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Abstract

The initial value problem for a fifth-order nonlinear dispersive partial differential
equation describing the curve flow on the sphere is considered. A typical example
of the equation arises in a hierarchy of completely integrable systems contain-
ing one-dimensional classical Heisenberg ferromagnetic spin model. This paper
establishes the local existence and uniqueness of a solution to the initial value
problem under the periodic boundary condition. The proof is based on the energy
method combined with a kind of gauge transformation to overcome the difficulty
of a loss of derivative.
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1. Introduction

1.1. Setting of the problem and the background
Let N ⩾ 1 be an integer, X be either the real line R or the one-dimensional flat

torus T := R/Z, and let SN be the N -dimensional unit sphere in RN+1 centered at
the origin. We consider the initial value problem for a fifth-order nonlinear partial
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differential equation (PDE) of the form

ut = b1uxxxxx + 5b1(uxxxx, ux)u+ 10b1(uxxx, uxx)u+ b2|ux|2uxxx

+ b3(uxxx, ux)ux + b4(uxx, ux)uxx + b5|uxx|2ux

+ b6|ux|2(uxx, ux)u+ b7|ux|4ux, (1.1)
u(0, x) = u0(x), (1.2)

where u = u(t, x) : R × X → SN ⊂ RN+1 being a curve flow on SN is the
unknown function and u0 = u0(x) : X → SN is a given initial function. The
standard inner product and the norm in RN+1 are denoted by (·, ·) and | · | respec-
tively, that is, (u, v) = u1v1 + u2v2 + · · · + uN+1vN+1 and |u| =

√
(u, u) for

any u = (u1, u2, . . . , uN+1), v = (v1, v2, . . . , vN+1) ∈ RN+1. Throughout this
paper, it is assumed that b1, b2, . . . , b7 are real constants which satisfy b1 ̸= 0 and
−3b2 − b4 + b6 = 0.

The setting for b1, b2, . . . , b7 in (1.1) comes from the requirement for the solu-
tion u to satisfy the constraint condition u(t, x) ∈ SN . To see this, suppose that
u : (−T, T )×X → SN is a smooth solution to (1.1)-(1.2). Then, by taking partial
derivatives of |u|2 = 1 with respect to t or x, we see (u, ut) = 0, (u, ux) = 0,
(u, uxx) = −|ux|2, (u, uxxx) = −3(uxx, ux), (u, uxxxx) = −4(uxxx, ux)−3|uxx|2,
and (u, uxxxxx) = −5(uxxxx, ux)− 10(uxxx, uxx). From them, it follows that

0 = (u, ut) = b1(u, uxxxx) + 5b1(ux, uxxx) + 10b1(uxxx, uxx)

+ b2|ux|2(u, uxxx) + b4(uxx, ux)(uxx, u) + b6|ux|2(uxx, ux)

= (5b1 − 5b1)(ux, uxxx) + (10b1 − 10b1)(uxxx, uxx)

+ (−3b2 − b4 + b6)|ux|2(uxx, ux)

= (−3b2 − b4 + b6)|ux|2(uxx, ux).

Therefore, it is reasonable to impose −3b2 − b4 + b6 = 0.
The equation (1.1) with N = 2 arises in a hierarchy of completely integrable

systems containing the following second-order PDE

ut = u ∧ uxx (1.3)

where u = u(t, x) : R × X → S2 ⊂ R3 and ∧ denotes the vector product in
R3. The equation (1.3) arises in several contexts in mathematics. In mathematical
physics, (1.3) is known as a one-dimensional classical Heisenberg ferromagnetic
spin model ([24]) or Landau-Lifshitz equation with zero dissipation([16]). Also,
(1.3) is known to be related to the so-called Da Rios equation which models the
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motion of a vortex filament in inviscid incompressible fluid in R3. In geometric
analysis, (1.3) is known to be an example of the Schrödinger map (or Schrödinger
flow) equation for maps with values into a Riemannian manifold with an almost
complex structure. See, e.g.,[3, 4, 14, 20, 27] and references therein. In the con-
text of differentiable dynamical systems, (1.3) is known to be a completely in-
tegrable system. See, e.g. [1, 2, 8, 27] and references therein. In particular,
Barouch, Fokas and Papageorgiou [2] showed that (1.3) is a bi-Hamiltonian sys-
tem and constructed the recursion operator generating a hierarchy of integrable
evolution equations by the inverse scattering method. Anco and Myrzakulov
[1] derived the same bi-Hamiltonian structure, the recursion operator, and con-
servation laws for each equation in the hierarchy by using a geometric moving
frame. The hierarchy actually contains (1.3) as well as the so-called mKdV coun-
terparts. Indeed, following [1], the hierarchy of integrable bi-Hamiltonian flows
on u = u(t, x) : R× R → S2 is given explicitly by

ut = (u ∧Dx − uxD
−1
x (u ∧ ux, ·))nux, n = 0, 1, 2, . . . (1.4)

where ∧ is the vector product in R3, Dx = ∂/∂x, and D−1
x is the inverse. The

equation (1.4) corresponding to n = 1 is just (1.3), and the one corresponding to
n = 2, 3, 4 are respectively found to be described as follows:

n = 2 : ut = −uxxx − 3(ux, uxx)u− 3

2
|ux|2ux, (1.5)

n = 3 : ut = −u ∧ uxxxx − 5(ux, uxx)u ∧ ux −
5

2
|ux|2u ∧ uxx, (1.6)

n = 4 : ut = uxxxxx + 5(uxxxx, ux)u+ 10(uxxx, uxx)u+
5

2
|ux|2uxxx

+ 10(uxxx, ux)ux + 10(uxx, ux)uxx +
15

2
|uxx|2ux

+
35

2
|ux|2(uxx, ux)u+

35

8
|ux|4ux. (1.7)

The equation (1.7) is actually a particular case of (1.1) where N = 2, b1 = 1 and
(b2, b4, b6) = (5/2, 10, 35/2) satisfying 3b2 + b4 − b6 = 0.

1.2. Aim and Known Results
The equation (1.1) is a kind of system of nonlinear dispersive partial differ-

ential equations (PDEs) with the geometric constraint condition that the solution
takes values in SN . In general, the solvability of dispersive PDEs is essentially
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related to the behaviour of lower-order terms in their equations. If there are many
types of lower-order derivatives of the solution in the equation, then it may in-
crease the risk of the presence of a bad structure that prevents the classical energy
method based on the integration by parts from working. The bad structure is called
a loss of derivative, the obstruction of which is to be overcome in some way in or-
der to solve the PDE. See, e.g., [5, 18, 19, 26] and references therein. In particular,
to solve our equation (1.1), we need to find a kind of good solvable structure of
nonlinear terms including lower-order derivatives. For this purpose, the detailed
analysis seems to be required, since (1.1) is a higher-order PDE and the nonlinear
structure depends also on the constrained condition u(t, x) ∈ SN .

Some dispersive PDE systems with the constraint condition u(t, x) ∈ S2 have
been investigated from the viewpoint of PDE theory for the last three decades. We
recall these previous results briefly. For the second-order S2-valued model equa-
tion (1.3), Sulem, Sulem, and Bardos [24] showed time-local and global existence
of a unique smooth solution in a Sobolev space by the classical energy method.
One can refer also to [28] for the results. The following third-order dispersive
PDE arises in the study of the motion of a vortex filament with the axial flow
effect([10]):

ut = u ∧ uxx + a

(
uxxx + 3(uxx, ux)u+

3

2
|ux|2ux

)
, (1.8)

where u = u(t, x) : R × X → S2 and 0 ̸= a ∈ R is a constant. For (1.8),
Nishiyama and Tani [21, 25] showed time-local and global existence of a unique
smooth solution to the initial value problem in a Sobolev space by the classical
energy method. The following fourth-order dispersive PDE arises as a higher-
order approximation of the Heisenberg ferromagnetic spin model (1.3) ([17]):

ut = u ∧ uxx + a u ∧ uxxxx + b (uxx, ux)u ∧ ux + c |ux|2u ∧ uxx, (1.9)

where u = u(t, x) : R ×X → S2 and a, b, c ∈ R with a ̸= 0 are constants. It is
known that (1.9) arises also in the study of the motion of a vortex filament with
the elliptical deformation effect ([9, 10]). For (1.9), the classical energy method
does not work by the presence of a loss of derivative, which is an essential dif-
ference from the analysis of (1.3) or (1.8). Fortunately however, Guo, Zeng, and
Su [12] succeeded to construct a weak time-local solution to the periodic initial
value problem in a Sobolev space where X = T under the additional assump-
tion b = 2c = 5a. The proof is based on a modified energy method applying
some conservation laws. The conservation laws do not hold in general without
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the assumption b = 2c = 5a. After that, Chihara and Onodera [6] (resp., Onodera
[23]) showed time-local existence of a unique smooth solution to the initial value
problem in a Sobolev space where X = R (resp., where X = T) without the as-
sumption on a ̸= 0, b, c. These proofs were based on the energy method combined
with a kind of gauge transformation. These results hold also for (1.5) and (1.6)
only by neglecting the term u ∧ uxx in the right hand side of (1.8) and (1.9).

The aim of this paper is to establish the time-local existence result for (1.1)-
(1.2) from the viewpoint of PDE theory. The original aim was to find out a solv-
able structure for (1.4) with arbitrary n. It seemed interesting because the structure
of the nonlinear terms becomes complicated as n increases. Particularly, the case
of even n seemed easier to be handled than the case of odd n, in that (1.4) for even
n is an odd-order dispersive PDE having a constant leading order term. How-
ever, it was not easy to write the right hand side of (1.4) for arbitrary n exactly
as a polynomial form of the solution and the partial derivatives only from the re-
cursion formula, which was not helpful to study the structure of nonlinear terms.
Hence we limit ourselves in the study of the fifth-order equation (1.1) containing
(1.4) for n = 4 in this paper. Since (1.1) is the first odd-order dispersive PDE
with constraint condition u(t, x) ∈ SN which possesses the difficulty of a loss of
derivative, we can expect that the study will present an insight on how to solve
general odd-order dispersive PDEs in this context containing (1.4) for even n in
future.

1.3. Main Results
To state our main results precisely, we introduce some notation used here and

hereafter: For integers m ≥ 0 and K ⩾ 1, Hm(X;RK) denotes the usual m-th
Sobolev space of RK-valued functions on X equipped with the norm ∥U∥Hm ={∑m

k=0

∫
X
(∂k

xU(x), ∂k
xU(x))dx

}1/2 for U ∈ Hm(X;RK), where (·, ·) denotes
the standard inner product in RK . In particular, (H0(X;RK), ∥ · ∥H0) is denoted
by (L2(X;RK), ∥ · ∥L2). For an interval I ⊂ R and a Banach space Z, the set
of all Z-valued continuous (resp. essentially bounded) functions on I is denoted
by C(I;Z) (resp. L∞(I;Z)). In addition, the set of all continuous maps from a
topological space Y into SN is denoted by C(Y, SN).

We are now in a position to state our main results.

Theorem 1.1. Let m be an integer satisfying m ⩾ 8. For any u0 ∈ C(T;SN)
satisfying u0x ∈ Hm(T;RN+1), there exists a positive constant T depending on
∥u0x∥H8 such that (1.1)-(1.2) has a unique solution u ∈ C([−T, T ] × T;SN)
satisfying ux ∈ C([−T, T ];Hm(T;RN+1)).
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Theorem 1.1 shows the time-local existence and uniqueness of a solution to
the initial value problem (1.1)-(1.2) under the periodic boundary condition where
X = T. In fact, Theorem 1.1 is valid also for the case X = R. However, we
focus only on the case X = T in this paper, since the case seems to be more
difficult than the case X = R as is stated in Remark 1 in this section. In addition,
Theorem 1.1 is valid for (1.1) which is not necessarily completely integrable, as
far as the constraint condition 3a2 + a4 − a6 = 0 with b1 ̸= 0 is satisfied. In
other words, we show Theorem 1.1 without full use of the completely integrable
structure.

