narrow-barred spanish mackerel	Tanggigi/ Dumarada	228.8	0.197	292	NT
		Scomberomorus guttatus	Indo-pacific King mackerel	Tanggigi/ Dumarada	143.3	0.123	211	LC
		Loligo duvaucelli	Indian squid	Laki	12.8	0.011	27	NE
Invertebrates	Loliginidae	Loliolus noctiluca	Luminous bay squid	Pusit	122.2	0.105	19	NE
		Loliolus beka	Beka squid	Pusit	818.0	0.705	1	NE
	Octopididae	Octopus aegina	Marbled octopus	Kurita	5.1	0.004	56	NE
	1	Octopus cyanea	Big blue octopus	Kurita	24.8	0.021	8	NE
	Panuliridae	Panulirus sp.	Lobster	Binaging	32.0	0.028	8	NE
		Parribacus antarcticus	Sculptured mitten lobster	Binaging	3.0	0.003	10	LC
	Scyllariidae	Scylla serrata	Giant muderab	Rasa	62.1	0.054	8	NE
	Sepiidae	Sepia lycidas	Kisslip cuttlefish	Patawan	1.0	0.001	1	DD
		Carcharhinus dussumieri	Widemouth blackspot shark	Pating	10.0	0.009	2	NT
Sharks	Carcharhinidae	Carcharhinus falciformis	Silky shark	Pating	1.4	0.001	1	NT
		Carcharhinus melanopterus	Blacktip reef shark	Pating	30.0	0.026	2	NT
	Myliobatidae	Aetobatus nari nari	Spotted eagle ray	Pagi	3.1	0.003	4	NE
	Dasyatidae	Dasyatis kuhlii	Bluespotted maskray	Pagi	10.8	0.009	26	DD
Rays		Dasyatis sp.	Rays	Pagi	11.0	0.009	1	NE
		Neotrygon leylandi	Painted maskray	Pagi	26.2	0.023	1	LC
		Taeniura lymma	Bluespotted fantail ray	Pagi	3.9	0.003	4	NT
Total	I	1	<u> </u>		116,053.3	100	23,980	

Similarly, oceanic and neritic tuna belongs to Family Scombridae and pelagic species belongs to ten families namely Family Carangidae, Megalopidae, Belonidae, Sphyraenidae, Mugillidae, Gempylidae, Mennidae, Albulidae, Trichiuridae, and Hemiramphidae. The species of invertebrates has five families belonging to Family Loliginidae, Scyllaridae, Octopididae, Panuliridae, and Sepiadariidae. Sharks belong to Family Carcharhinidae and rays belong to Family Dasyatidae and Myliobatidae.

With regards to the conservation status of each species based on the classification of IUCN Red List of Endangered species, there were 14 species that are nearly threatened (NT), 1 endangered (E), one (1) vulnerable (V), 140 least concern (LC), 10 data deficient (DD), and 72 species not evaluated (NE). Threatened species are Bower's parrotfish (Chlorurus bowersi), Duskytail grouper (Epinephelus bleekeri), Orange spotted grouper (Epinephelus coioides), Brown-marbled grouper (Epinephelus fuscoguttatus), Malabar grouper (Epinephelus malabaricus), Hawaiian grouper (Hyporthodus quernus), Leopard coral grouper (Plectropomus leopardus), Yellow tail parrotfish (Scarus hypselopterus), Yellowfin tuna (Thunnus albacares), Narrow barred spanish mackerel (Scomberomorus commerson), Widemouth blackspot shark (Carcharhinus dussumieri), Silky shark (Carcharhinus falciformis), Blacktip reef shark (Carcharhinus melanopterus), and Bluespotted fantail ray (Taeniura lymma).

Meanwhile, big-eye tuna (*Thunnus obesus*) and Humphead wrasse (*Cheilinus undulatus*) were already assessed as vulnerable and endangered, respectively. *C. undulatus* was noted to occur only once a year and the landing of this species was noted in Divilacan Bay during the month of September.

