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Abstract 
Binary logistic regression models are commonly used to assess the association between outcomes 
and covariates. Many covariates are inherently continuous, and have a variety of distributions, in-
cluding those that are heavily skewed to the left or right. Existing theoretical formulas, criteria, 
and simulation programs cannot accurately estimate the sample size and power of non-standard 
distributions. Therefore, we have developed a simulation program that uses Monte Carlo methods 
to estimate the exact power of a binary logistic regression model. This power calculation can be 
used for distributions of any shape and covariates of any type (continuous, ordinal, and nominal), 
and can account for nonlinear relationships between covariates and outcomes. For illustrative 
purposes, this simulation program is applied to real data obtained from a study on the influence of 
smoking on 90-day outcomes after acute atherothrombotic stroke. Our program is applicable to 
all effect sizes and makes it possible to apply various statistical methods, logistic regression and 
related simulations such as Bayesian inference with some modifications. 
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1. Introduction 
Logistic regression models have been used to determine the association between risk factors and outcomes in 
various fields, including medical and epidemiological research [1] [2]. However, they sometimes produce con-
tradictory conclusions for the same hypothesis. For example, some studies have indicated that cigarette smoking 
enhances the risk of Barrett’s Esophagus, whereas other studies have concluded that there is no association be-
tween the two because of a lack of power [3]. The robustness of such inferences is dependent on the relationship 
between sample size and power [4]. It is clearly important to calculate the sample size and estimate the power of 
observational studies, as well as randomized control studies, while accounting for the effects of other covariates. 

Theoretical formulas, criteria, and software applications have been developed to enable the accurate determi-
nation of sample size and statistical power in a binary logistic regression model [5]-[11]. However, these tend to 
consider only specific, well-known probability distributions, even though it is clear that the power differs ac-
cording to the shape of the covariate distribution. In practice, many covariates are inherently continuous, and 
their distributions take a variety of shapes (e.g., being heavily skewed to the left or right). Another problem is 
that the size of the effect can sometimes differ between outcomes and covariate. For example, J-shaped rela-
tionships are sometimes found in medical and epidemiological studies and an inverse relationship between dias-
tolic pressure and adverse cardiac ischemic events (i.e., the lower the diastolic pressure the greater the risk of 
coronary heart disease and adverse outcomes) has been observed in numerous studies [12]. The distribution 
shape and effect size of covariates must be carefully considered. Therefore we have developed a software pro-
gram that uses Monte Carlo simulations to estimate the exact power of a logistic regression model correspond-
ing to the actual data structure. This program has numerous advantages. It can handle any distribution shape and 
effect size and enables the application of various statistical methods, logistic regression, and other simulations 
such as Bayesian inference with some modifications. In this paper, we report the application of our simulation 
program to real data obtained from a study on the influence of smoking on 90-day outcomes after acute athe-
rothrombotic stroke in 292 Japanese men [13]. 

2. Theoretical Background 
2.1. Standard Binary Linear Logistic Regression Model 
We consider a case-control study in which the binary response variable y denotes each patient’s disease status (y 
= 1 for cases and y = 0 for controls). For each subject, we have a set of p covariates X1, X2 ,  , Xp. Let the con-
ditional probability that an outcome is present be denoted by. The logit of the multiple logistic regression model is 

( ) 0 1 1 2 2 , , ,p pg X X X Xβ β β β= + + + +  

in which case the logistic regression model is  

( )
( )

( )
eπ ,

1 e

g X

g XX =
+

 

where β is an unknown parameter. 

2.2. Two-Segment Logistic Regression Model for Nonlinear Association between a Logit 
Outcome and a Covariate 

We replace the linear term associated with the covariate X1 in the standard binary logistic regression model with 
a two-segment function containing a change-point. The relationship between the logit outcome and X1 is differ-
ent either side of this change-point. The two-segment logistic regression model shown in Figure 1 can be ex-
pressed as follows 
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Figure 1. Two-segment logistic regression model for non-linear association between logit out-
comes and covariates. 

 
( )1 1 0 1 1  If  ,  X g X Xτ β α≤ = +  

( ) ( )1 1 0 1 2 1If  ,  X g X Xτ β α τ α τ> = + + −  

where represents the value of the change-point and; α1, α2 are the unknown regression coefficients of X1. 

3. Methods 
3.1. Outline of Simulation Program 
Our Monte Carlo simulation program is written in the SAS/STAT/IML language; the source code is given in the 
appendix. The program consists of three parts: data generation, parameter estimations, and statistical power cal-
culation. Users should modify and add to these conditions according to their specific purposes and interests. 
Table 1 describes the input parameters required to run the program. Users should assign suitable values, as de-
termined by the relevant test problem. Table 2 describes some macro modules for modifying this program.  

Continuous distributions are generated by specifying the mean, standard deviation, skewness, kurtosis, and 
correlation, or by assigning frequencies in each designated interval of a continuous variable (see Figure 2). The 
nonlinear relationship between the continuous covariates and the logit outcome can be specified by varying the 
regression coefficients on either side of a change point, as shown in Figure 1.  

In the proposed program, users assign values for the proportion of events, sample size, Type I error, regres-
sion coefficients, distribution type (dichotomous, polytomous, or continuous), and distribution shape, as well as 
the quantile number for the categorization approach. The output of this program shows the average and standard 
error of each coefficient, as well as the power. A flowchart describing this program is shown in Figure 3. 

The validity of the program is confirmed by comparing its results with those given by Hsieh’s program. The 
output of our program is almost the same as that from Hsieh’s program. For example, when the event proportion, 
sample size, and regression coefficient were set to 0.01, 12,580, and −0.223, respectively, our program estimated 
a power of 0.81, whereas Hsieh’s gave a result of 0.8. When the event proportion, sample size, and regression  

( )
( )
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1
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Table 1. Description of input parameters. 

Input parameter Explanation 

SEED  Random number seed (should be a positive integer) 

ALEVEL Significance level of the statistical test (Type I error) 

P Event proportion (response probability) 

NITER Number of iterations performed 

N_REPEAT Number of iterations performed  

 *NITER and N_REPEAT should be the same number 

PATH Directory in which results are saved 

TABLE  Table name for saved results 

R Number of categorized groups 

 Example: continuous = 1, median = 2, tertile = 3, quantile = 4 

 *If model includes nominal variables, R should be >1 

CHANGE_POINT  Change point (see Figure 1) 

Regression coefficients for the covariates in the full model, except for predictors and intercept, specified as: 

MODEL_1  %NRSTR(α1
*X1+,


, + βiXi) 

MODEL_2  %NRSTR(α1
*(the value of change_point) + α2

*(X1 − (the value of change_point) +,


, + βiXi) 

 α and β are the given regression coefficient values 
*If model is linear, the regression coefficients α1 and α2 are the same 

Sample size, mean, standard deviation, skewness, kurtosis, and correlation are specified as: 

Example 
DATA a (type=CORR); 
LENGTH _TYPE_  $40; 
INPUT  _NAME_ $_TYPE_$  X1 X2  ;  
IF TRIM(LEFT(_TYPE_))=’N’ THEN call symput(‘NSP’, X1); 
CARDS; 
.   MEAN 70 50 
.   STD 4 5  
.   N      300 300  
X1   CORR 1 0  

                   X2   CORR 0 1 
;     
RUN; 

*If only one covariate is defined, the correlation should be set to 1. The sample size of all covariates should be the same. 

SKW_KRT %NRSTR ({skewness 1 kurtosis 1, skewness 2 kurtosis 2, 


}) 
*If covariates are normally distributed, both skewness and kurtosis are set to 0.  