To prove Theorem 1.1, we employ the energy method combined with a kind of
gauge transformation following [4, 23]. The key ingredient of the method comes
from the following observation: Let u be a smooth solution to (1.1)-(1.2). Then,
by the classical energy estimate based on the integration by parts and the Sobolev
embedding, we can obtain

1

2

d

dt
∥ux∥2Hm ⩽ C0∥ux∥2Hm + β1

∫
T
(∂xux, ux)|∂m+1

x ux|2dx

+ β2

∫
T
(∂m+1

x ux, ∂xux)(∂
m+1
x ux, ux)dx

+ β3

∫
T
(∂m+1

x ux, ∂
2
xux)(∂

m
x ux, ux)dx, (1.10)

where C0 > 0, β1, β2, β3 ∈ R are constants depending on b1, b2, . . . , b7 and on
m. By the presence of ∂m+1

x ux in the right hand side of (1.10), we cannot de-
rive the suitable estimate for ∥ux∥Hm directly from (1.10), which means a loss of
derivative occurs for (1.1). To overcome the difficulty, we introduce a function Vm

by

Vm = ∂m
x ux − Φ1∂

m−2
x ux − Φ2∂

m−2
x ux − Φ3∂

m−3
x ux, (1.11)

Φ1 = M1|ux|2,Φ2 = M2(·, ux)ux,Φ3 = M3(·, ∂xux)ux,

where M1,M2,M3 ∈ R are constants which will be decided later. Then we find
that the commutator of the principal part b1∂5

x with the transformation ∂m
x ux 7→

Vm denoted by [b1∂
5
x, Id − Φ1∂

−2
x − Φ2∂

−2
x − Φ3∂

−3
x ] generates the term

10b1M1(∂xux, ux)∂
2
x + 5b1M2

{
(∂2

x·, ∂xux)ux + (∂2
x·, ux)∂xux

}
+ 5b1M3(∂x·, ∂2

xux)ux,
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which cancels out the loss of derivative. Indeed, by choosing M1 = β1/(10b1),
M2 = β2/(10b1), and M3 = −β3/(5b1), we can obtain

1

2

d

dt
∥Vm∥2L2 ⩽ C ′

0(∥ux∥2Hm−1 + ∥Vm∥2L2) (1.12)

for some constant C ′
0 > 0, which guarantees the suitable energy estimate for

∥ux∥2Hm−1 + ∥Vm∥2L2 (instead of ∥ux∥2Hm).
For more details on the proof, some remarks are in order: First, we can make

the above argument rigorous to construct a time-local solution by combining a
sixth-order parabolic regularization. Second, we apply some geometric properties
of SN -valued functions. We use basic tools of computations in [21, 25] where S2-
valued functions are handled. Since we use properties coming only from |u| = 1,
any essential difficulties do not occur by replacing S2 with arbitrary SN . Third, we
show Proposition 2.3 by the estimate for h = |u|2 − 1 in H2(T;R). Although the
argument of the proof basically follows that in [21, 25, 23], the classical energy
estimate for ∥h∥H2(T;R) does not work, which is different from that in [21, 25, 23].
We can avoid the difficulty by applying the same type of the transformation as
that in (1.11), where Φ2∂

−2
x and Φ3∂

−3
x are not required. In addition, our argu-

ment to show Proposition 2.3 breaks down without the setting for b1, b2, . . . , b7 in
(1.1). See the computation to obtain (4.9) and Remark 4. Fourth, the uniqueness
of the solution can be proved based on the energy estimate for H3-norm of the
difference of the two solutions with the same initial data combined with the same
transformation as that in (1.11). To make the argument rigorous, the assumption
m ⩾ 8 on the smoothness of the solution is applied.

Remark 1. The proof of Theorem1.1 is valid also for the case X = R, in that the
transformation ∂m

x ux 7→ Vm in (1.11) can be used without the need for modifica-
tion. Rather than the obvious fact, restricting ourselves to the case X = R, we
have another proof based on the energy method combined with a simpler gauge
transformation. More concretely, motivated by [22, 6] and references therein, we
introduce a function Vm by

Vm := ∂m
x ux − Φ∂m−2

x ux,

Φ(t, x) := M

∫ x

0

(|ux(t, y)|2 + |∂xux(t, y)|2) dy, (1.13)

where M ∈ R is a constant which will be decided later. Then we find that the
commutator [b1∂

5
x, Id − Φ∂−2

x ] generates a second order term −5b1M(|ux|2 +
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|∂xux|2)∂2
x, which is found to dominate the loss of derivatives in (1.10). Indeed, by

choosing M so that b1M is sufficiently large, we can obtain (1.12). The computa-
ton is simplified compared to that in our proof of Theorem 1.1 which uses (1.11).
This is one of the methods to bring out the so-called local smoothing effect inher-
ited to the solution to (1.1) in the setting x ∈ R. It is to be stressed that the simple
method is not valid in the periodic setting X = T. This is essentially because the
above local smoothing effect cannot be expected to hold on the compact domain
T. Indeed, Φ in (1.13) can not be a map of the space of periodic functions into
itself. Therefore, to handle the case X = T, we need to clarify a more essential
solvable structure of (1.1), which is successfully achieved by introducing (1.11).

The plan of the paper is as follows: In Section 2, a uniform energy estimate
for higher-order derivatives of a sixth-order parabolic regularized approximating
solution is derived. In Section 3, the proof of Theorem 1.1 is completed. In Ap-
pendix, a detail on how to construct the approximating solution is supplemented.

2. Uniform energy estimate for approximating solutions.

In this section, we first construct a kind of sixth-order parabolic regularized
solution which approximates the solution to (1.1)-(1.2), and next derive a uniform
energy estimate for higher-order derivatives of the approximating solutions.

For fixed ε ∈ (0, 1], we consider the following initial value problem:

ut = ε F6 + F5, (2.1)
u(0, x) = u0(x), (2.2)

where u = u(t, x) : [0,∞) × T → SN is the solution, u0 = u0(x) : T → SN

is the same initial function as that in (1.1)-(1.2), and F6 and F5 are respectively
given by

F6 = ∂5
xux + 6(∂4

xux, ux)u+ 15(∂3
xux, ∂xux)u+ 10|∂2

xux|2u, (2.3)
F5 = b1∂

4
xux + 5b1(∂

3
xux, ux)u+ 10b1(∂

2
xux, ∂xux)u+ b2|ux|2∂2

xux

+ b3(∂
2
xux, ux)ux + b4(∂xux, ux)∂xux + b5|∂xux|2ux

+ b6|ux|2(∂xux, ux)u+ b7|ux|4ux. (2.4)

The form of F5 is just as same as that of the right hand side of (1.1). We can show
the following:
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Proposition 2.1. Let ε ∈ (0, 1] and let m be an integer satisfying m ⩾ 7. Then for
any u0 ∈ C(T;SN) satisfying u0x ∈ Hm(T;RN+1), there exists a positive con-
stant Tε depending on ε and ∥u0x∥Hm such that (2.1)-(2.2) has a unique solution
u ∈ C([0, Tε]× T; SN) satisfying ux ∈ C([0, Tε];H

m(T;RN+1)).

Proposition 2.1 can be proved by combining the following two propositions:

Proposition 2.2. Under the same assumptions of Proposition 2.1, there exists
a positive constant Tε depending on ε and ∥u0x∥Hm , and exists a unique u ∈
C([0, Tε]× T;RN+1) satisfying ux ∈ C([0, Tε];H

m(T;RN+1)) and (2.1)-(2.2).

Proposition 2.3. Let u be the RN+1-valued function in Proposition 2.2. Then it
follows that |u| = 1 on [0, Tε]× T, that is, u ∈ C([0, Tε]× T;SN).

By the added term ε F6, (2.1) behaves as a parabolic system with the sixth-
order leading term ε∂5

xux and polynomial nonlinearities F (u) of the form

ut = ε∂5
xux + F (u), (2.5)

where F (u) consists of nonlinear terms of u, ux, . . . , ∂
4
xux, and has no constant

terms and no linear terms except for b1∂4
xux. This helps to construct a solution to

(2.1)-(2.2) in a relatively simple way. Indeed, by parabolic smoothing properties
coming from the leading term ε∂5

xux, we can easily show Proposition 2.2 by the
contraction mapping argument. Since the argument is standard, we omit the detail.

The role of Proposition 2.3 is to ensure that u ∈ C([0, Tε] × T;RN+1) con-
structed in Proposition 2.2 actually takes values in SN , where the form of F6 works
effectively to obtain a suitable estimate for h := |u|2 − 1. Although the proof fol-
lows the argument in [21, 23, 25], we need a modification of the estimate for ∂2

xh.
The idea of the modification is similar to that used later. The detail on the proof
of Proposition 2.3 is presented in Appendix for interested readers.

Next, we derive an energy estimate for the partial derivative of the solution
to (2.1)-(2.2) with respect to x uniformly in ε. More concretely, the goal of this
section is to show the following.

Proposition 2.4. Let m ⩾ 8 be an integer. For each ε ∈ (0, 1], let uε = uε(t, x) :
[0, Tε] × T → SN be the solution to (2.1)-(2.2) constructed in Proposition 2.1.
Then, there exists a constant T = T (∥u0x∥H8) > 0 which is independent of
ε ∈ (0, 1] such that T ⩽ Tε for all ε ∈ (0, 1] and {uε

x}ε∈(0,1] is bounded in
L∞(0, T ;Hm(T;RN+1)).
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Proof of Proposition 2.4. We introduce a function V ε
m defined by

V ε
m = ∂m

x uε
x −M1|uε

x|2∂m−2
x uε

x −M2(∂
m−2
x uε

x, u
ε
x)u

ε
x −M3(∂

m−3
x uε

x, ∂xu
ε
x)u

ε
x,

where M1,M2,M3 ∈ R are constants which will be decided later. For conve-
nience, we set U ε

m = ∂m
x uε

x and Λ(uε) = Λ1(u
ε) + Λ2(u

ε) + Λ3(u
ε) where

Λ1(u
ε) = Φ1∂

−2
x , Λ2(u

ε) = Φ2∂
−2
x , Λ3(u

ε) = Φ3∂
−3
x , (2.6)

Φ1 = M1|uε
x|2, Φ2 = M2(·, uε

x)u
ε
x, Φ3 = M3(·, ∂xuε

x)u
ε
x. (2.7)

Then we can write as follows:

V ε
m = ∂m

x uε
x − Φ1∂

m−2
x uε

x − Φ2∂
m−2
x uε

x − Φ3∂
m−3
x uε

x

= U ε
m − Λ(uε)U ε

m. (2.8)

Next, we introduce Nm(u
ε(t)), a function of t, defined by

Nm(u
ε(t)) =

{
∥uε

x(t)∥2Hm−1 + ∥V ε
m(t)∥2L2

}1/2
. (2.9)

Restricting the time interval, Nm(u
ε) turns out to be equivalent with ∥uε

x∥Hm .
More precisely, we define T ⋆

ε by

T ⋆
ε = sup {T > 0 | N8(u

ε(t)) ⩽ 2N8(u0) for all t ∈ [0, T ]} .