Figure 4 shows the percentage abundance of families by weight. Family Scombridae have the highest percentage abundance (34.17%) followed by Family Carangidae (24.81%), Teraponidae (13.67%) and Coryphaenidae (6.47%). Big-eye tuna (*Thunnus obesus*), mackerel scad (*Decapterus*)

macarellus), largescaled terapon (Terapon theraps), and pompano dolphinfish (Coryphaena equiselis) dominated the catch of Family Scombridae, Carangidae, Teraponidae, and Coryphaenidae, respectively. Species of oceanic and neritic tunas are abundantly present throughout the year. The year round abundance of free school tunas, round scads and other large pelagic species could be attributed to the presence of floating artificial reefs or fish aggregating device in the area which could attract schools of fish. Most of the catches were derived from small scale fishing using handlines (i.e. multiple handline and simple handline) and gill nets and commercial scale ring netting in conjunction with payao. The top species observed in this study were similar to the findings of Ayson and Encarnacion (2008) in which tuna and other tuna-like species, round scads, and anchovies are the major species caught in the coastal waters of Cagayan adjacent to Isabela waters.

On the other hand, the least recorded volume belongs to Family Myliobatidae, Chirocentridae, Monocentridae, Sillaganidae, and Sepiidae which only has 0.004 percentage contributions. Species under these families are seldom recorded throughout the study period since some of the species are only by catch (i.e. eagle rays), and other species are highly seasonal.

Species diversity

There were 23,980 total numbers of fish individuals belonging to 238 species from 54 families of 109 genera (Table 2) sampled from the established landing sites within Isabela waters fishing ground and notably similar to the species observed in the nearby fishing ground, the Babuyan Channel. The average population size of the species in the area is 100.08. Shannon-Weiner diversity index (H) value was found to be high with a diversity value of 3.77. Values of the Shannon's diversity index for real communities typically fall

Fig. 4. Percentage abundance by Family in Isabela Waters, Philippines.

between 1.5 and 3.5 for ecological data and rarely exceeds 4.0 (May 1975) where a community with few individuals from many different species has higher diversity than that community of the same number of individuals with most of them belonging to few species. The study revealed that there is existence of variability of diversity of marine fishes in the fishing ground. According to Orth and Colette (1996), the Shannon diversity index has strong values for species with recoveries of same importance and it takes low when some species have strong recoveries.

However, upon comparing the species richness of the area to the nearby fishing grounds in Cagayan Valley Region, the species richness of Isabela waters was slightly lower compared to Batanes Waters with 580 species (Morales et al. 2016) and Babuyan Channel with 256 species recorded (Encarnacion et al., in press). Nevertheless, the obtained diversity value is still high which could be an indication that the habitat is still good and undisturbed. The variations and degree of diversity in different fishing grounds could be due to several anthropogenic factors (i. e. fishing pressure), and ecological factors like topography, habitat type and quality and substrate type.

The Simpson's dominance index value of 0.94 indicates that taxon dominates a community or an area. Simpson's dominance index ranges from 0 (all taxa are equally present) to 1 (taxon dominates the community completely). Pielou's evenness (J) value was 0.7. Ifo et al. (2016) stated that the value of equitability (Evenness index) varied from 0 to 1. The authors furthered that, it is equal to 1 when all the species have same abundance and tend towards 0 when the near total of floral or faunal is calculated to only one species. The data shows that there are similar proportions of different species in the fishing ground as reflected by the evenness value which is nearly or close to 1.0.

SUMMARY AND CONCLUSION

There are 15 fishing gears operating in Isabela waters and majority of the gears being used are troll line, bottom set gill net, multiple handline and traps. Family Scombridae and Carangidae are the top 2 families occurring in the fishing ground. As to conservation status, *C. undulatus* was already listed by IUCN as endangered species and there are 14 species in the area that are nearly threatened. There were 23,980 individuals of fish collected belonging to 54 families, 109 genera, and 238 species. The computed diversity index was very high (3.77). As observed, few individuals were noted but the species belongs to different Genera and Families. The Simpson dominance index (0.94) indicated that taxon

dominates an area. Evenness index of 0.7 showed that a similar proportion of different species are found in the fishing ground.

Based on the findings of the study, Isabela waters have diverse marine commercial fishes based on the number of families, genus and species documented. It can also be inferred that the year round presence of highly migratory species particularly the oceanic tunas and other large and small pelagic fish species is due to the presence of fish aggregating devices in the area that attract schools of fish where larger species can prey on the smaller one. The information generated in this study can already provide baseline information for management of the marine fishes in the Isabela waters, Philippines.