LIST_VARNAME %NRSTR (X1, X2,


, Xi); list of variable names in A of above dataset 

MIN Minimum value of a continuous variable 

MAX Maximum value of a continuous variable  

SUB_GROUP Number of subgroups 

CATEGORIZATION %NRSTR (list of covariates to be categorized)  

CATEGORIZATION_R  %NRSTR (list of new covariate names after categorization) 

CONTI_MODEL  %NRSTR (list of covariates in a continuous logistic regression model) 
*Even if some parameters are not needed, please assign all parameters and specify necessary variables in a logistic regression model. 
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Table 2. Description of the macro module for modifications. 

To assign the desired number of observations to each subgroup, as shown Figure 1, part of the %Ratio module must be modified. 
For sample size, nk, observation values of the kth subgroup are extracted from a randomly generated U(ak, bk). U1 corresponds to the 
lowest interval subgroup, and U2 corresponds to the next lowest interval subgroup. For example, the minimum value, maximum value 
and number of subgroups are set to 1, 21 and 5, respectively. Therefore, the subgroups are (1, 5), (5, 9), (9, 13), (13, 17), (17, 21). The 
subgroups are assigned frequencies of 0.55, 0.05, 0.2, 0.15 and 0.05, respectively. &NSP denotes the total sample size; ID is the 
observation identification. 
%MACRO RATIO; 
IF 1=< ID <&NSP.*0.55 THEN _H1=U1; 
ELSE IF &NSP.*0.55 =<ID <&NSP.*0.6 THEN _H1=U2; 
ELSE IF &NSP.*0.6 =< ID <&NSP.*0.8 THEN _H1=U3; 
ELSE IF &NSP.*0.8 =< ID <&NSP.*0.95 THEN _H1=U4; 
ELSE _H1=U5; 
%MEND RATIO; 
If model includes discrete variables, then specify the model in part of PROC LOGISTIC in %MODEL_CATEGORICAL, and ensure the 
input parameter R is greater than 1.  
%MACRO MODEL_CATEGORICAL; 
ODS OUTPUT PARAMETERESTIMATES=PARAM_&R CONVERGENCESTATUS=STATUS_&R TYPE3=TYPE3_&R; 
PROC LOGISTIC DATA=G&R; 
/*******modification**********************/ 
CLASS C1(PARAM=REF REF="0")  D1(PARAM=REF REF="0") ; 
MODEL Y(EVENT='1')= C1 X1 X2 X3 D1 
/*********************************/ 
/TECH=NR MAXITER=8 XCONV=0.01; 
BY STRATA; RUN; 
%MEND; 
 

 

 
Figure 2. Algorism of generating a continuous covariate which has a unique distribution. 



N. Kumagai et al. 
 

 
2978 

 
Figure 3. Flow chart of simulation program. 
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coefficient were set to 0.5, 225, and 0.405, respectively, our program estimated a power of 0.89, which com-
pares well with Hsieh’s result of 0.9 [14].  

3.2. Construction of Raw Simulation Data 
3.2.1. Continuous Covariates 
Non-normal or normal multivariate continuous variables are generated by specifying the mean, standard devia-
tion, kurtosis, skewness, and correlation through a procedure in the %COEFF and %CONTINOUS SAS mod-
ules. A detailed explanation can be found in a book on SAS® for Monte Carlo Studies [15].  

3.2.2. Continuous Covariates That Are Uniquely Distributed (Figure 2) 
A continuous variable is divided into l subgroups of equal intervals as shown in Figure 2. The minimum value 
of the original covariate is assumed to be Min and the maximum value is assumed to be Max. 

The length of the interval of each subgroup is ( )Max Min
S

l
−

= . 

The kth subgroup ranges from ak to bk (k = 1,  , l), where k = 1 indicates the lowest subgroup and l indicates 
the highest. ak and bk can be expressed as 

( )Min s 1ka k= + × −  

( )Min skb k= + ×  

Random numbers from a uniform distribution on the interval (0, 1) are converted to a uniform distribution on 
the interval (ak, bk) with the equation ak + (bk – ak) × (generated number). The kth subgroup, consisting of nk ob-
servations in the interval (ak, bk), is denoted by the variable H1. 

3.2.3. Statistical Probability Distribution 
If the covariate is assumed to follow a probability distribution, the RAND function can be inserted into a macro 
PDF module. In the example given for this program, nominal variables are generated using the SAS TABLE 
function. 

3.2.4. Determination of Binary Outcome 
The individual probability of event occurrences is calculated from the assigned parameters and generated cova-
riates using a logistic regression model. The initial intercept value is set to zero, and then the average is calcu-
lated. The intercept is determined from ( )π X  and p by the following equation: 

Intercept = ( )ln π
1

p X
p
−

−
 

After determining the intercept, the individual probability π(Xi) (for i = 1,  , n observations) is calculated 
by a logistic regression model. The binary outcome Y is generated from the individual π(xi) and random num-
bers from a uniform distribution on the interval (0, 1). If π(xi) is less than the corresponding random number, Yi 
= 1 (denoting that the event occurred); otherwise, Yi = 0. Finally, we have a dataset consisting of a covariate and 
response variable (Y). For skewed distributions, the event proportion of the generated dataset might not be the 
same as the input value. However, our program outputs the event proportion of this dataset. This difference can 
be adjusted by changing the input parameters of the event proportion. 

3.2.5. Estimation of Regression Coefficients and Standard Errors 
We conducted a logistic regression analysis in a model including continuous and/or design variables to obtain 
maximum likelihood estimates of and the significance level, or p-value, for the null hypothesis with population 
regression coefficient β = 0. 

There is a possibility of non-convergence if the data are completely or partially separated. This is because one 
or more parameters in the model become theoretically infinite, and it may not be possible to obtain reliable 
maximum likelihood estimates [16]. These instances of non-convergence must be appropriately handled. Our 
simulation program overcomes this problem by neglecting samples that lead to non-convergence. 
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3.2.6. Test Module 
The test module outputs the mean of the asymptotic standard error, and the statistical power. The proportion of 
tests in which the p-value is less than the Type I error level is defined as the power. 

4. Sample Runs 
4.1. Sample Run 1 
Variable H1 was set to be the National Institute of Health Stroke Scale (NIHSS, a tool used by healthcare pro-
viders to objectively quantify the impairment caused by a stroke). The minimum, maximum, and the number of 
subgroups were set as 1, 21, and 5, respectively. Therefore, the subgroups ranged from (1, 5), (5, 9), (9, 13), (13, 
17), and (17, 21). The frequency of each subgroup was assumed to be 0.55, 0.05, 0.2, 0.15, and 0.05, respec-
tively. The generated numbers were rounded off, and the event proportion was set to 0.2. Regression coefficient 
parameters (,) were taken as (0.00, 0.00), (0.06, 0.06), and (0.06, 0.15), and the change point was set to 4. H1 
was set to be either continuous, divided at median or tertile points, or categorized into three groups: 1 - 4, 5 - 15, 
and ≥16. We executed the logistic model for these values of H1, and present the results in Table 3. When and 
were set to 0.06 and 0.06, the average coefficient value was correctly estimated to be 0.062. When these para-
meters were set to 0.06 and 0.15, the categorization using the change point produced higher coefficient values 
than that using the tertile points. Moreover, when and were set to 0.0 and 0.0, the power was approximately 0.05, 
the same as the Type I error. 

4.2. Sample Run 2 
We used age and systolic arterial pressure as continuous variables X1 and X2, respectively. The mean and stan-
dard deviation of X1 were 70 and 8, and the skewness and kurtosis were set to combinations of 0 and 0, −0.5 and 
0.5, and −1.0 and 1.0. The regression coefficient of X1 was 0.05 under a linear relationship. The mean and stan-
dard deviation of X2 were 160 and 25, and the skewness and kurtosis were set to combinations of 0 and 0, 0.4 
and 0.3, and 0.8 and 0.6. The regression coefficient of X2 was set to 0.02 as a linear relationship. The correlation 
between the variables was set to 0, 0.3, and 0.6. The binary variable D1 denotes smoking or non-smoking. The 
proportion of non-smokers and smokers was 0.5 and 0.5, and the regression coefficient was 0.83. The sample size 
was set to 300 and 500. We executed the logistic model for X1, X2, and D1. The results are shown in Table 4. 
 