Then, by the Sobolev embedding, it turns out that there exists a constant C =
C(∥u0x∥H8) > 1 which is independent of ε such that

1

C
Nm(u

ε(t)) ⩽ ∥uε
x(t)∥Hm ⩽ C Nm(u

ε(t)) (2.10)

for all t ∈ [0, T ⋆
ε ]. Under the setting, we shall show that there exists a constant

T = T (∥u0x∥H8) > 0 which is independent of ε ∈ (0, 1] and m such that T ⋆
ε ⩾

T uniformly in ε ∈ (0, 1] and that {Nm(u
ε)}ε∈(0,1] is bounded in L∞(0, T ;R).

If it is true, then this together with (2.10) implies that {uε
x}ε∈(0,1] is bounded in

L∞(0, T ;Hm(T;RN+1)). In what follows, we write u = uε, Um = U ε
m, Vm = V ε

m,
Λ(u) = Λ(uε) and Λi(u) = Λi(u

ε)(i = 1, 2, 3) for simplicity. Any positive
constant depending on m, bi(i = 1, . . . 7), ∥u0x∥H8 and not on ε ∈ (0, 1] will be
denoted by the same C. From m ⩾ 8 and the Sobolev embedding H1(T;RN+1) ⊂
C(T;RN+1), it follows that

∥∂8
xux∥C([0,T ⋆

ε ];L
2) ⩽ C, ∥∂j

xux∥C([0,T ⋆
ε ]×T) ⩽ C (j = 0, 1, . . . , 7). (2.11)
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In addition, by (2.8), Vm = Um + O(|∂m−2
x ux| + |∂m−3

x ux|) holds. We will use
these properties sometimes without any comments.

To begin with, we compute the PDE satisfied by Um and next compute the one
satisfied by Vm. Suppose that t ∈ [0, T ⋆

ε ]. Then, by (2.1), we have

∂tUm = ∂t(∂
m
x ux) = ∂m+1

x ut = ε∂m+1
x F6 + ∂m+1

x F5. (2.12)

After lengthy calculations using the Leibniz rule, (2.3), and (2.4), we obtain

ε∂m+1
x F6 = ε

{
∂6
xUm +O

(
5∑

j=1

|∂j
xUm|

)}
+O

(
m∑
j=0

|∂j
xux|

)
, (2.13)

∂m+1
x F5 = b1∂

5
xUm + d0(∂

4
xUm, ux)u

+ d1(∂
3
xUm, ∂xux)u+ d2(∂

3
xUm, ux)ux + d3|ux|2∂3

xUm

+ d4(∂
2
xUm, ∂

2
xux)u+ d5(∂

2
xUm, ∂xux)ux + d6(∂

2
xUm, ux)∂xux

+ d7|ux|2(∂2
xUm, ux)u+ d8(∂xux, ux)∂

2
xUm + d9(∂xUm, ∂

2
xux)ux

+ d10(∂xUm, ∂xux)∂xux + d11(∂xUm, ux)∂
2
xux

+ d12|ux|2(∂xUm, ux)ux + d13(∂xUm, ∂
3
xux)u

+ d14(∂xUm, ux)(∂xux, ux)u+ d15|ux|2(∂xUm, ∂xux)u

+ d16(∂
2
xux, ux)∂xUm + d17|∂xux|2∂xUm + d18|ux|4∂xUm +Rm,

(2.14)

where Rm = O
(∑m

j=0 |∂j
xux|

)
. Each of d0, d1, . . . , d18 is a real constant depend-

ing on m and is given as a linear combination of b1, b2, . . . , b7, the exact form of
which is not required below. Furthermore, we can rewrite (2.14) as follows:

∂tUm = ε∂m+1
x F6 + P (u)Um +Rm, (2.15)

where

P (u) = b1∂
5
x + P4(u)∂

4
x + P3(u)∂

3
x + P2(u)∂

2
x + P1(u)∂x, (2.16)

P4(u) = d0(·, ux)u, (2.17)
P3(u) = d1(·, ∂xux)u+ d2(·, ux)ux + d3|ux|2, (2.18)
P2(u) = d4(·, ∂2

xux)u+ d5(·, ∂xux)ux + d6(·, ux)∂xux

+ d7|ux|2(·, ux)u+ d8(∂xux, ux), (2.19)
P1(u) = d9(·, ∂2

xux)ux + d10(·, ∂xux)∂xux + d11(·, ux)∂
2
xux + d12|ux|2(·, ux)ux

+ d13(·, ∂3
xux)u+ d14(·, ux)(∂xux, ux)u+ d15|ux|2(·, ∂xux)u

+ d16(∂
2
xux, ux) + d17|∂xux|2 + d18|ux|4. (2.20)

11



Then, from (2.8) and (2.15), it follows that

∂tVm = ∂tUm − ∂t(Λ(u)Um)

= ε∂m+1
x F6 + P (u)Um +Rm − ∂t(Λ(u)Um)

= ε∂m+1
x F6 + P (u)Vm + P (u)Λ(u)Um − ∂t(Λ(u)Um) +Rm. (2.21)

Using the expression (2.21), we have

1

2

d

dt
∥Vm∥2L2 =

∫
T
(∂tVm, Vm)dx =: ε I1 + I2 + I3 + I4, (2.22)

I1 =

∫
T
(∂m+1

x F6, Vm)dx, I2 =

∫
T
(P (u)Vm, Vm)dx

I3 =

∫
T
(P (u)Λ(u)Um − ∂t(Λ(u)Um), Vm)dx, I4 =

∫
T
(Rm, Vm)dx.

We estimate I4, ε I1, I2, I3 separately. For I4, Rm = O
(∑m

j=0 |∂j
xux|

)
implies

∥Rm∥L2 ⩽ C∥ux∥Hm . Using this and (2.10), we have∫
T
(Rm, Vm)dx ⩽ ∥Rm∥L2∥Vm∥L2 ⩽ CNm(u)

2. (2.23)

For ε I1, from (2.13) and Um = Vm+O(|∂m−2
x ux|+ |∂m−3

x ux|), it follows that
F̃6 = ∂6

xVm + Q̃ where Q̃ = O
(∑5

j=1 |∂j
xVm|

)
+O

(∑m
j=0 |∂j

xux|
)

. Using this,
the integration by parts, the Sobolev embedding, and (2.10), we see

ε I1 ⩽ −ε∥∂3
xVm∥2L2

+ ε

∫
T
(Q̃, Vm) dx

⩽ −ε∥∂3
xVm∥2L2

+ εC
5∑

j=1

∥∂j
xVm∥L2∥Vm∥L2 + εCNm(u)

2.

Furthermore, by the Gagliardo-Nirenberg inequality, the Young inequality, and
0 < ε ⩽ 1, we obtain

ε I1 ⩽ −ε

2
∥∂3

xVm∥2L2
+ CNm(u)

2. (2.24)

For I2, by (2.16), we can write

I2 =: b1

∫
T
(∂5

xVm, Vm)dx+ I24 + I23 + I22 + I21, (2.25)

I2k =

∫
T
(Pk(u)∂

4
xVm, Vm)dx (k = 1, 2, 3, 4),

12



where P4(u), . . . , P1(u) are given by (2.17)-(2.20). We compute the right hand
side of (2.25). First, by the integration by parts, we see

b1

∫
T
(∂5

xVm, Vm)dx = b1

∫
T
(∂3

xVm, ∂
2
xVm)dx = 0. (2.26)

For other terms I24, . . . , I21, we estimate by mixing the standard method of the
computation as above and some properties coming from the constraint condition
|u| = 1. We begin with the computation of I24 =: I + II where

I :=

∫
T
(P4(u)∂

4
xVm, Um)dx, II := −

∫
T
(P4(u)∂

4
xVm,Λ(u)Um)dx.

We first estimate I . By (2.17),

I = d0

∫
T
(∂4

xVm, ux)(Um, u)dx.

To estimate I , we use the following property

(Um, u) = −(m+ 1)(∂m−1
x ux, ux)− m+1C2 (∂

m−2
x ux, ∂xux)

− m+1C3 (∂
m−3
x ux, ∂

2
xux) +O

(
m−4∑
j=0

|∂j
xux|

)
. (2.27)

This can be obtained by taking the partial differentiation of |u|2 = 1 with respect
to x inductively. (This has been applied also in [21] for a third order nonlinear
dispersive PDE modelling the motion of a vortex filament.) By substituting (2.27)
and by using the integration by parts, we deduce

I ⩽ −d0(m+ 1)

∫
T
(∂4

xVm, ux)(∂
m−1
x ux, ux)dx

− d0 m+1C2

∫
T
(∂4

xVm, ux)(∂
m−2
x ux, ∂xux)dx

− d0 m+1C3

∫
T
(∂4

xVm, ux)(∂
m−3
x ux, ∂

2
xux)dx+ CNm(u)

2.
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Using the integration by parts again, we deduce

I ⩽ d0(m+ 1)

∫
T
(∂3

xVm, ∂xux)(∂
m−1
x ux, ux)dx

+ d0(m+ 1)

∫
T
(∂3

xVm, ux)(Um, ux)dx

+ d0(m+ 1)

∫
T
(∂3

xVm, ux)(∂
m−1
x ux, ∂xux)dx

+ d0 m+1C2

∫
T
(∂3

xVm, ∂xux)(∂
m−2
x ux, ∂xux)dx

+ d0 m+1C2

∫
T
(∂3

xVm, ux)(∂
m−1
x ux, ∂xux)dx

+ d0 m+1C2

∫
T
(∂3

xVm, ux)(∂
m−2
x ux, ∂

2
xux)dx

+ d0 m+1C3

∫
T
(∂3

xVm, ux)(∂
m−2
x ux, ∂

2
xux)dx+ CNm(u)

2. (2.28)

By the repeated use of the integration by parts as above, we arrive at

I ⩽ α11

∫
T
(∂xVm, ∂

2
xux)(Um, ux)dx+ α12

∫
T
(∂xVm, ∂xux)(∂xUm, ux)dx

+ α13

∫
T
(∂xVm, ∂xux)(Um, ∂xux)dx+ α14

∫
T
(∂2

xVm, ux)(∂xUm, ux)dx

+ α15

∫
T
(∂xVm, ux)(∂xUm, ∂xux)dx+ α16

∫
T
(∂xVm, ux)(Um, ∂

2
xux)dx

+ CNm(u)
2, (2.29)

where α11, . . . , α16 are real constants depending on d0 and m but are indepen-
dent of (M1,M2,M3). Although the fourth term of the right hand side of (2.29)
still contains ∂2

xVm, by the integration by parts and Um = Vm + O(|∂m−2
x ux| +
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|∂m−3
x ux|), we deduce

α14

∫
T
(∂2

xVm, ux)(∂xUm, ux)dx

⩽ α14

∫
T
(∂2

xVm, ux)(∂xVm, ux)dx+ CNm(u)
2

=
α14

2

∫
T
(∂2

xVm, ux)(∂xVm, ux)dx− α14

2

∫
T
(∂xVm, ux)(∂

2
xVm, ux)dx

− α14

2

∫
T
(∂xVm, ∂xux)(∂xVm, ux)dx− α14

2

∫
T
(∂xVm, ux)(∂xVm, ∂xux)dx

+ CNm(u)
2

= −α14

∫
T
(∂xVm, ux)(∂xVm, ∂xux)dx+ CNm(u)

2. (2.30)

Furthermore, substituting (2.30) into (2.29) and using Um = Vm +O(|∂m−2
x ux|+

|∂m−3
x ux|), we deduce

I ⩽ α11

∫
T
(∂xVm, ∂

2
xux)(Vm, ux)dx

+ (α12 − α14 + α15)

∫
T
(∂xVm, ∂xux)(∂xVm, ux)dx

+ α13

∫
T
(∂xVm, ∂xux)(Vm, ∂xux)dx+ α16

∫
T
(∂xVm, ux)(Vm, ∂

2
xux)dx

+ CNm(u)
2. (2.31)

Here, the third term of the right hand side of (2.31) is bounded by CNm(u)
2 by

the integration by parts as we show (2.30). The fourth term of the right hand side
of (2.31) is estimated by the integration by parts as follows:

α16

∫
T
(∂xVm, ux)(Vm, ∂

2
xux)dx ⩽ −α16

∫
T
(∂xVm, ∂

2
xux)(Vm, ux)dx+ CNm(u)

2.