REFERENCES

- Alava M.N.R., Gaudiano, J.P.A., Utzurrum, J.T., Capuli, E.E., Aquino, M.T.R., Luchavez-Maypa, M.M.A., and Santos, M.D. 2014. Pating k aba? An identification guide to sharks, batoids and chimeras of the Philippines. Department of Agriculture Bureau of Fisheries and Aquatic Resources – National Fisheries Research and Development Institute and the Marine Wildlife Watch of the Philippines. pages 200. ISBN 978-971-8722-33-6.
- Allen G., Steene, R., Humann, P., and DeLoach, N. 2003. Reef fish identification. Tropical Pacific. New World Publications, Inc. ISBN 1.878348.36.
- Ayson J. P, and Encarnacion A. B. 2008. Marine resources along the Kurushio in the Cagayan Valley Region, Philippines. Department of Agriculture-Bureau of Fisheries and Aquatic Resources Regional Office No. 2 (Regional Government Complex, Carig, Tuguegarao City 3500 Cagayan, Philippines). Kuroshio Science. 2(1). pp. 59-66.
- Baleta F.N., and Bolaňos, J.M. 2017. Design, fabrication and operation of fishing gears used along the coastal areas of Isabela, Philippines. International Journal of Fisheries and Aquatic Studies. 5 (2). pp. 319-323.
- BFAR- R02 -FishR 2017. Municipal fisherfolk registration. https://mfrs.bfar.da.gov.ph. (Last access 15 August 2017)
- CITES. 2017. Convention on on international trade in endangered species of wildlife flora and fauna. https://www.cites. org/. (Last access 15 August 2017).
- COL. 2017. Catalogue of life. http://www.catalogueoflife. org/col/info/databases. (Last access 15, August 2017).
- Encarnacion A.B., Calicdan, M.A., Gumiran, E., and Ayson, J.
 P.A. 2017. Assessment of fisheries resources in Babuyan Channel, Philippines. 2014. Department of Agriculture-Bureau of Fisheries and Aquatic Resources Region 02.
 NSAP Technical paper presented during the NSAP Annual Symposium held at General Santos City on September 2014, in press.

Diversity, species composition, and richness of marine fish fauna in Isabela Waters, Philippines

- EOL. 2017. Encyclopedia of life. http://eol.org/pages/204783/ overview. (Last access 10 August, 2017).
- FishBase. 2017. http://www.fishbase.org/search.php. (Last access 20 August 2017).
- Food and Agriculture Organization (FAO). 1998. Carpenter, K.E., and Niem, V.H. (eds.). Species identification guide for fishery purposes. The living marine resources of the Western Central Pacific. ISBN 92-5-104051-6.
- Ifo S.A., Montsambote, J.M., Koubouana, F., Yoka, F., Ndzai, S.F., Bouetou-Kalilamio, L.N.O., Mampouya, H., Jourdain, C., Bocko, Y., Mantota, A.B., Mbemba, M., Mouanga-Sokath, D., Odende, R., Mondzali, L.R., Wenina, Y.E.M. Ouissika, B. C., and Joel, L. J., 2016. Three species diversity, richness and similarity in intact and degraded forest in the tropical rainforest of Congo Basin: Case of the forest of Likouala in the Republic of Congo. International Journal of Forestry Research. Vol. 2016. Article ID. 7593681. Accessed at http://dx-doi.org//10. 1155/2016/7593681.
- May R.M. 1975. Patterns of species abundance and diversity. In Ecology and Evolution of communities (ed. M.L.D. Cody, J. M.) Cambridge, Mass.: Harvard University

Press. Accessed at www.pisces-conservatiom.com.

- Morales M.C., Encarnacion, A.B., and Calicdan, M.A. 2016. Municipal marine fisheries of Batanes Island, Philippines (2009-2013). Kuroshio Science Journal. Keynote Reviews and Reports. 10-1. pp. 7-22.
- Randall J.E., 2005. Reef and shore fishes of the Pacific. New Caledonia to Tahiti and the Pitcairn Islands. University of Hawaii Press. ISBN 0-8248-2698-1.
- Shannon C.E., and Weaver, W. 1949. The mathematical theory of communication. University of Illinois Press. Urbana, Illinois. pp. 144.
- Simpson E.H. 1949. Measurement of diversity. Nature. 163: pp 688.
- White W.T., Last P.R., Dharmadi, Faizah R., Chodrijah U., Prisantoso B.I., Pogonoski J.J., Puckridge M. and Blaber S. J. M. 2013 Market fishes of Indonesia. ACIAR Monograph No. 155. Australian Centre for International Agricultural Research. Canberra. pp. 438. ISBN 978 1 921962 78 3.
- WoRMS. 2017. World of registered marine species. www. marinespecies.org. (Last access 19 August 2017).