Table 3. Sample run 1: estimated power of the Wald test in two-segment logistic regression model with an event proportion 
of 0.2. 

α1 α2 Categorization Coefficient  SE Power 
0.00 0.00 Continuous 0.001 0.027 0.061 

  Median 0.006 0.294 0.055 
  Tertile 0.013 0.367 0.049 
  1 - 4 0.013 0.368  
  5 - 15 −0.001 0.314 0.043 
  ≥16 −0.033 0.546  

0.06 0.06 Continuous 0.062 0.026 0.682 
  Median 0.616 0.293 0.545 
  Tertile 0.238 0.397 0.459 
  1 - 4 0.768 0.374  
  5 - 15 0.530 0.313 0.516 
  ≥16 0.904 0.477  

0.06 0.15 Continuous 0.153 0.027 1.000 
  Median 1.527 0.309 0.999 
  Quantile 0.588 0.456 1.000 
  1 - 4 1.896 0.417  
  5 - 15 1.323 0.326 1.000 
  ≥16 2.287 0.468  
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Table 4. (a) Sample run 2: estimated power of the Wald test for left- and right-skewed distributions with an event propor-
tion of 0.2 and N = 300; (b) Sample run 2: estimated power of the Wald test for left- and right-skewed distributions with an 
event proportion of 0.2 and N = 500. 

(a) 

X1 X2  X1 
Left-skewed 

covariate  X2 
Right- 
skewed 

covariate 
    D1 binary   

(skewness, kurtosis)  Mean SD (S, K)  
Coefficient  SE Power Mean SD (S, K)  

Coefficient  SE Power Coefficient 
SE SE Power 

 70 8 β1 = 0.05   160 25 β2 = 0.02   β2 = 0.83   

Correlation of (X1, X2) = 0.0             

(0.0, 0.0)  (0.0, 0.0)  70.0 8.0 (0.0, 0.0) 0.052 0.019 0.774 160.0 24.9 (0.0, 0.0) 
0.020 0.006 0.931 0.860 0.304 0.801 

(−0.5, 0.5)  (0.0, 0.0)  70.0 8.0 (−0.5, 0.5) 0.052 0.020 0.754 160.0 24.9 (0.0, 0.0) 
0.020 0.006 0.933 0.864 0.304 0.815 

(−1.0, 1.0)  (0.0, 0.0)  70.0 8.0 (−1.0, 1.0) 0.053 0.021 0.727 160.0 24.9 (0.0, 0.0) 
0.020 0.006 0.933 0.864 0.304 0.818 

(0.0, 0.0)  (0.4, 0.3)  70.0 8.0 (0.0, 0.0) 0.052 0.019 0.764 160.0 24.9 (0.4, 0.3) 
0.020 0.006 0.948 0.861 0.305 0.805 

(0.0, 0.0)  (0.8, 0.6)  70.0 8.0 (0.0, 0.0) 0.052 0.019 0.766 160.0 24.9 (0.8, 0.6) 
0.020 0.006 0.957 0.861 0.306 0.805 

(−0.5, 0.5)  (0.4, 0.3)  70.0 8.0 (−0.5, 0.5) 0.052 0.020 0.753 160.0 24.9 (0.4, 0.3) 
0.020 0.006 0.948 0.863 0.305 0.812 

(−1.0, 1.0)  (0.8, 0.6)  70.0 8.0 (−1.0, 1.0) 0.053 0.021 0.723 160.0 24.9 (0.8, 0.6) 
0.020 0.006 0.955 0.861 0.305 0.816 

Correlation of (X1, X2) = 0.3             

(0.0, 0.0)  (0.0, 0.0)  70.0 8.0 (0.0, 0.0) 0.051 0.020 0.742 160.0 25.0 (0.0, 0.0) 
0.021 0.007 0.910 0.871 0.305 0.820 

(−0.5, 0.5)  (0.0, 0.0)  70.0 8.0 (−0.5, 0.5) 0.052 0.021 0.704 160.0 25.0 (0.0, 0.0) 
0.021 0.007 0.910 0.871 0.304 0.830 

(−1.0, 1.0)  (0.0, 0.0)  70.0 8.0 (−1.0, 1.0) 0.052 0.022 0.665 160.0 25.0 (0.0, 0.0) 
0.021 0.007 0.906 0.875 0.306 0.826 

(0.0, 0.0)  (0.4, 0.3)  70.0 8.0 (0.0, 0.0) 0.052 0.020 0.747 160.0 25.0 (0.4, 0.3) 
0.020 0.006 0.922 0.873 0.303 0.827 

(0.0, 0.0)  (0.8, 0.6)  70.0 8.0 (0.0, 0.0) 0.052 0.020 0.755 160.0 25.0 (0.8, 0.6) 
0.020 0.006 0.935 0.874 0.305 0.823 

(−0.5, 0.5)  (0.4, 0.3)  70.0 8.0 (−0.5, 0.5) 0.052 0.021 0.704 160.0 25.0 (0.4, 0.3) 
0.020 0.006 0.926 0.874 0.305 0.829 

(−1.0, 1.0)  (0.8, 0.6)  70.0 8.0 (−1.0, 1.0) 0.052 0.023 0.662 160.0 25.0 (0.8, 0.6) 
0.020 0.006 0.938 0.874 0.305 0.829 

Correlation of (X1, X2) = 0.6             

(0.0, 0.0)  (0.0, 0.0)  70.0 8.0 (0.0, 0.0) 0.052 0.024 0.587 160.0 25.0 (0.0, 0.0) 
0.021 0.008 0.779 0.873 0.305 0.817 

(−0.5, 0.5)  (0.0, 0.0)  70.0 8.0 (−0.5, 0.5) 0.052 0.025 0.542 160.0 25.0 (0.0, 0.0) 
0.020 0.008 0.780 0.875 0.304 0.823 

(−0.1, 1.0)  (0.0, 0.0)  70.0 8.0 (−1.0, 1.0) 0.052 0.027 0.508 160.0 25.0 (0.0, 0.0) 
0.021 0.008 0.805 0.875 0.303 0.819 

(0.0, 0.0)  (0.4, 0.3)  70.0 8.0 (0.0, 0.0) 0.052 0.024 0.595 160.0 25.0 (0.4, 0.3) 
0.020 0.007 0.812 0.873 0.307 0.822 

(0.0, 0.0)  (0.8, 0.6)  70.0 8.0 (0.0, 0.0) 0.052 0.024 0.608 160.0 25.0 (0.8, 0.6) 
0.020 0.007 0.844 0.873 0.308 0.815 

(−0.5, 0.5)  (0.4, 0.3)  70.0 8.0 (−0.5, 0.5) 0.052 0.025 0.557 160.0 25.0 (0.4, 0.3) 
0.020 0.007 0.815 0.872 0.305 0.818 

(−1.0, 1.0)  (0.8, 0.6)  70.0 8.0 (−1.0, 1.0) 0.052 0.026 0.530 160.0 25.0 (0.8, 0.6) 
0.020 0.007 0.878 0.869 0.305 0.812 

S, skewness; K, kurtosis. 
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(b) 

X1 X2  X1 
Left-skewed 

covariate  X2 
Right- 
skewed 

covariate 
    D1 binary   

(skewness, kurtosis)  Mean SD (S, K)  
Coefficient  SE Power Mean SD (S, K)  

Coefficient  SE Power Coefficient 
SE SE Power 

 70 8 β1 = 0.05   160 25 β2 = 0.02   β2 = 0.83   

Correlation of (X1, X2) = 0.0             

(0.0 0.0, 0.0 0.0)  70.0 8.0 (0.0, 0.0) 0.051 0.015 0.943 160.1 25.0 (0.0, 0.0) 
0.020 0.005 0.997 0.846 0.233 0.947 