Using them, we have

I ⩽ CNm(u)
2 + (α11 − α16)

∫
T
(∂xVm, ∂

2
xux)(Vm, ux)dx

+ (α12 − α14 + α15)

∫
T
(∂xVm, ∂xux)(∂xVm, ux)dx.
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Note that the second and the third terms of the right hand side of above cannot be
handled as above. This is a reason we introduce (2.8).
Next we estimate II . Recalling (2.17) and using (ux, u) = 0 and ΛUm =
M1|ux|2∂m−2

x ux +M2(∂
m−2
x ux, ux)ux +M3(∂

m−3
x ux, ∂xux)ux, we see

II = −d0M1

∫
T
|ux|2(∂4

xVm, ux)(∂
m−2
x ux, u) dx.

We use (2.27) replacing m with m− 2 to see

(∂m−2
x ux, u) = −(m− 1)(∂m−3

x ux, ux) +O

(
m−4∑
j=0

|∂j
xux|

)
.

Substituting this relation and using the integration by parts and Um = Vm +
O(|∂m−2

x ux|+ |∂m−3
x ux|), we deduce

II ⩽ d0(m− 1)M1

∫
T
|ux|2(∂4

xVm, ux)(∂
m−3
x ux, ux) dx+ CNm(u)

2

⩽ −d0(m− 1)M1

∫
T
|ux|2(∂xVm, ux)(Um, ux) dx+ CNm(u)

2

⩽ −d0(m− 1)M1

∫
T
|ux|2(∂xVm, ux)(Vm, ux) dx+ CNm(u)

2.

Furthermore, it follows from integration by parts∫
T
|ux|2(∂xVm, ux)(Vm, ux) dx

= −
∫
T
(∂xux, ux)(Vm, ux)(Vm, ux) dx−

∫
T
|ux|2(Vm, ∂xux)(Vm, ux) dx

⩽ CNm(u)
2. (2.32)

Therefore, we obtain II ⩽ CNm(u)
2. Combining the estimate for I and that for

II , we obtain

I24 ⩽ CNm(u)
2 + (α11 − α16)

∫
T
(∂xVm, ∂

2
xux)(Vm, ux)dx

+ (α12 − α14 + α15)

∫
T
(∂xVm, ∂xux)(∂xVm, ux)dx. (2.33)
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Next we estimate I23. By (2.18) and Vm = Um − Λ(u)Um, we have

I23 = d1

∫
T
(∂3

xVm, ∂xux)(Vm, u)dx+ d2

∫
T
(∂3

xVm, ux)(Vm, ux)dx

+ d3

∫
T
|ux|2(∂3

xVm, Vm)dx

= d1

∫
T
(∂3

xVm, ∂xux)(Um, u)dx− d1

∫
T
(∂3

xVm, ∂xux)(Λ(u)Um, u)dx

+ d2

∫
T
(∂3

xVm, ux)(Vm, ux)dx+ d3

∫
T
|ux|2(∂3

xVm, Vm)dx. (2.34)

By lengthy calculations using the same argument as we obtain (2.33) from (2.28),
we can obtain

I23 ⩽ CNm(u)
2 + α17

∫
T
(∂xux, ux)|∂xVm|2dx

+ α18

∫
T
(∂xVm, ∂xux)(∂xVm, ux)dx+ α19

∫
T
(∂xVm, ∂

2
xux)(Vm, ux)dx,

(2.35)

where α17, α18, α19 are real constants depending on d1, d2, d3,m, but are indepen-
dent of (M1,M2,M3). Note that the second term of the right hand side of (2.35)
comes from the fourth term of the right hand side of (2.34). In the same way, we
can obtain

I22 + I21

⩽ CNm(u)
2 + α20

∫
T
(∂xux, ux)|∂xVm|2dx

+ α21

∫
T
(∂xVm, ∂xux)(∂xVm, ux)dx+ α22

∫
T
(∂xVm, ∂

2
xux)(Vm, ux)dx,

(2.36)

where α20, α21, α22 are real constants depending on m but not on (M1,M2,M3),
and each of the constants is a linear combination of d4, . . . , d18. Substituting
(2.33), (2.35), and (2.36) into (2.25), we obtain

I2 ⩽ CNm(u)
2 + β1

∫
T
(∂xux, ux)|∂xVm|2dx

+ β2

∫
T
(∂xVm, ∂xux)(∂xVm, ux)dx+ β3

∫
T
(∂xVm, ∂

2
xux)(Vm, ux)dx,

(2.37)

17



where β1 = α17+α20, β2 = α12−α14+α15+α18+α21, β3 = α11−α16+α19+α22.
For I3, we begin with the computation of

P (u)Λ(u)Um − ∂t(Λ(u)Um) =
3∑

i=1

{P (u)Λi(u)Um − ∂t(Λi(u)Um)}, (2.38)

which plays a crucial part in the proof. First, we consider P (u)Λ1(u)Um −
∂t(Λ1(u)Um). Noting ∂m

x ux and ∂m−1
x ux are not included in Λ1(u)Um, we com-

pute using (2.16)-(2.20) to deduce

P (u)Λ1(u)Um = (b1∂
5
x + P4(u)∂

4
x + P3(u)∂

3
x)Λ1(u)Um +O

(
m∑
j=0

|∂j
xux|

)
= b1∂

5
x(Λ1(u)Um) + d0(∂

4
x(Λ1(u)Um), ux)u

+ d1(∂
3
x(Λ1(u)Um), ∂xux)u+ d2(∂

3
x(Λ1(u)Um), ux)ux

+ d3|ux|2∂3
x(Λ1(u)Um) +O

(
m∑
j=0

|∂j
xux|

)
. (2.39)

By the definition of Λ1(u) and Vm = Um +O(|∂m−2
x ux|+ |∂m−3

x ux|), we see

∂3
x(Λ1(u)Um) = M1|ux|2∂m+1

x ux +O

(
m∑
j=0

|∂j
xux|

)

= M1|ux|2∂xVm +O

(
m∑
j=0

|∂j
xux|

)
, (2.40)

∂4
x(Λ1(u)Um) = M1|ux|2∂m+2

x ux + 8M1(∂xux, ux)∂
m+1
x ux +O

(
m∑
j=0

|∂j
xux|

)

= M1|ux|2∂2
xVm + 8M1(∂xux, ux)∂xVm +O

(
m∑
j=0

|∂j
xux|

)
.

(2.41)
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Substituting (2.40) and (2.41) into (2.39), we have

P (u)Λ1(u)Um = b1∂
5
x(Λ1(u)Um) + d0M1|ux|2(∂2

xVm, ux)u

+ 40b1M1(∂xux, ux)(∂xVm, ux)u+ d1M1|ux|2(∂xVm, ∂xux)u

+ d2M1|ux|2(∂xVm, ux)ux + d3M1|ux|4∂xVm

+O

(
m∑
j=0

|∂j
xux|

)
. (2.42)

Furthermore, we compute

∂t(Λ1(u)Um) = 2M1(∂xut, ux)∂
m−2
x ux +M1|ux|2∂t∂m−2

x ux.

Since ut = ε ∂5
xux + · · · ∈ C([0, T ⋆

ε ];H
3(T;RN+1)) follows from m ⩾ 8,

|(∂xut, ux)| ⩽ ∥∂xut∥L∞∥ux∥L∞ ⩽ C(∥ux∥C([0,T ⋆
ε ];H

7)) < +∞,

which yields

∂t(Λ1(u)Um) = M1|ux|2∂t∂m−2
x ux +O

(
m∑
j=0

|∂j
xux|

)
. (2.43)

In addition, in the same way as we obtain (2.14) and (2.13), we have

∂t∂
m−2
x ux = ε F ′ + b1∂

3
xUm + d′0(∂

2
xUm, ux)u+ d′1(∂xUm, ∂xux)u

+ d′2(∂xUm, ux)ux + d′3|ux|2∂xUm +O

(
m∑
j=0

|∂j
xux|

)
= ε F ′ + b1∂

3
xUm + d′0(∂

2
xVm, ux)u+ d′1(∂xVm, ∂xux)u

+ d′2(∂xVm, ux)ux + d′3|ux|2∂xVm +O

(
m∑
j=0

|∂j
xux|

)
. (2.44)

Here d′0, . . . , d
′
3 are real constants depending on d0, d1, d2, d3. And

F ′ = ∂4
xUm +O

(
3∑

j=1

|∂j
xUm|

)
+O

(
m∑
j=0

|∂j
xux|

)
. (2.45)
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Substituting (2.44) into (2.43), and noting Λ1(u)∂
5
xUm = M1|ux|2∂3

xUm, we ob-
tain

∂t(Λ1(u)Um) = εM1|ux|2F ′ + b1Λ1(u)(∂
5
xUm) + d′0M1|ux|2(∂2

xVm, ux)u

+ d′1M1|ux|2(∂xVm, ∂xux)u+ d′2M1|ux|2(∂xVm, ux)ux

+ d′3M1|ux|4∂xVm +O

(
m∑
j=0

|∂j
xux|

)
. (2.46)

Combining (2.42) and (2.46), we obtain

P (u)Λ1(u)Um − ∂t(Λ1(u)Um)

= −εM1|ux|2F ′ + b1
[
∂5
x,Λ1(u)

]
Um + (d0 − d′0)M1|ux|2(∂2

xVm, ux)u

+ 40b1M1(∂xux, ux)(∂xVm, ux)u+ (d1 − d′1)M1|ux|2(∂xVm, ∂xux)u

+ (d2 − d′2)M1|ux|2(∂xVm, ux)ux + (d3 − d′3)M1|ux|4∂xVm

+O

(
m∑
j=0

|∂j
xux|

)
. (2.47)

Here, by the Leibniz rule and Um = Vm +O(|∂m−2
x ux|+ |∂m−3

x ux|), we see[
∂5
x,Λ1(u)

]
Um = M1∂

5
x

{
|ux|2∂−2

x Um

}
−M1|ux|2∂−2

x ∂5
xUm

= M1|ux|2∂3
xUm + 5M1∂x

{
|ux|2

}
∂2
xUm + 10M1∂

2
x

{
|ux|2

}
∂xUm

+M1

5∑
j=3

5Cj ∂
j
x

{
|ux|2

}
∂5−j
x ∂−2

x Um −M1|ux|2∂3
xUm

= 10M1(∂xux, ux)∂
2
xUm + 10M1∂

2
x

{
|ux|2

}
∂xUm +O

(
m∑
j=0

|∂j
xux|

)

= 10M1(∂xux, ux)∂
2
xVm + 10M1∂

2
x

{
|ux|2

}
∂xVm +O

(
m∑
j=0

|∂j
xux|

)
, (2.48)
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Substituting (2.48) into (2.47), we obtain

P (u)Λ1(u)Um − ∂t(Λ1(u)Um)

= −εM1|ux|2F ′ + 10b1M1(∂xux, ux)∂
2
xVm + 10M1∂

2
x

{
|ux|2

}
∂xVm

+ (d0 − d′0)M1|ux|2(∂2
xVm, ux)u+ 40b1M1(∂xux, ux)(∂xVm, ux)u

+ (d1 − d′1)M1|ux|2(∂xVm, ∂xux)u+ (d2 − d′2)M1|ux|2(∂xVm, ux)ux

+ (d3 − d′3)M1|ux|4∂xVm +O

(
m∑
j=0

|∂j
xux|

)
. (2.49)

Second, we observe that P (u)Λ2(u)Um−∂t(Λ2(u)Um). Noting ∂m
x ux and ∂m−1

x ux

are not included in Λ2(u)Um, we compute using (2.16)-(2.20) to deduce

P (u)Λ2(u)Um = (b1∂
5
x + P4(u)∂

4
x + P3(u)∂

3
x)Λ2(u)Um +O

(
m∑
j=0

|∂j
xux|

)
= b1∂

5
x(Λ2(u)Um) + d0(∂

4
x(Λ2(u)Um), ux)u

+ d1(∂
3
x(Λ2(u)Um), ∂xux)u+ d2(∂

3
x(Λ2(u)Um), ux)ux

+ d3|ux|2∂3
x(Λ2(u)Um) +O

(
m∑
j=0

|∂j
xux|

)
. (2.50)

By the definition of Λ2(u) and Vm = Um +O(|∂m−2
x ux|+ |∂m−3

x ux|), we have

∂3
x(Λ2(u)Um) = M2(∂

m+1
x ux, ux)ux +O

(
m∑
j=0

|∂j
xux|

)

= M2(∂xVm, ux)ux +O

(
m∑
j=0

|∂j
xux|

)
, (2.51)

∂4
x(Λ2(u)Um) = M2(∂

m+2
x ux, ux)ux + 4M2(∂

m+1
x ux, ∂xux)ux

+ 4M2(∂
m+1
x ux, ux)∂xux +O

(
m∑
j=0

|∂j
xux|

)
= M2(∂

2
xVm, ux)ux + 4M2(∂xVm, ∂xux)ux

+ 4M2(∂xVm, ux)∂xux +O

(
m∑
j=0

|∂j
xux|

)
. (2.52)

21



Substituting (2.51) and (2.52) into (2.50), we have

P (u)Λ2(u)Um

= b1∂
5
x(Λ2(u)Um) + d0M2|ux|2(∂2

xVm, ux)u

+ 4d0M2|ux|2(∂xVm, ∂xux)u+ (4d0 + d1)M2(∂xVm, ux)(∂xux, ux)u

+ (d2 + d3)M2|ux|2(∂xVm, ux)ux +O

(
m∑
j=0

|∂j
xux|

)
(2.53)

Furthermore, we compute

∂t(Λ2(u)Um) = M2(∂t∂
m−2
x ux, ux)ux +M2(∂

m−2
x ux, ∂xut)ux

+M2(∂
m−2
x ux, ux)∂xut.

Since ut = ε ∂5
xux + · · · ∈ C([0, T ⋆

ε ];H
3(T;RN+1)) follows from m ⩾ 8, we see

|∂m−2
x ux||ux||∂xut| ⩽ ∥∂xut∥L∞∥ux∥L∞ |∂m−2

x ux|
⩽ C(∥ux∥C([0,T ⋆

ε ];H
7))|∂m−2

x ux|.

Therefore, we see

∂t(Λ2(u)Um) = M2(∂t∂
m−2
x ux, ux)ux +O

(
m∑
j=0

|∂j
xux|

)
.

Furthermore, by (2.44), (2.45) and Λ2(u)∂
5
xUm = M2(∂

3
xUm, ux)ux, we obtain

∂t(Λ2(u)Um)

= εM2(F
′, ux)ux + b1Λ2(u)(∂

5
xUm) + d′0M2(∂

2
xVm, ux)(ux, u)ux

+ d′1M2(∂xVm, ∂xux)(ux, u)ux + d′2M2|ux|2(∂xVm, ux)ux

+ d′3M2|ux|2(∂xVm, ux)ux +O

(
m∑
j=0

|∂j
xux|

)
. (2.54)

Since (ux, u) = 0 follows from |u|2 = 1, we have

∂t(Λ2(u)Um) = εM2(F
′, ux)ux + b1Λ2(u)(∂

5
xUm)

+ (d′2 + d′3)M2|ux|2(∂xVm, ux)ux +O

(
m∑
j=0

|∂j
xux|

)
. (2.55)
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Combining (2.53) and (2.55), we obtain

P (u)Λ2(u)Um − ∂t(Λ2(u)Um)

= −εM2(F
′, ux)ux + b1

[
∂5
x,Λ2(u)

]
Um + d0M2|ux|2(∂2

xVm, ux)u

+ 4d0M2|ux|2(∂xVm, ∂xux)u+ (4d0 + d1)M2(∂xVm, ux)(∂xux, ux)u

+ (d2 + d3 − d′2 − d′3)M2|ux|2(∂xVm, ux)ux +O

(
m∑
j=0

|∂j
xux|

)
. (2.56)

Here, by the Leibniz rule and Um = Vm +O(∂m−2
x ux|+ |∂m−3

x ux|), we see[
∂5
x,Λ2(u)

]
Um = M2∂

5
x

{
(∂−2

x Um, ux)ux

}
−M2(∂

−2
x ∂5

xUm, ux)ux

= 5M2(∂
2
xUm, ∂xux)ux + 5M2(∂

2
xUm, ux)∂xux + 10M2(∂xUm, ∂

2
xux)ux

+ 20M2(∂xUm, ∂xux)∂xux + 10M2(∂xUm, ux)∂
2
xux +O

(
m∑
j=0

|∂j
xux|

)
= 5M2(∂

2
xVm, ∂xux)ux + 5M2(∂

2
xVm, ux)∂xux + 10M2(∂xVm, ∂

2
xux)ux

+ 20M2(∂xVm, ∂xux)∂xux + 10M2(∂xVm, ux)∂
2
xux +O

(
m∑
j=0

|∂j
xux|

)
.

(2.57)

Substituting (2.57) into (2.56), we obtain

P (u)Λ2(u)Um − ∂t(Λ2(u)Um)

= −εM2(F
′, ux)ux + 5b1M2(∂

2
xVm, ∂xux)ux + 5b1M2(∂

2
xVm, ux)∂xux

+ 10b1M2(∂xVm, ∂
2
xux)ux + 20b1M2(∂xVm, ∂xux)∂xux

+ 10b1M2(∂xVm, ux)∂
2
xux + d0M2|ux|2(∂2

xVm, ux)u

+ 4d0M2|ux|2(∂xVm, ∂xux)u+ (4d0 + d1)M2(∂xVm, ux)(∂xux, ux)u

+ (d2 + d3 − d′2 − d′3)M2|ux|2(∂xVm, ux)ux +O

(
m∑
j=0

|∂j
xux|

)
. (2.58)

Third, we compute P (u)Λ3(u)Um − ∂t(Λ3(u)Um). Noting ∂m
x ux, ∂m−1

x ux and
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∂m−2
x ux are not included in Λ3(u)Um, we use (2.16)-(2.20) to deduce

P (u)Λ3(u)Um = (b1∂
5
x + P4(u)∂

4
x)Λ3(u)Um +O

(
m∑
j=0

|∂j
xux|

)

= b1∂
5
x(Λ3(u)Um) + d0(∂

4
x(Λ3(u)Um), ux)u+O

(
m∑
j=0

|∂j
xux|

)
. (2.59)

By the definition of Λ3(u) and Vm = Um +O(|∂m−2
x ux|+ |∂m−3

x ux|), we see

∂4
x(Λ3(u)Um) = M3(∂

m+1
x ux, ∂xux)ux +O

(
m∑
j=0

|∂j
xux|

)

= M3(∂xVm, ∂xux)ux +O

(
m∑
j=0

|∂j
xux|

)
. (2.60)

Substituting (2.60) into (2.59), we have

P (u)Λ3(u)Um

= b1∂
5
x(Λ3(u)Um) + d0M3|ux|2(∂xVm, ∂xux)u+O

(
m∑
j=0

|∂j
xux|

)
(2.61)

Furthermore, we compute

∂t(Λ3(u)Um) = M3(∂t∂
m−3
x ux, ∂xux)ux +M3(∂

m−3
x ux, ∂

2
xut)ux

+M3(∂
m−3
x ux, ∂xux)∂xut.

Since ut = ε ∂5
xux + · · · ∈ C([0, T ⋆

ε ];H
3(T;RN+1)) follows from m ⩾ 8, we see

|(∂m−3
x ux, ∂

2
xut)ux| ⩽ ∥∂2

xut∥L∞∥ux∥L∞|∂m−3
x ux|

⩽ C(∥ux∥C([0,T ⋆
ε ];H

8))|∂m−3
x ux|,

|(∂m−3
x ux, ∂xux)∂xut| ⩽ ∥∂xut∥L∞∥ux∥L∞ |∂m−3

x ux|
⩽ C(∥ux∥C([0,T ⋆

ε ];H
7))|∂m−3

x ux|.

Therefore, we see

∂t(Λ3(u)Um) = M3(∂t∂
m−3
x ux, ∂xux)ux +O

(
m∑
j=0

|∂j
xux|

)
. (2.62)
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In addition, in the same way as we obtain (2.14) and (2.13), we have

∂t∂
m−3
x ux = ε F ′′ + b1∂

2
xUm + d′′0(∂xUm, ux)u+O

(
m∑
j=0

|∂j
xux|

)

= ε F ′′ + b1∂
2
xUm + d′′0(∂xVm, ux)u+O

(
m∑
j=0

|∂j
xux|

)
, (2.63)

F ′′ = ∂3
xUm +O

(
2∑

j=1

|∂j
xUm|

)
+O

(
m∑
j=0

|∂j
xux|

)
, (2.64)

where d′′0 is a real constant depending on d0. Substituting (2.63) into (2.62), and
noting Λ3(u)∂

5
xUm = M3(∂

2
xUm, ∂xux)ux, we obtain

∂t(Λ3(u)Um) = εM3(F
′′, ∂xux)ux + b1Λ3(u)(∂

5
xUm)

+ d′′0M3(∂xVm, ux)(∂xux, u)ux +O

(
m∑
j=0

|∂j
xux|

)
.

Since (∂xux, u) = −|ux|2 follows from |u|2 = 1, we have

∂t(Λ3(u)Um) = εM3(F
′′, ∂xux)ux + b1Λ3(u)(∂

5
xUm)

− d′′0M3|ux|2(∂xVm, ux)ux +O

(
m∑
j=0

|∂j
xux|

)
. (2.65)

Combining (2.61) and (2.65), we obtain

P (u)Λ3(u)Um − ∂t(Λ3(u)Um)

= −εM3(F
′′, ∂xux)ux + b1

[
∂5
x,Λ3(u)

]
Um + d0M3|ux|2(∂xVm, ∂xux)u

+ d′′0M3|ux|2(∂xVm, ux)ux +O

(
m∑
j=0

|∂j
xux|

)
. (2.66)

Here, by the Leibniz rule and Um = Vm +O(|∂m−2
x ux|+ |∂m−3

x ux|), we have[
∂5
x,Λ3(u)

]
Um = M3∂

5
x

{
(∂−3

x Um, ∂xux)ux

}
−M3(∂

−3
x ∂5

xUm, ∂xux)ux

= 5M3(∂xUm, ∂
2
xux)ux + 5M3(∂xUm, ∂xux)∂xux +O

(
m∑
j=0

|∂j
xux|

)

= 5M3(∂xVm, ∂
2
xux)ux + 5M3(∂xVm, ∂xux)∂xux +O

(
m∑
j=0

|∂j
xux|

)
. (2.67)
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Substituting (2.67) into (2.66), we obtain

P (u)Λ3(u)Um − ∂t(Λ3(u)Um)

= −εM3(F
′′, ∂xux)ux + 5b1M3(∂xVm, ∂

2
xux)ux + 5b1M3(∂xVm, ∂xux)∂xux

+ d0M3|ux|2(∂xVm, ∂xux)u+ d′′0M3|ux|2(∂xVm, ux)ux +O

(
m∑
j=0

|∂j
xux|

)
.