(−0.5 0.5, 0.0 0.0)  70.0 8.0 (−0.5, 0.5) 0.051 0.015 0.930 160.1 25.0 (0.0, 0.0) 
0.020 0.005 0.995 0.846 0.233 0.945 

(−1.0 1.0, 0.0 0.0)  70.0 8.0 (−1.0, 1.0) 0.051 0.016 0.919 160.1 25.0 (0.0, 0.0) 
0.020 0.005 0.996 0.843 0.233 0.942 

(0.0 0.0, 0.4 0.3)  70.0 8.0 (0.0, 0.0) 0.051 0.015 0.945 160.0 25.0 (0.4, 0.3) 
0.020 0.005 0.996 0.846 0.234 0.947 

(0.0 0.0, 0.8 0.6)  70.0 8.0 (0.0, 0.0) 0.051 0.015 0.938 160.0 25.0 (0.8, 0.6) 
0.020 0.005 0.997 0.843 0.234 0.950 

(−0.5 0.5, 0.4 0.3)  70.0 8.0 (−0.5, 0.5) 0.051 0.015 0.929 160.0 25.0 (0.4, 0.3) 
0.020 0.005 0.996 0.845 0.234 0.949 

(−1.0 1.0, 0.8 0.6)  70.0 8.0 (−1.0, 1.0) 0.051 0.016 0.922 160.0 25.0 (0.8, 0.6) 
0.020 0.004 0.999 0.841 0.234 0.945  

Correlation of (X1, X2) = 0.3             

(0.0, 0.0)  (0.0, 0.0)  70.0 8.0 (0.0, 0.0) 0.051 0.015 0.919 160.0 25.0 (0.0, 0.0) 
0.020 0.005 0.984 0.852 0.234 0.957 

(−0.5, 0.5)  (0.0, 0.0)  70.0 8.0 (−0.5, 0.5) 0.051 0.016 0.903 160.0 25.0 (0.0, 0.0) 
0.020 0.005 0.988 0.852 0.233 0.960 

(−1.0, 1.0)  (0.0, 0.0)  70.0 8.0 (−1.0, 1.0) 0.052 0.017 0.880 160.0 25.0 (0.0, 0.0) 
0.020 0.005 0.987 0.853 0.233 0.965 

(0.0, 0.0)  (0.4, 0.3)  70.0 8.0 (0.0, 0.0) 0.051 0.015 0.920 160.0 25.0 (0.4, 0.3) 
0.020 0.005 0.990 0.850 0.234 0.953 

(0.0, 0.0)  (0.8, 0.6)  70.0 8.0 (0.0, 0.0) 0.051 0.015 0.920 160.0 25.0 (0.8, 0.6) 
0.020 0.005 0.991 0.849 0.235 0.952 

(−0.5, 0.5)  (0.4, 0.3)  70.0 8.0 (−0.5, 0.5) 0.051 0.016 0.902 160.0 25.0 (0.4, 0.3) 
0.020 0.005 0.992 0.852 0.234 0.954 

(−1.0, 1.0)  (0.8, 0.6)  70.0 8.0 (−1.0, 1.0) 0.052 0.017 0.879 160.0 25.0 (0.8, 0.6) 
0.020 0.005 0.991 0.850 0.234 0.957 

Correlation of (X1, X2) = 0.6             

(0.0, 0.0)  (0.0, 0.0)  70.0 8.0 (0.0, 0.0) 0.051 0.018 0.811 160.0 25.0 (0.0, 0.0) 
0.021 0.006 0.949 0.853 0.235 0.962 

(−0.5, 0.5)  (0.0, 0.0)  70.0 8.0 (−0.5, 0.5) 0.051 0.019 0.772 160.0 25.0 (0.0, 0.0) 
0.020 0.006 0.945 0.851 0.234 0.960 

(−1.0, 1.0)  (0.0, 0.0)  70.0 8.0 (−1.0, 1.0) 0.052 0.020 0.753 160.0 25.0 (0.0, 0.0) 
0.020 0.006 0.951 0.853 0.233 0.966 

(0.0, 0.0)  (0.4, 0.3)  70.0 8.0 (0.0, 0.0) 0.051 0.018 0.815 160.0 25.0 (0.4, 0.3) 
0.020 0.006 0.959 0.852 0.235 0.946 

(0.0, 0.0)  (0.8, 0.6)  70.0 8.0 (0.0, 0.0) 0.051 0.018 0.819 160.0 25.0 (0.8, 0.6) 
0.020 0.005 0.970 0.850 0.236 0.947 

(−0.5, 0.5)  (0.4, 0.3)  70.0 8.0 (−0.5, 0.5) 0.051 0.019 0.785 160.0 25.0 (0.4, 0.3) 
0.020 0.006 0.959 0.853 0.235 0.956 

(−1.0, 1.0)  (0.8, 0.6)  70.0 8.0 (−1.0, 1.0) 0.052 0.020 0.757 160.0 25.0 (0.8, 0.6) 
0.020 0.005 0.979 0.850 0.234 0.966 

S, skewness; K, kurtosis. 
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The mean, standard deviation, skewness, and kurtosis in the generated variables were almost equal to those of 
their input parameters. An increase in sample size leads to higher power, whereas a higher correlation produces 
a lower power. Our results clearly illustrate that the power will differ depending on the shape of the distribution. 
Negatively skewed distributions exhibit low power, whereas a positive skew results in high power. There is an 
inverse relationship between the logit outcome and the covariates. For example, when the skewness of X1 was 
changed from −0.5 to −1.0, the power decreased from 0.75 to 0.73. When the skewness of X2 was changed from 
0.4 to 0.8, the power increased from 0.81 to 0.84 or 0.88 for a sample size of 300 and correlation of 0.0.  

4.3. Sample Run 3: Epidemiological Studies 
It is important to establish that the results observed in the above simulations hold for real data. For this purpose, 
we used data from a study of the influence of smoking on 90-day outcomes after acute atherothrombotic stroke 
in 292 Japanese men [14]. In this study, body temperature, age, NIHSS score at admission, systolic blood pres-
sure, and smoking status were included in the logistic model. Detailed input parameter information is given in 
Table 5(a), and the estimated results are listed in Table 5(b). The event proportion of this real study was 0.2. 
We obtained an event proportion of 0.206 in the generated dataset by setting an input value of 0.15 for the event 
proportion. The estimated coefficients were similar to the results of the epidemiological study. Real data analy-
sis showed that all factors, i.e. body temperature, age, NIHSS score at admission, systolic blood pressure, and 
smoking status, were significantly associated with the outcome (p < 0.05), and our results also exhibited high 
power (minimum to maximum of 0.686 to 1.000). 
 
Table 5. (a) Assigned input parameters for sample run 3; (b) Sample run 3: estimated power of the Wald test for an epide-
miological study with a sample size of 292. 

(a) 
Input parameter Explanation 

SEED  9 
ALEVEL 0.05 
P 0.15 
NITER 1000 
PATH C:\ 
TABLE  Table_samplerun_3 
R 2 
CHANGE_POINT 4 
MODEL_1 %NRSTR(0.04*H1+0.8*D1+ 0.06*X1 + 0.02*X2 + 1.1*X3) 
MODEL_2 %NRSTR(0.04*4+0.15*(H1-4)+0.8*D1+0.06*X1+0.02*X2 +1.1*X3) 

DATA a (type=CORR); 
LENGTH _TYPE_  $40; 
INPUT  _NAME_ $_TYPE_$  X1 X2 X3 ;  
IF TRIM(LEFT(_TYPE_))=’N’ THEN call symput(‘NSP’,X1); 
CARDS; 
. MEAN    70    160   36.4 
. STD      8     25    0.5 
. N      292   292   292 
X1 CORR     1     -0.1   -0.1 
X2 CORR -0.1   1     0.1 
X3 CORR -0.1   0.1   1  
; 
RUN； 

SKW_KRT  %NRSTR({-0.5 0.5, 0.4 0.3, -0.08 0.7}) 
LIST_VARNAME %NRSTR(X1 X2 X3) 
CONTI_MODEL %NRSTR(X1 X2 X3 C1) 
Min= 1 
Max= 21 
SUB_GROUP= 5 
CATEGORIZATION %NRSTR(H1) 
CATEGORIZATION_ %NRSTR(H1_R) 
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(b) 

Risk factor  Results of epidemiological study Results of simulation 
 Coefficient p value Coefficient Power 

Smoker  0.82 0.019 0.83 0.686 
Age (years) 0.06 0.014 0.06 0.792 

Systolic arterial pressure  0.02 0.0096 0.02 0.847 
Body temperature  1.18 0.0013 1.14 0.893 

NIHSS score at admission     
5 - 15  1.40 0.001 1.33 1.000 
≥16  2.25 0.001 2.30  

Event proportion = 0.206. 

5. Conclusions and Discussion 
Estimating the sample size or inference of statistical power is critical. If the sample size is too low, the experi-
ment will lack the precision needed to provide reliable answers to the questions it is investigating. If the sample 
size is too large, time and resources will be wasted, often for minimal gain [17]. In this study, we developed a 
Monte-Carlo simulation program that estimates the powers of covariates in the binary logistic regression model. 
Users can evaluate the relationship between sample size and covariates, in observational and power randomized 
studies. In this situation, our simulation results clearly indicated the relationship between statistical power and 
covariate distribution shape, as shown by the data in Table 4. Right- and left-skewed distributions exhibit dif-
ferent powers. This phenomenon has clarified that the shape of a distribution affects its statistical power [18] 
[19]. The advantage of using a theoretical equation to estimate the power is that it is quick and easy to imple-
ment using existing software. For this reason, power equations are used to inform most studies. However, in 
practical analysis, we must often compute the power with a relatively complex distribution. 

Our program is flexible enough to accommodate any number or type (continuous or discrete) of covariate and 
categorization, continuous distribution shapes and correlations, and the association level between logit outcome 
and covariates, although some modifications may be necessary. This program can also be applied to other statis-
tical methods, logistic regression and Bayesian inference. The SAS/STAT/IML program written for the simula-
tions and a user manual are available upon request [20] [21].  
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Appendix: Simulation Program for Estimating the Statistical Power of Logistic  
Regression Model 
%LET SEED=; 
%LET ALEVEL=; 
%LET PATH=; 
%LET TABLE=; 
%LET NITER=; 
%LET SKW_KRT=%NRSTR({}); 
%LET LIST_VARNAME=%NRSTR(); 
%LET MODEL_1=%NRSTR();  
%LET MODEL_2=%NRSTR(); 
%LET CATEGORIZATION=%NRSTR(); 
%LET CATEGORIZATION_R=%NRSTR(); 
%LET CONTI_MODEL=%NRSTR(); 
%LET CHANGE_POINT=; 
%LET MAX=; 
%LET MIN=; 
%LET SUB_GROUP=; 
%LET P=; 
/*EXAMPLE*/ 
DATA A (TYPE=CORR); 
LENGTH _TYPE_  $40; 
 INPUT  _NAME_ $ _TYPE_$  X1 X2 ;  
 IF TRIM(LEFT(_TYPE_))='N'THENCALL SYMPUT('NSP', X1); 
 CARDS; 
.   MEAN   70  160 
.   STD    8  25 
.   N    300  300 
X1  CORR   1  0 
X2  CORR   0  1 
; 
RUN; 
%DATASET(N_REPEAT=); 
%LR(R=); 
/************************%COEFF and %CONTINUOUS **************/ 
/*%COEFF and %CONTINUOUS generate random variables following a Multivariate /*Normal distribution 
with given means, standard deviations, and correlation matrix, /*and then transform each variable to the desired 
distributional shape with specified /*population univariate skewness and kurtosis 
/*%COEFF 
/*Macro COEFF calculates coefficients of the Fleishman’s power transformation 
/*Equation X= A + B*C1 + C*C2^2 +D*C3^3 where A=-C 
/*Parameters 
/*SKW_KRT; %NRSTR({skewness1 kurtosis1, skewness2 kurtosis2,…, }); 
/*LIST_VARNAME; list of variable names that define the skewness and kurtosis.  
/*OUT the name of the output file (name of COEFF) that has thecoefficient values (A B C) of each variable. 
/********************************************************************/ 
%MACROCOEFF; 
PROC IML; 
/* COEFFICIENTS OF B, C, D FOR FLEISHMAN'S POWER TRANSFORMATION*/ 
SKEWKURT=&SKW_KRT; 
MAXITER=25; 
CONVERGE=.000001; 
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START FUN; 
 C1=COEF [1]; 
 C2=COEF [2]; 
 C3=COEF [3]; 
F= (C1**2+6*C1*C3+2*C2**2+15*C3**2-1)// 
 (2*C2*(C1**2+24*C1*C3 +105*C3**2+2)-SKEWNESS)// 
 (24*(C1*C3+C2**2*(1+C1**2+28*C1*C3)+C3**2* 
 (12+48*C1*C3+141*C2**2+225*C3**2))-KURTOSIS); 
FINISH FUN; 
 
START DERIV; 
J=  ((2*C1+6*C3) || (4*C2) || (6*C1+30*C3))// 
 ((4*C2*(C1+12*C3)) || (2*(C1**2+24*C1*C3+105*C3**2+2))|| 
 (4*C2*(12*C1+05*C3)))//((24*(C3+C2**2*(2*C1+28*C3)+48*C3**3))|| 
 (48*C2*(1+C1**2+28*C1*C3+141*C3**2))|| 
 (24*(C1+28*C1*C2**2+2*C3*(12+48*C1*C3+141*C2**2+225*C3**2) 
 +C3**2*(48*C1+450*C3)))); 
FINISH DERIV; 
 
START NEWTON; 
RUN FUN; 
 DO ITER = 1 TO MAXITER 
 WHILE (MAX(ABS(F))> CONVERGE); 
  RUN DERIV; 
  DELTA=-SOLVE(J,F); 
  COEF=COEF+DELTA; 
  RUN FUN; 
 END; 
FINISH NEWTON; 
 
DO; 
 NUM=NROW (SKEWKURT); 
 DO VAR = 1 TO NUM; 
  SKEWNESS = SKEWKURT [VAR,1]; 
  KURTOSIS = SKEWKURT [VAR, 2]; 
  COEF = {1.0, 0.0, 0.0}; 
  RUN NEWTON; 
  COEF = COEF`; 
  SK_KUR= SKEWKURT [VAR,]; 
  COMBINE=SK_KUR||COEF; 
  IF VAR = 1 THEN RESULT=COMBINE; 
  IF VAR >1 THEN RESULT=RESULT//COMBINE; 
 END; 
END; 
 
RESULT=RESULT`; 
CREATE _COEF_ FROM  RESULT [COLNAME={&LIST_VARNAME}]; 
APPEND FROM RESULT; 
 
DATA _COEF;  
 SET _COEF_;  
 LENGTH _TYPE_ $40;  
 MARK = _N_; _TYPE_="COEFF";  
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 FORMAT MARK; 
RUN;  
 