(2.68)

We now recall (2.38) and combine (2.49), (2.58) and (2.68) to obtain

P (u)Λ(u)Um − ∂t(Λ(u)Um)

= −ε {M1|ux|2F ′ +M2(F
′, ux)ux +M3(F

′′, ∂xux)ux}
+ 10b1M1(∂xux, ux)∂

2
xVm + 5b1M2(∂

2
xVm, ∂xux)ux

+ 5b1M2(∂
2
xVm, ux)∂xux + 5b1M3(∂xVm, ∂

2
xux)ux

+ α1|ux|2(∂2
xVm, ux)u+ α2(∂

2
xux, ux)∂xVm + α3|∂xux|2∂xVm

+ α4(∂xVm, ux)(∂xux, ux)u+ α5|ux|2(∂xVm, ∂xux)u+ α6|ux|2(∂xVm, ux)ux

+ α7|ux|4∂xVm + α8(∂xVm, ∂
2
xux)ux + α9(∂xVm, ∂xux)∂xux

+ α10(∂xVm, ux)∂
2
xux +O

(
m∑
j=0

|∂j
xux|

)
, (2.69)

where α1, . . . , α10 are real constants. Although each of the constants may depend
on (M1,M2,M3), the exact form is not required except for that α8 = α10 =
10b1M2. See Remark2. We are now ready to estimate I3. Substituting (2.69), we
can write

I3 = ε

∫
T
(F̃6, Vm)dx+ 10b1M1

∫
T
(∂xux, ux)(∂

2
xVm, Vm)dx

+ 5b1M2

∫
T
(∂2

xVm, ∂xux)(Vm, ux)dx+ 5b1M2

∫
T
(∂2

xVm, ux)(Vm, ∂xux)dx

+ 5b1M3

∫
T
(∂xVm, ∂

2
xux)(Vm, ux)dx+ α1

∫
T
|ux|2(∂2

xVm, ux)(u, Vm)dx

+

∫
T
(P̃1,1(u)∂xVm, Vm)dx+

∫
T
(P̃1,2(u)∂xVm, Vm)dx+

∫
T
(R̃m, Vm)dx,

(2.70)
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where R̃m = O
(∑m

j=0 |∂j
xux|

)
and

F̃6 = −M1|ux|2F ′ −M2(F
′, ux)ux −M3(F

′′, ∂xux)ux

= O

(
4∑

j=1

|∂j
xUm|

)
+O

(
m∑
j=0

|∂j
xux|

)
, (2.71)

P̃1,1(u) = α4(·, ux)(∂xux, ux)u+ α5|ux|2(·, ∂xux)u, (2.72)

P̃1,2(u) = α2(∂
2
xux, ux) + α3|∂xux|2 + α6|ux|2(·, ux)ux + α7|ux|4

+ α8(·, ∂2
xux)ux + α9(·, ∂xux)∂xux + α10(·, ux)∂

2
xux. (2.73)

Observing (2.71), it is easy to obtain

ε

∫
T
(F̃6, Vm)dx+

∫
T
(R̃m, Vm)dx ⩽ ε

4
∥∂3

xVm∥2L2 + C Nm(u)
2 (2.74)

in the same way as we obtain (2.24). Using the property (2.27) coming from the
constraint condition |u| = 1,

α1

∫
T
(|ux|2(∂2

xVm, ux)u, Vm)dx

⩽ α1

∫
T
|ux|2(∂2

xVm, ux)(u, Um)dx+ CNm(u)
2

⩽ −α1(m+ 1)

∫
T
|ux|2(∂2

xVm, ux)(ux, ∂
m−1
x ux)dx+ CNm(u)

2

⩽ α1(m+ 1)

∫
T
|ux|2(∂xVm, ux)(ux, ∂

m
x ux)dx+ CNm(u)

2

⩽ α1(m+ 1)

∫
T
|ux|2(∂xVm, ux)(ux, Vm)dx+ CNm(u)

2

⩽ CNm(u)
2. (2.75)

In the same way as above, using (2.27) coming from |u| = 1, we can obtain∫
T
(P̃1,1(u)∂xVm, Vm)dx ⩽ C Nm(u)

2. (2.76)

Observing (2.73) and α8 = α10, we see P̃1,2 behaves as a symmetric operator.
Hence, as we show, e.g., (2.30), (2.32), we use the integration by parts to obtain∫

T
(P̃1,2(u)∂xVm, Vm)dx ⩽ C Nm(u)

2. (2.77)
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Remark 2. The fact α8 = α10 ensures the symmetry of P̃1,2. Indeed we can show

α8

∫
T
((∂xVm, ∂

2
xux)ux, Vm)dx+ α10

∫
T
((∂xVm, ux)∂

2
xux, Vm)dx

⩽ (α8 − α10)

∫
T
((∂xVm, ux)∂

2
xux, Vm)dx+ CNm(u)

2

= CNm(u)
2.

By the integration by parts, we deduce

10b1M1

∫
T
(∂xux, ux)(∂

2
xVm, Vm)dx

= −10b1M1

∫
T
(∂xux, ux)|∂xVm|2dx− 10b1M1

∫
T
(∂2

xux, ux)(∂xVm, Vm)dx

− 10b1M1

∫
T
|∂xux|2(∂xVm, Vm)dx

⩽ −10b1M1

∫
T
(∂xux, ux)|∂xVm|2dx+ CNm(u)

2, (2.78)

5b1M2

∫
T
(∂2

xVm, ∂xux)(Vm, ux)dx+ 5b1M2

∫
T
(∂2

xVm, ux)(Vm, ∂xux)dx

= −5b1M2

∫
T
(∂xVm, ∂xux)(∂xVm, ux)dx− 5b1M2

∫
T
(∂xVm, ∂

2
xux)(Vm, ux)dx

− 5b1M2

∫
T
(∂xVm, ∂xux)(Vm, ∂xux)dx−5b1M2

∫
T
(∂xVm, ux)(∂xVm, ∂xux)dx

− 5b1M2

∫
T
(∂xVm, ux)(Vm, ∂

2
xux)dx− 5b1M2

∫
T
(∂xVm, ∂xux)(Vm, ∂xux)dx

⩽ −5b1M2

∫
T
(∂xVm, ∂xux)(∂xVm, ux)dx− 5b1M2

∫
T
(∂xVm, ∂

2
xux)(Vm, ux)dx

− 5b1M2

∫
T
(∂xVm, ux)(∂xVm, ∂xux)dx+ 5b1M2

∫
T
(∂xVm, ∂

2
xux)(Vm, ux)dx

+ CNm(u)
2

⩽ −10b1M2

∫
T
(∂xVm, ∂xux)(∂xVm, ux)dx+ CNm(u)

2, (2.79)

Consequently, substituting (2.74), (2.75), (2.76), (2.77), (2.78), (2.79) into
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(2.70), we obtain the following estimate

I3 ⩽
ε

4
∥∂3

xVm∥2L2 + C Nm(u)
2 − 10b1M1

∫
T
(∂xux, ux)|∂xVm|2dx

− 10b1M2

∫
T
(∂xVm, ∂xux)(∂xVm, ux)dx

+ 5b1M3

∫
T
(∂2

xVm, ∂
2
xux)(Vm, ux)dx. (2.80)

Substituting (2.23), (2.24), (2.37), (2.80) into (2.22), we derive

1

2

d

dt
∥Vm∥2L2 ⩽ C Nm(u)

2 + (β1 − 10b1M1)

∫
T
(∂xux, ux)|∂xVm|2dx

+ (β2 − 10b1M2)

∫
T
(∂xVm, ∂xux)(∂xVm, ux)dx

+ (β3 + 5b1M3)

∫
T
(∂2

xVm, ∂
2
xux)(Vm, ux)dx. (2.81)

Since b1 ̸= 0 and the constants β1, β2, β3 are independent of (M1,M2,M3), we
can set M1 =

β1

10b1
,M2 =

β2

10b1
,M3 = − β3

5b1
to derive the desired estimate

1

2

d

dt
∥Vm∥2L2 ⩽ CNm(u)

2. (2.82)

On the other hand, it is now obvious to obtain the following estimate

1

2

d

dt
∥ux∥2Hm−1 ⩽ CNm(u)

2, (2.83)

permitting loss of derivatives of order one.
From (2.82) and (2.83), we can conclude that the following estimate

d

dt
Nm(u

ε(t))2 ⩽ C Nm(u
ε(t))2 (2.84)

holds for all t ∈ [0, T ⋆
ε ], where C is a positive constant which is independent of

ε ∈ (0, 1].
Once we obtain the estimate (2.84), it is straightforward to show the uniform

boundedness of Nm(u
ε). Indeed, it follows from (2.84) that

Nm(u
ε(t))2 ⩽ Nm(u0)

2 exp(Ct), t ∈ [0, T ⋆
ε ]. (2.85)
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Then, by the definition of T ⋆
ε , we have

2N8(u0)
2 = N8(u

ε(T ⋆
ε ))

2 ⩽ N8(u0)
2 exp(CT ⋆

ε ).

If Nm(u0) ̸= 0, then this shows 2 ⩽ exp(CT ⋆
ε ), that is, (log 2)/C ⩽ T ⋆

ε . On the
other hand, if Nm(u0) = 0, then u0x = 0 and u0 is a constant map. Then, the
constant map uε ≡ u0 turns out to be the unique solution to (2.1)-(2.2), which
exists globally in time. This implies Nm(u

ε(t)) = 0 on [0,∞). In any case, if we
set T = (log 2)/C, then we see 0 < T ⩽ T ⋆

ε and {Nm(u
ε)}ε∈(0,1] is bounded in

L∞(0, T ;R). As we observed above (just below (2.10)), this shows that {uε
x}ε∈(0,1]

is bounded in L∞(0, T ;Hm(T;RN+1)), which is the desired result.

3. Proof of Theorem 1.1

In this section, we complete the proof of Theorem 1.1.

Proof of Theorem 1.1. Let m ⩾ 8 be a fixed integer. It suffices to solve the prob-
lem in the positive direction in time. From Proposition 2.1 and Proposition 2.4,
it follows that there exists a constant T = T (∥u0x∥H8) > 0 which is independent
of ε ∈ (0, 1] and exists a family {uε}ε∈(0,1] solving (2.1)-(2.2) on [0, T ] such that
{uε

x}ε∈(0,1] is bounded in L∞(0, T ;Hm(T;RN+1)). Therefore, by the standard
compactness argument, up to a subsequence we can pass to the limit ε → 0 in the
equation (2.1) to find a a map u ∈ C([0, T ]× T;SN) solving (1.1)-(1.2) such that
ux ∈ L∞(0, T ;Hm(T;RN+1)) ∩ C([0, T ];Hm−1(T;RN+1)). This completes the
proof of the existence of a solution locally in time.