DATA COEFF (DROP= MARK);  
 SET _COEF;  
 IF MARK >2 THEN OUTPUT COEFF; 
RUN; 
%MEND COEFF; 
/***********************%CONTINUOUS********************************/ 
/*This program generates random variables following a Multivariate Normal /*distribution with given name, 
standard deviation, and correlation matrix, and then /*transforms each variable to the desired distributional 
shape with Fleishman’s /*coefficient. 
/*Parameter 
/*N_Repeat; the number of iterations 
/*SEED; seed of the random number generator 
/*DATA the name, A, of the input file that determines the characteristics of the random /*numbers to be gener-
ated. The file specifies the mean, standard deviation, number of /*observations of each random number, and the 
correlation coefficients between the /*variables. It must be a TYPE=CORR file, and its structure must comply 
with that of /*such files. The file has _Type_=MEAN, STD, N, CORR. Its variables are _TYPE_, /*_NAME_ 
and the variables to be generated. The number of observations should be /*the same value. In this file, the sam-
ple size 'NSP' should be specified as a parameter, /*using IF TRIM(LEFT(_TYPE_))='N' THEN CALL 
SYMPUT('NSP', X1 (one of the /*variable names)).  
/* 
/*Example 
/*DATA A (TYPE=CORR); 
/*LENGTH _TYPE_  $40; 
/*      INPUT  _NAME_ $  _TYPE_$   X1   X2 ;  
/*      IF TRIM(LEFT(_TYPE_))='N' THEN CALL SYMPUT('NSP', X1); 
/*      CARDS; 
/* .         MEAN  70  160 
/* .         STD   8  25 
/* .         N   300  300 
/*      X1 CORR   1  0 
/*      X2 CORR   0  1 
/*      ; 
/*      RUN; 
/*OUT random variables generated according to the file given in parameter DATA and observation identifica-
tion number (ID) 
/***************************************************************/ 
 
%MACROCONTINUOUS; 
 
PROC CONTENTS DATA=A (DROP=_TYPE_ _NAME_)  
OUT=_DATA_ (KEEP=NAME) NOPRINT; 
RUN; 
 
/*SUPPOSE WE HAVE X1,......, XP VARIABLE IN DATASET A WHICH IS AN INPUT DATASET. 
WE ASSIGN THESE VARIABLES AS NAME OF V1,..., VP MACRO REFERENCE OF &NV IS ASSIGNED 
THE NUMBER OF TOTAL VARIABLES*/ 
 
DATA _DATA_; 
SET _LAST_  END=END; 
  RETAIN N 0; 
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  N=N+1; 
  V=COMPRESS('V' || COMPRESS(PUT (N, 6.0))); 
  CALL SYMPUT(V, NAME); 
  IF END THEN CALL SYMPUT('NV', LEFT(PUT (N, 6.0))); 
RUN; 
 
%LET VNAMES=&V1; 
%DO I=2%TO&NV.; 
 %LET VNAMES=&VNAMES &&V&I; 
%END; 
 
/*OBTAIN THE MATRIX OF FACTOR PATTERNS AND OTHER STATISTICS.*/ 
PROC FACTOR DATA=A NFACT=&NV NOPRINT 
 OUTSTAT=PATTERN_(WHERE=(_TYPE_ IN('MEAN','STD','N','PATTERN')));  
RUN; 
 
DATA _PATTERN_;  
 SET COEFF PATTERN_;  
RUN; 
 
/*GENERATE THE RANDOM NUMBERS.*/ 
%LET NV2=%EVAL(&NV.*&NV.); 
%LET NV3=%EVAL(3*&NV.); 
 
DATA B&REPEAT. (KEEP=&VNAMES); 
 SET _PATTERN_ (KEEP=&VNAMES _TYPE_ RENAME=( 
 %DO I=1%TO&NV; 
  &&V&I = V&I 
 %END; 
 )) END=LASTFACT; 
 RETAIN; 
/*SET UP ARRAYS TO STORE THE NESSESARRY STATISTICS.*/ 
 ARRAY VCOEFF(3,&NV) C1-C&NV3; 
 ARRAY FPATTERN(&NV,&NV) F1-F&NV2; 
 ARRAY VSTD(&NV) S1-S&NV; 
 ARRAY VMEAN(&NV) M1-M&NV; 
 ARRAY V(&NV)V1-V&NV; 
 ARRAY VTEMP(&NV)VT1-VT&NV; 
 LENGTH LBL $40; 
/* READ AND STORE THE MATORIX OF FACTOR PATTERNS. */ 
 IF _TYPE_='PATTERN' THEN DO;  
  DO I=1 TO &NV; 
   FPATTERN(_N_ -6, I)=V(I); 
  END;  
 END; 
 
 IF _TYPE_='COEFF' THEN DO;  
  DO I=1 TO &NV; 
  VCOEFF(_N_,I) =V(I); 
  END;  
 END; 
 
/* READ AND STORE THE MEANS */ 
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 IF _TYPE_ = 'MEAN' THEN DO; 
  DO I=1 TO &NV; 
  VMEAN(I)=V(I);        END;  
 END; 
 
/* READ AND STORE THE STD. */ 
 IF _TYPE_ = 'STD' THEN DO;  
  DO I=1 TO &NV; 
   VSTD(I) =V(I);       END;  
 END; 
 
/* READ AND STORE THE NUMBER OF OBSERVATIONS.*/ 
 IF _TYPE_ = 'N' THEN NNUMBERS=V(1); 
 IF LASTFACT THEN DO; 
/* SET UP LABELS FOR THE RANDOM VARIABLES. THE LABELSARE STORED IN MACRO 
VARIABLES LBL1, LBL2,.... AND USED IN THE SUBSEQUENT PROC DATASETS.*/ 
  %DO I=1%TO&NV; 
LBL="ST.NORMAL VAR. ,M-"||COMPRESS(PUT(VMEAN(&I), 
BEST8.))||",STD="||COMPRESS(PUT(VSTD(&I),BEST8.)); 
   CALL SYMPUT("LBL&I",LBL); 
  %END; 
 DO K=1 TO NNUMBERS; 
  DO I =1 TO &NV; 
  SEED=(&SEED.+&REPEAT.+1); 
  VTEMP(I)=RANNOR(SEED); 
  END; 
/* IMPOSE THE INTERCORRELATION ON EACH VARIABLE. THE  
TRANSFORMED VARIABLES ARE STORED ARRAY 'V'.*/ 
  DO I=1 TO &NV; 
   V(I)=0; 
   DO J=1 TO &NV; 
   V(I) = V(I) + VTEMP(J)*FPATTERN(J, I); 
   END; 
  END; 
 
/* TRANSFORM THE RANDOM VARIABLES SO THEY HAVE  
MEANS AND STANDARD DEVIATIONS AS REQUESTED. */ 
 
 DO I=1 TO &NV; 
V(I)= VCOEFF(2, I)*(-1)+V(I)*VCOEFF(1, I) +VCOEFF(2,I)*V(I)*V(I)+VCOEFF(3, I)*V(I)*V(I)*V(I); 
  V(I) = VSTD(I) *V(I) + VMEAN(I); 
 END; 
OUTPUT; 
END; 
END; 
 
RENAME     
 %DO I=1%TO&NV; 
  V&I = &&V&I 
 %END; 
 ; 
RUN; 
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DATA BB&REPEAT.;  
 SET B&REPEAT.;  
 ID=_N_;  
 FORMAT ID; 
RUN; 
%MEND CONTINUOUS; 
 