Next, we shall show the uniqueness of the solution u constructed above. Let
u and v be solutions to (1.1)-(1.2) satisfying ux, vx ∈ L∞(0, T ;H8(T;RN+1)) ∩
C([0, T ];H7(T;RN+1)). Set z = u − v. To show the uniqueness, it suffices to
show z = 0. For this purpose, we consider the estimate for

D(z(t)) =
{
∥z(t)∥2L2 + ∥zx(t)∥2L2 + ∥zxx(t)∥2L2 + ∥W̃ (t)∥2L2

}1/2

, (3.1)

W̃ = zxxx −M1|ux|2zx −M2(zx, ux)ux −M3(z, ∂xux)ux,

where M1,M2,M3 ∈ R are constants which will be taken later. It is easy to see
that there exists a constant C > 1 depending on ∥ux∥C([0,T ];H3), ∥vx∥C([0,T ];H3)

and on (M1,M2,M3) such that

1

C
∥z(t)∥H3 ⩽ D(z(t)) ⩽ C∥z(t)∥H3 (3.2)
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for all t ∈ [0, T ]. Noting this, we shall show that there exists a positive constant
C depending on ∥ux∥C([0,T ];H7), ∥vx∥C([0,T ];H7) and on (M1,M2,M3) such that

1

2

d

dt
D(z(t))2 ⩽ C D(z(t))2 (3.3)

for all t ∈ [0, T ]. If it is true, then we have 0 ⩽ D(z(t)) ⩽ D(z(0))e2Ct. Then we
find D(z(t)) = 0 on [0, T ], since D(z(0)) = 0. This shows z = 0.

To show (3.3), we set U := uxxx, V := vxxx, and W := zxxx = U − V . From
(1.1), it follows that ∂tU = ∂3

xut = b1∂
5
xU +5b1(∂

4
xU, ux)u+ · · · . The same PDE

as above is satisfied by V . After lengthy calculations taking the difference of the
equation for U and that for V , we obtain

∂tW = P (u, v)W +R.

Here R = O(|z|+ |zx|+ |zxx|+ |W |) and

P (u, v) = b1∂
5
x + P4(u)∂

4
x + P3(u)∂

3
x + P2(u)∂

2
x + P1(u, v)∂x, (3.4)

P1(u, v) = P1(u) + d19(·, ∂3
xvx)u, (3.5)

where d19 is a real constant, and P4(u), P3(u), P2(u), P1(u) are defined by (2.17),
(2.18), (2.19), (2.20) respectively. In addition, we can also write P (u, v) =
P (u) + d19(·, ∂3

xvx)u where P (u) is defined by (2.16). (Though the coefficients
d0, . . . , d18 may not coincide, the difference is not essential.)

Remark 3. The reason why the second term of the right hand side of (3.5) appears
depending on v comes from the following: Observing d13(·, ∂3

xux)u in (2.20),
the term of the form (∂xU, ∂xU)u is included in the right hand side of ∂tU =
b1∂

5
xU + 5b1(∂xU, ux)u+ · · · . Thus, we see ∂tW includes the term of the form

(∂xU, ∂xU)u− (∂xV, ∂xV )v = (∂xW,∂xU)u+ (∂xV, ∂xW )u+ (∂xV, ∂xV )z

= (∂xW,∂3
xux)u+ (∂xW,∂3

xvx)u+O(|z|).

Note that W̃ = W − Λ(u)W where Λ(u) = Λ1(u) + Λ2(u) + Λ3(u) is just as
same as that defined by (2.6) and (2.7). Using the expression, we have

∂tW̃ = ∂tW − ∂t(Λ(u)W ) = P (u, v)W − ∂t(Λ(u)W ) +R

= P (u, v)W̃ + P (u, v)Λ(u)W − ∂t(Λ(u)W ) +R. (3.6)
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Since m ⩾ 8, we see ux, vx ∈ C([0, T ];H7(T;RN+1)), ∂tW̃ = b1∂
5
xW̃ + · · · ∈

C([0, T ];L2(T;RN+1)), and thus W̃ ∈ C1([0, T ];L2(T;RN+1)). Using (3.6) and
P (u, v) = P (u) + d19(·, ∂3

xvx)u, we have

1

2

d

dt
∥W̃∥2L2 =

∫
T
(∂tW̃ , W̃ )dx =: I1 + I2 + I3 + I4, (3.7)

where

I1 =

∫
T
(P (u)W̃ , W̃ )dx, I2 = d19

∫
T
(∂xW̃ , ∂3

xvx)(u, W̃ )dx

I3 =

∫
T
(P (u, v)Λ(u)W − ∂t(Λ(u)W ), W̃ )dx, I4 =

∫
T
(R, W̃ )dx.

We estimate I1, . . . , I4 separately. In the computation, we often use the property
W̃ = W + O(|z| + |zx|) and (3.2) without any comments. In addition, here and
hereafter, positive constants depending on ∥ux∥C([0,T ];H7) and ∥vx∥C([0,T ];H7) are
denoted by the same C.

First, since R = O(|z| + |zx| + |zxx| + |W |), we easily obtain ∥R∥L2 ⩽
C ∥z∥H3 ⩽ CD(z). This shows

I4 ⩽ ∥R̃∥L2∥W̃∥L2 ⩽ C D(z)2. (3.8)

Second, since (u, zx) = (u, ux − vx) = −(u, vx) = −(u − v, vx) = −(z, vx)
follows from |u|2 = |v|2 = 1, we deduce

(W̃ , u)

= (zxxx, u)−M1|ux|2(zx, u)−M2(zx, ux)(ux, u)−M3(z, uxx)(ux, u)

= ∂2
x {(zx, u)} − 2(zxx, ux)− (zx, uxx)−M1|ux|2(zx, u)

= −∂2
x {(z, vx)} − 2(zxx, ux)− (zx, uxx)−M1|ux|2(zx, u), (3.9)

which yields (W̃ , u) = O (|zxx|+ |zx|+ |z|). Using the integration by parts and
(3.9), we have

I2 = −d19

∫
T
(W̃ , ∂4

xvx)(u, W̃ )− d19

∫
T
(W̃ , ∂3

xvx)∂x{(u, W̃ )}dx

⩽ C∥W̃∥2L2 + C∥W̃∥L2∥O(|W |+ |zxx|+ |zx|+ |z|)∥L2

⩽ C D(z)2. (3.10)
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Third, by the almost same lengthy argument as we show (2.37), we can deduce

I1 ⩽ C D(z)2 + β1

∫
T
(∂xux, ux)|∂xW̃ |2dx

+ β2

∫
T
(∂xW̃ , ∂xux)(∂xW̃ , ux)dx+ β3

∫
T
(∂xW̃ , ∂2

xux)(W̃ , ux)dx, (3.11)

where β1, β2, β3 are real constants but are independent of (M1,M2,M3). This may
be reasonable because P4(u), P3(u), P2(u), P1(u) here are respectively the same
as that given by (2.17), (2.18) , (2.19), (2.20) up to the coefficients. However, a
few remarks are in order on the difference of the argument here and that to obtain
(2.37): To obtain (2.37), the property (2.27) works effectively to estimate the terms
containing (Um, u). On the other hand, to obtain (3.11) here, we cannot use (2.27)
directly, because what we need to estimate is not (Um, u) but (W̃ , u). Despite
that, in the same way as we estimate I2 above, the property (3.9) works (instead
of (2.27) ) effectively to obtain (3.11). Hence, the difference is not essential.

Fourth, by the essentially same computation as we obtain (2.47), (2.56), (2.66)
with ε = 0, we can deduce

I3 ⩽
∫
T
(P (u)Λ(u)W − ∂t(Λ(u)W ), W̃ )dx+ C D(z)2

⩽ b1

∫
T
([∂5

x,Λ1(u) + Λ2(u) + Λ3(u)]W, W̃ )dx+ C D(z)2. (3.12)

Here, by the same computation as we obtain (2.48) , (2.57) , (2.67) and W =

W̃ +O(|z|+ |zx|), we obtain[
∂5
x,Λ1(u)

]
W = 10M1(∂xux, ux)∂

2
xW̃ + 20M1(∂

2
xux, ux)∂xW̃

+ 20M1|∂xux|2∂xW̃ +O(|z|+ |zx|+ |zxx|+ |W |),

[
∂5
x,Λ2(u)

]
W

= 5M2(∂
2
xW̃ , ∂xux)ux + 5M2(∂

2
xW̃ , ux)∂xux + 10M2(∂xW̃ , ∂2

xux)ux

+ 20M2(∂xW̃ , ∂xux)∂xux + 10M2(∂xW̃ , ux)∂
2
xux

+O(|z|+ |zx|+ |zxx|+ |W |),

[
∂5
x,Λ3(u)

]
W

= 5M3(∂xW̃ , ∂2
xux)ux + 5M3(∂xW̃ , ∂xux)∂xux +O(|z|+ |zx|+ |zxx|+ |W |).
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Substituting them into (3.12) and using the integration by parts, we obtain

I3 ⩽ −10b1M1

∫
T
(∂xux, ux)|∂xW̃ |2dx− 10b1M2

∫
T
(∂xW̃ , ∂xux)(∂xW̃ , ux)dx

+ 5b1M3

∫
T
(∂xW̃ , ∂2

xux)(W̃ , ux)dx+ CD(z)2. (3.13)

We omit the detail, since the computation is almost same as that we obtain (2.80).
Consequently, substituting (3.8), (3.10), (3.11), (3.13) into (3.7), we obtain

1

2

d

dt
∥W̃∥2L2 ⩽ C D(z)2 + (β1 − 10b1M1)

∫
T
(∂xux, ux)|∂xW̃ |2dx

+ (β2 − 10b1M2)

∫
T
(∂xW̃ , ∂xux)(∂xW̃ , ux)dx

+ (β3 + 5b1M3)

∫
T
(∂xW̃ , ∂2

xux)(W̃ , ux)dx.

Since b1 ̸= 0 and since the constants β1, β2, β3 are independent of (M1,M2,M3),
we can set M1 = β1

10b1
, M2 = β2

10b1
,M3 = − β3

5b1
to conclude that there exists a

constant C > 0 depending on ∥ux∥C([0,T ];H7) and on ∥vx∥C([0,T ];H7)) > 0 such that

1

2

d

dt
∥W̃ (t)∥2L2 ⩽ CD(z(t))2 (3.14)

for all t ∈ [0, T ]. It is now easy to obtain the estimate of the form

1

2

d

dt

{
∥z(t)∥2L2 + ∥zx(t)∥2L2

}
⩽ C D(z(t))2 (3.15)

permitting loss of derivatives of order one. From (3.14) and (3.15), we derive
(3.3), which is the desired result to conclude the uniqueness of the solution u.

Once the uniqueness is established, we can prove the time-continuity of ∂m
x ux

in L2 by the argument following [13] (see e.g., [6, 21] for more details.), which
implies ux ∈ C([0, T ];Hm(T;RN+1)). This completes the proof of Theorem 1.1.
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4. Appendix: Proof of Proposition 2.3

Proof of Proposition 2.3. we define a function h = h(t, x) : [0, Tε] × T → R by
h(t, x) = |u(t, x)|2 − 1. It suffices to show h = 0. A simple computation yields

∂xh = 2(u, ux), (4.1)

∂2
xh = 2

{
(u, ∂xux) + |ux|2

}
, (4.2)

∂3
xh = 2

{
(u, ∂2

xux) + 3(ux, ∂xux)
}
, (4.3)

∂4
xh = 2

{
(u, ∂3

xux) + 4(ux, ∂
2
xux) + 3|∂xux|2

}
, (4.4)

∂5
xh = 2

{
(u, ∂4

xux) + 5(ux, ∂
3
xux) + 10(∂xux, ∂

2
xux)

}
, (4.5)

∂6
xh = 2

{
(u, ∂5

xux) + 6(ux, ∂
4
xux) + 15(∂xux, ∂

3
xux) + 10|∂2

xux|2
}
. (4.6)

Since u satisfies (2.1),

1

2
∂th = (u, ut) = ε (u, F6) + (u, F5), (4.7)

where F6 and F5 have been defined by (2.3) and (2.4) respectively. From (2.3)
and (4.6), it follows that

(u, F6) = (u, ∂5
xux) + 6(∂4

xux, ux)|u|2 + 15(∂3
xux, ∂xux)|u|2 + 10|∂2

xux|2|u|2

=
1

2
∂6
xh+

{
6(∂4

xux, ux) + 15(∂3
xux, ∂xux) + 10|∂2

xux|2
}
h. (4.8)
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In the same way, from (4.1), (4.2), (4.3), and (4.5), it follows that

(u, F5) =

{
1

2
b1∂

5
xh− 5b1(ux, ∂

3
xux)− 10b1(∂xux, ∂

2
xux)

}
+ 5b1(∂

3
xux, ux)|u|2

+ 10b1(∂
2
xux, ∂xux)|u|2 +

{
1

2
b2|ux|2∂3

xh− 3b2|ux|2(ux, ∂xux)

}
+

1

2
b3(∂

2
xux, ux)∂xh+

{
1

2
b4(∂xux, ux)∂

2
xh− b4(∂xux, ux)|ux|2

}
+

1

2
b5|∂xux|2∂xh+ b6|ux|2(∂xux, ux)|u|2 +

1

2
b7|ux|4∂xh

=
1

2
b1∂

5
xh+

1

2
b2|ux|2∂3

xh+
1

2
b4(∂xux, ux)∂

2
xh

+

{
1

2
b3(∂

2
xux, ux) +

1

2
b5|∂xux|2 +

1

2
b7|ux|4

}
∂xh

+ {5b1(∂3
xux, ux) + 10b1(∂

2
xux, ∂xux) + b6|ux|2(∂xux, ux)}h

+ (5b1 − 5b1)(∂
3
xux, ux) + (10b1 − 10b1)(∂

2
xux, ∂xux)

+ (b6 − 3b2 − b4)|u2
x|(∂xux, ux).