/***************** HISTGRAM and RATIO *************************/ 
/* This program generate random variables as in Figure 1 based on a Uniform /*distribution. % macro RATIO 
is executed in % macro HISTGRAM.  
/*%Macro HISTGRAM 
/*Parameters 
/*SEED= seed of the random number 
/*N_REPEAT= the number of iterations 
/*NSP= total sample size, which is already defined as an input parameter of the DATA  /*file used to ex-
ecute %macro CONTINUOUS.  
/*MAX=Maximum value of an original variable 
/*MIN=Minimum value of an original variable 
/*SUB_GROUP= the number of subgroups 
/*OUT 
/*The name of the output file (name of HH&REPEAT) containing the random variable, /*H1 and ID number. 
/* 
/*%RATIO assigns the frequencies of each subgroup, using an IF function. 
/*&NSP.*0.55 = (sample size × accumulated percentage)=frequencies of subgroup. 
/*Example IF 1=< ID <&NSP.*0.55 THEN _H1=U1; 
/*U1 indicates random number for the lowest subgroup.  
/**************************************************************/ 
%MACROHISTGRAM; 
DATA HH&REPEAT.; 
 DO ID=1 TO &NSP.;  
 CALL STREAMINIT(&REPEAT. +  &NSP. + &SEED. + 2.); 
  SCALE=%EVAL((&MAX.-&MIN.)/&SUB_GROUP.); 
   %DO I=1%TO&SUB_GROUP.;  
    _U&I.=RAND("UNIFORM"); 
     U&I.=&MIN.+(&I.-1)*SCALE+SCALE*_U&I.; 
   %END; 
%RATIO;  
OUTPUT; 
END;  
RUN; 
%MEND HISTGRAM; 
 
%MACRORATIO; 
IF 1=<ID<&NSP.*0.55 THEN _H1=U1; 
ELSE IF &NSP.*0.55 =<ID<&NSP.*0.6 THEN _H1=U2; 
ELSE IF &NSP.*0.6 =<ID<&NSP.*0.8 THEN _H1=U3; 
ELSE IF &NSP.*0.8=<ID<&NSP.*0.95 THEN _H1=U4; 
ELSE _H1=U5; 
 
H1=INT(_H1); 
 
IF H1=<4 THEN C1=0; 
ELSE IF 4< H1 =<15 THEN C1=1; 
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ELSE IF H1 >15 THEN C1=2; 
%MEND RATIO; 
/************************** PDF ***********************************/ 
/*This macro generates random variables from the RAND function. 
/*RAND function generates random numbers with certain probability distributions.  
/*Parameter 
/*SEED= seed of the random number 
/*N_REPEAT= the number of iterations 
/*NSP= total sample size, which is already defined as an input parameter of the DATA file used to ex-
ecute %macro CONTINUOUS.  
/*RAND function. 
/*OUT 
/*The name of the output file (name of CC&REPEAT) containing the random variable /*defined by the proba-
bility distributions given by the RAND function and ID number. 
/**************************************************************/ 
%MACROPDF; 
DATA CC&REPEAT.; 
 DO ID=1 TO &NSP.; 
  CALL STREAMINIT( &REPEAT. + &NSP. + &SEED. + 3); 
  STRATA=&REPEAT.; 
  UN=RAND("UNIFORM"); 
/*INSERT RAND FUNCTION TO GENERATE RANDOM NUMBER USING RAND FUNCTION*/ 
  X=RAND("NORMAL", 0,1); 
  _D1=RAND("TABLE", 0.5 , 0.5); 
 
  IF _D1=1 THEN D1=0;  
  ELSE IF _D1=2 THEN D1=1; 
 OUTPUT; 
 END; 
%MEND PDF; 
/********************** Merge ***************************/ 
/*This program merges all datasets including randomly generated variables specified /*in %macro 
CONTINUOUS (BB&REPEAT), %HISTGRAM (HH&REPEAT) /*and %macro PDF(CC&REPEAT) by ID 
number. 
/*OUT file name of _D&REPEAT. 
/**************************************************************/ 
%MACRO MERGE; 
PROC SORT DATA=BB&REPEAT.; BY ID; RUN; 
PROC SORT DATA=HH&REPEAT.; BY ID; RUN; 
PROC SORT DATA=CC&REPEAT.; BY ID; RUN; 
  
DATA _D&REPEAT.; 
 MERGE BB&REPEAT. CC&REPEAT. HH&REPEAT.; 
 BY ID;  
RUN; 
 
DATA DATASET0;  
 SET DATASET0; 
 
DATA DATASET&REPEAT.;  
 SET DATASET%EVAL(&REPEAT. -1) _D&REPEAT.; 
RUN; 
%MEND MERGE; 
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/*************************** OUTCOME ***************/ 
/*This program generates outcome variable, y, from the individual probability of event /*occurrence. Individual 
probability is calculated using two segment logistic regression /*model. 
/*Parameter 
/*CHANGE_POINT= flexion point of two segment logistic regression model 
/*MODEL_1 = logistic regression model when values of covariates ≦values of /*CHANGE_POINT  
/*MODEL_2 = logistic regression model when values of covariates > values of /*CHANGE_POINT 
/*NITER= number of final datasets 
/*P = event proportion 
/*OUT DATASET For logistic regression model 
/********************************************************************/ 
%MACROOUTCOME; 
DATA _D_&NITER.;  
 SET  DATASET&NITER.; 
 %IF H1 =<&CHANGE_POINT.%THEN%DO;  
  G=&MODEL_1; 
 %END; 
 %IF H1 >&CHANGE_POINT.%THEN%DO;  
  G=&MODEL_2;  
 %END; 
RUN; 
 
PROC SUMMARY DATA=_D_&NITER.; 
 VAR G; 
 OUTPUT OUT= PROCMEAN&NITER. MEAN=; 
RUN; 
 
DATA M&NITER. (KEEP=INT ID NITER);  
 SET PROCMEAN&NITER.; 
 DO ID=1 TO &NSP; 
  MEAN=%SCAN(G, 1); 
  INT=LOG(&P/(1-&P))-MEAN; 
  NITER=&NITER.; 
  OUTPUT; 
 END; 
RUN; 
 
PROC SORT DATA=M&NITER.;BY ID;RUN; 
PROC SORT DATA=_D_&NITER.;BY ID;RUN; 
 
DATA D_&NITER.;  
 MERGE M&NITER. _D_&NITER.;  
 BY ID;  
RUN; 
 
DATA D&NITER. ; 
 SET D_&NITER.; 
 PRO=EXP(INT+ G)/(1 +EXP(INT+ G)); 
 IF 0=<UN< PRO THEN Y=1; 
ELSE Y=0;  
RUN; 
 
PROC SORT DATA=D&NITER. ;BY STRATA;RUN; 
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%MEND OUTCOME; 
/********************************************************************/ 
/*This program performs a stratified continuous logistic regression model and produces a repeated number of 
parameters (coefficient, its standard error, and p value), then calculates the average coefficient value, average 
standard error, and power.  
/*Parameter 
/*NITER=number of final datasets 
/*CONTI_MODEL=a continuous logistic regression model  
/*ALEVEL=significance level of the statistical test (Type I error) 
/*NITER=specify final dataset 
/*PATH=directory in which results are saved  
/*TABLE=table name for saved results 
/*OUT=Result (excel format)  
/*Results include event proportion, mean, standard deviation, skewness, and kurtosis of a variable average coef-
ficient and average standard error of logistic regression model and power    
/********************************************************************/ 
%MACROCONTINUOUSLR; 
/****MODEL**********************************************************/ 
ODS OUTPUT PARAMETERESTIMATES=PARAM CONVERGENCESTATUS=STATUS; 
 PROC LOGISTIC DATA=D&NITER. ;   
  MODEL Y (EVENT='1')=&CONTI_MODEL  
/TECH=NR MAXITER=8 XCONV=0.01 ; 
  BY STRATA;  
 RUN; 
/******************************************************************/ 
 PROC SORT DATA=PARAM  
  OUT=PARAM2 
(RENAME=(ESTIMATE=ESTIMATION STDERR=STANDARDERRORS));  
  BY STRATA; 
 RUN; 
  
 PROC SORT DATA=STATUS;  
  BY STRATA; 
 RUN; 
 
 DATA RESULT;  
  MERGE PARAM2 STATUS ;  
  BY STRATA;  
 RUN; 
 
DATA RESULT_CONTINUOUS E; 
 SET RESULT; 
 IF 0=< PROBCHISQ<&ALEVEL. THEN POWER=1;  
 ELSE POWER=0; 
 IF STATUS=0 THEN OUTPUT RESULT_CONTINUOUS; 
 ELSE OUTPUT E; 
RUN; 
 
ODS HTML PATH="&PATH" BODY="&TABLE..XLS"; 
 PROC TABULATE DATA=D&NITER.  OUT=J; 
  VAR Y &CONTI_MODEL; 
TABLE (&CONTI_MODEL)*(MEAN STD SKEWNESS KURTOSIS)/MISSTEXT = 'NO DATA';  
 RUN; 
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 PROC FREQ DATA=D&NITER; 
  TITLE 'PROPORTION'; 
  TABLE Y/NOCOL NOROW; 
 RUN; 
 
 PROC FREQ DATA=RESULT_CONTINUOUS; 
  TITLE 'POWER'; 
  TABLE VARIABLE*(POWER)/NOCOL NOPERCENT; 
 RUN; 
          
 PROC TABULATE DATA=RESULT_CONTINUOUS; 
 TITLE 'MEAN OF COEFFICIENT AND THEIR MEAN OF STANDARD ERROR'; 
  CLASS VARIABLE ;   
  VAR ESTIMATION STANDARDERRORS; 
TABLE VARIABLE,(ESTIMATION STANDARDERRORS)*(N MEAN*F=8.4)/MISSTEXT = 'NO DATA';  
 RUN; 
ODS HTML CLOSE; 
%MEND CONTINUOUSLR; 
/************************* CONTINUOUSLR ***************************/ 
/*Continuous variables are divided into categorical groups by quantile, and then a stratified logistic regression 
model is executed. Users specify the model in %MACRO CATEGORICAL_MODEL. Then, parameters (coef-
ficient, standard error, and p value) and average coefficient values, average standard error of each group of a va-
riable are calculated, and the power is calculated.  
/*Parameter 
/*R=Number of categorized groups 
/*Example: Continuous=1, median=2, tertile=3, quantile=4,  
/*CATEGORIZATION=%NRSTR(List of covariates to be categorized)  
/*CATEGORIZATION_R=%NRSTR(List of new covariate names after /*categorization) 
/*NITER=number of final datasets 
/*CONTI_MODEL=a continuous logistic regression model  
/*ALEVEL=significance level of the statistical test (Type I error) 
/*NITER= specify final dataset 
/*PATH=directory in which results are saved  
/*TABLE=table name for saved results 
/*OUT= Result (excel format)  
/*Results include average coefficient and average standard error of logistic regression model and power for each 
categorized group and overall power of a variable. 
/********************************************************************/ 
 
%MACROCATEGORICAL_MODEL; 
ODS OUTPUT PARAMETERESTIMATES=PARAM_&R CONVERGENCESTATUS=STATUS_&R 
TYPE3=TYPE3_&R.; 
 PROC LOGISTIC DATA=G&R.; 
 CLASS C1(PARAM=REF REF="0") X1_R(PARAM=REF REF="0")  ; 
  MODEL Y(EVENT='1')= C1 X1_R X2 /TECH=NR MAXITER=8 XCONV=0.01; 
  BY STRATA;  
  RUN; 
%MEND CATEGORICAL_MODEL; 
 
%MACROCATEGORICALLR; 
 
PROC RANK DATA= D&NITER. GROUPS=&R. OUT=G&R.;   
 VAR &CATEGORIZATION;   
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 RANKS &CATEGORIZATION_R ; 
 BY STRATA ; 
RUN; 
 
%CATEGORICAL_MODEL; 
    
PROC SORT DATA=PARAM_&R  
OUT=P_&R (RENAME=( ESTIMATE=ESTIMATION STDERR=STANDARDERRORS)); 
 BY STRATA; 
RUN; 
     
PROC SORT DATA=STATUS_&R OUT =S_&R(KEEP = STRATA STATUS) ; 
 BY STRATA; 
RUN; 
 
PROC SORT DATA=TYPE3_&R OUT =_TYPE3_&R; 
 BY STRATA; 
RUN; 
      
DATA _POWER_&R;  
 MERGE _TYPE3_&R S_&R;  
 BY STRATA;  
RUN; 
      
DATA POWER_&R E_&R; 
 SET _POWER_&R; 
 RENAME;  
TYPE3_WALDCHISQ=WALDCHISQ; 
  TYPE3_PROBCHISQ=PROBCHISQ;  
  LABEL TYPE3_PROBCHISQ="P VALUE OF TYPE3"; 
  TYPE3_WALDCHISQ="CHISQ OF TYPE 3";  
 IF 0 =< TYPE3_PROBCHISQ <&ALEVEL. THEN POWER=1; 
 ELSE IF TYPE3_PROBCHISQ >= &ALEVEL. THEN POWER=0; 
      
 IF STATUS=0 THEN OUTPUT POWER_&R; 
 ELSE OUTPUT E_&R; 
 
 KEEP POWER STATUS TYPE3_WALDCHISQ TYPE3_PROBCHISQ EFFECT; 
RUN; 
      
DATA _RESULT_CATEGORICAL_&R; 
 MERGE P_&R S_&R;  
 BY STRATA; 
RUN; 
     
DATA RESULT_CATEGORICAL_&R E_&R;  
 SET _RESULT_CATEGORICAL_&R; 
 
 IF CLASSVAL0=. THEN CLASSLEVEL=0; 
 ELSE CLASSLEVEL=CLASSVAL0; 
 
 IF 0=< PROBCHISQ<&ALEVEL. THEN GROUP_POWER=1;  
 ELSE IF PROBCHISQ>= &ALEVEL. THEN GROUP_POWER=0; 
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 DROP CLASSVAL0; 
 IF STATUS=0 THEN OUTPUT RESULT_CATEGORICAL_&R;  
 ELSE OUTPUT E_&R; 
RUN; 
 
ODS HTML PATH="&PATH" BODY="GROUP_&R._&TABLE..XLS"; 
 PROC FREQ DATA=POWER_&R; 
  TITLE 'POWER OF Β';   
  TABLE EFFECT*(POWER)/NOCOL NOPERCENT; 
 RUN; 
 
 PROC TABULATE DATA= RESULT_CATEGORICAL_&R; 
  CLASS VARIABLE CLASSLEVEL;  
  VAR ESTIMATION STANDARDERRORS; 
TABLE VARIABLE*CLASSLEVEL,(ESTIMATION STANDARDERRORS ) *(N MEAN*F=8.4) /RTS=20  
MISSTEXT = 'NO DATA';  
 RUN; 
 
 PROC TABULATE DATA= RESULT_CATEGORICAL_&R; 
  CLASS VARIABLE CLASSLEVEL GROUP_POWER; 
TABLE VARIABLE*CLASSLEVEL,( GROUP_POWER )*(N ROWPCTN) /RTS=20  MISSTEXT = 'NO 
DATA'; 
 RUN; 
ODS HTML CLOSE; 
 
%MEND CATEGORICALLR; 
/********************************************************************/ 
Dataset generation 
One dataset is created from each iteration of %COEFF, %CONTINUOUS, %HISTGRAM, %PDF, 
and %MERGE. 
This dataset is accumulated until the iterations are complete and the iteration time is identified as strata. 
/********************************************************************/ 
 
%MACRO DATASET(N_REPEAT=); 
 %COEFF; 
 %DO REPEAT=1%TO&N_REPEAT.;  
  %CONTINUOUS; 
  %HISTGRAM 
  %PDF; 
  %MERGE; 
 %END; 
 %OUTCOME; 
%MEND DATASET; 
/********************************************************************/ 
The parameter estimations and statistical power calculation. 
/********************************************************************/ 
%MACRO LR(R=); 
%DO R=1%TO&R;     
%IF&R=1%THEN%DO;  
  %CONTINUOUSLR;  
 %END;  
 %ELSE%DO;  
  %CATEGORICALLR; 
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 %END; 
%END;QUIT; 
%MEND LR; 
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