By the assumption on the coefficients bi, i = 1, 2, . . . , 7, the last three terms of the
right hand side of above vanish. That is, we have

(u, F5) =
1

2
b1∂

5
xh+

1

2
b2|ux|2∂3

xh+
1

2
b4(∂xux, ux)∂

2
xh

+

{
1

2
b3(∂

2
xux, ux) +

1

2
b5|∂xux|2 +

1

2
b7|ux|4

}
∂xh

+ {5b1(∂3
xux, ux) + 10b1(∂

2
xux, ∂xux) + b6|ux|2(∂xux, ux)}h. (4.9)

Substituting (4.8) and (4.9) into (4.7), we obtain

∂th = ε
[
∂6
xh+

{
12(∂4

xux, ux) + 30(∂3
xux, ∂xux) + 20|∂2

xux|2
}
h
]

+ b1∂
5
xh+ b2|ux|2∂3

xh+ b4(∂xux, ux)∂
2
xh

+ {b3(∂2
xux, ux) + b5|∂xux|2 + b7|ux|4}∂xh

+ {10b1(∂3
xux, ux) + 20b1(∂

2
xux, ∂xux) + 2b6|ux|2(∂xux, ux)}h. (4.10)

Remark 4. By the form of F5 and the choice of the form of F6, the right hand
side of (4.10) can be written by a linear combination of h, ∂xh, . . . , ∂6

xh. This will
be helpful to obtain the energy estimate for h below.
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We next introduce

G̃ = ∂2
xh−M1|ux|2 h, (4.11)

E(h(t)) =
{
∥h(t)∥2L2 + ∥∂xh(t)∥2L2 + ∥G̃(t)∥2L2

}1/2

, (4.12)

where M1 ∈ R is a constant which will be taken later. There exists a constant
C > 1 depending on ∥ux∥C([0,Tε];H1) and on M1 such that

1

C
∥h(t)∥H2 ⩽ E(h(t)) ⩽ C∥h(t)∥H2 (4.13)

for all t ∈ [0, Tε]. We shall show that there exists a constant C > 0 depending on
∥ux∥C([0,Tε];H7) (and on M1) such that

1

2

d

dt
E(h(t))2 ⩽ C E(h(t))2 (4.14)

for all t ∈ [0, Tε]. If it is true, then we have 0 ⩽ E(h(t)) ⩽ E(h(0))e2Ct = 0,
which implies h = 0. (E(h(0)) = 0 holds since |u0(x)|2 = 1 for all x ∈ T.)

For this purpose, we set G = ∂2
xh. Then we can write G̃ = G−Λ(u)G, where

Λ(u) = M1|ux|2∂−2
x which is just Λ1(u) defined by (2.6)-(2.7) in Section 2.

After lengthy calculations using (4.10) and the Leibniz rule, we obtain

∂tG(= ∂2
x∂th) = εF + P (u)G+R, (4.15)

where

F = ∂8
xh+O

(
|∂6

xux|+ |∂5
xux| · · ·+ |ux|

)
(∂2

xh+ ∂xh+ h), (4.16)
P (u) = b1∂

5
x + P3(u)∂

3
x + P2(u)∂

2
x + P1(u)∂x,

P3(u) = d0|ux|2, (4.17)
P2(u) = d1(∂xux, ux), (4.18)
P1(u) = d2(∂

2
xux, ux) + d3|∂xux|2 + d4|ux|4, (4.19)

R = O
(
|∂5

xux|+ |∂4
xux| · · ·+ |ux|

)
(∂2

xh+ ∂xh+ h), (4.20)

and each of d0, . . . , d4 is a real constant which is given by a linear combination
of b1, . . . , b7, the exact form of which will not be required. By (4.15) and G̃ =
G− Λ(u)G, we have

∂tG̃ = εF + P (u)G+R− ∂t(Λ(u)G)

= εF + P (u)G̃+ {P (u)Λ(u)G− ∂t(Λ(u)G)}+R. (4.21)
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We use (4.21) to see

1

2

d

dt
∥G̃∥2L2 =

∫
T
(∂tG̃, G̃)dx =: ε J1 + J2 + J3 + J4, (4.22)

J1 =

∫
T
(F, G̃)dx, J2 =

∫
T
(P (u)G̃, G̃)dx,

J3 =

∫
T
(P (u)Λ(u)G− ∂t(Λ(u)G), G̃)dx, J4 =

∫
T
(R, G̃)dx.

We estimate J4, εJ1, J2, J3 separately. For J4, from (4.20) we see ∥R∥L2 ⩽
C ∥h∥H2 where C is a positive constant depending on ∥ux∥C([0,Tε];H6). Recalling
(4.13), it is easy to deduce

J4 ⩽ ∥R̃∥L2∥G̃∥L2 ⩽ C(∥ux∥C([0,Tε];H6))E(h(t))2. (4.23)

For εJ1, from (4.16) and the definition of G̃, it follows that

F = ∂6
x{G̃+M1|ux|2h}+O

(
|∂6

xux|+ |∂5
xux| · · ·+ |ux|

)
(∂2

xh+ ∂xh+ h)

= ∂6
xG̃+O

(
|∂6

xux|+ |∂5
xux| · · ·+ |ux|

)
(∂6

xh+ ∂5
xh+ · · ·+ h).

Hence, in the same way as we obtain (2.24), we obtain

ε J1 ⩽ −ε

2
∥∂3

xG̃∥2L2 + C(∥ux∥C([0,Tε];H7))E(h)2. (4.24)

For J2, we demonstrate the computation in a little more detail to see Λ2(u) and
Λ3(u) are not required when we define G̃. To begin with, by using integration by
parts repeatedly, we deduce

b1

∫
T
(∂5

xG̃, G̃)dx = b1

∫
T
(∂3

xG̃, ∂2
xG̃)dx = 0, (4.25)

∫
T
(P3(u)∂

3
xG̃, G̃)dx = d0

∫
T
|ux|2(∂3

xG̃, G̃)dx

= −d0

∫
T
|ux|2(∂2

xG̃, ∂xG̃)dx− 2d0

∫
T
(∂xux, ux)(∂

2
xG̃, G̃)dx

= d0

∫
T
(∂xux, ux)|∂xG̃|2dx− 2d0

∫
T
(∂xux, ux)(∂

2
xG̃, G̃)dx.
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Hence we have∫
T
(P3(u)∂

3
xG̃, G̃)dx+

∫
T
(P2(u)∂

2
xG̃, G̃)dx

= d0

∫
T
(∂xux, ux)|∂xG̃|2dx+ (d1 − 2d0)

∫
T
(∂xux, ux)(∂

2
xG̃, G̃)dx

= d0

∫
T
(∂xux, ux)|∂xG̃|2dx− (d1 − 2d0)

∫
T
(∂xux, ux)|∂xG̃|2dx

− (d1 − 2d0)

∫
T
∂x{(∂xux, ux)}(∂xG̃, G̃)dx

= (3d0 − d1)

∫
T
(∂xux, ux)|∂xG̃|2dx− (d1−2d0)

∫
T
∂x{(∂xux, ux)}(∂xG̃, G̃)dx.

Furthermore, by integration by parts and the Sobolev embedding H1(T;RN+1) ⊂
C(T;RN+1), we have∫

T
∂x{(∂xux, ux)}(∂xG̃, G̃)dx = −1

2

∫
T
∂2
x{(∂xux, ux)}|G̃|2dx

⩽ C(∥ux∥C([0,Tε];H4))∥G̃∥2L2

⩽ C(∥ux∥C([0,Tε];H4))E(h(t))2.

By combining these estimates, we obtain∫
T
(P3(u)∂

3
xG̃, G̃)dx+

∫
T
(P2(u)∂

2
xG̃, G̃)dx

⩽ (3d0 − d1)

∫
T
(∂xux, ux)|∂xG̃|2dx+ C(∥ux∥C([0,Tε];H4)∥)E(h(t))2. (4.26)

Noting P1(u) behaves as a symmetric operator, we use the integration by parts to
deduce ∫

T
(P1(u)∂xG̃, G̃)dx = −1

2

∫
T
∂x{P1(u)}|G̃|2dx

⩽ C(∥ux∥C([0,Tε];H4))E(h(t))2. (4.27)

Combining (4.25), (4.26), and (4.27), we obtain

J2 ⩽ (3d0 − d1)

∫
T
(∂xux, ux)|∂xG̃|2dx+ C(∥ux∥C([0,Tε];H4))E(h(t))2. (4.28)
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For J3, note first that ux ∈ C([0, Tε];H
7(T;RN+1)) and thus ut = ε ∂5

xux + · · · ∈
C([0, Tε];H

2(T;RN+1)) follow from m ≥ 7. Hence we can see

∂t(Λ(u)G) = ∂t(M1|ux|2h) = M1|ux|2∂th+O(∥ux∥C([0,Tε];H7)|h|).

Therefore, by the almost same computation as we obtain (2.47), we can deduce

J3 ⩽ ε

∫
T
(F̃ , G̃)dx+ b1

∫
T
([∂5

x,Λ(u)]G, G̃)dx+ C(∥ux∥C([0,Tε];H7))E(h)2,

where F̃ = O(|∂6
xux|+|∂5

xux|+· · ·+|ux|)(∂6
xh+∂5

xh+· · ·+h). In the same way as
we estimate εJ1 using the Gagliardo-Nirenberg inequality, the Young inequality,
and 0 < ε ⩽ 1, we obtain

ε

∫
T
(F̃ , G̃)dx ⩽ ε

4
∥∂3

xG̃∥2L2 + C(∥ux∥C([0,Tε];H7))E(h)2. (4.29)

Recall that Λ(u) here is just Λ1(u) defined by (2.6)-(2.7) in Section 2. Hence, by
the same computation as we obtain (2.48) and G = G̃+O(|h|), we obtain[

∂5
x,Λ(u)

]
G = 10M1(∂xux, ux)∂

2
xG̃+ 20M1(∂

2
xux, ux)∂xG̃

+ 20M1|∂xux|2∂xG̃+O(|∂2
xh|+ |∂xh|+ |h|). (4.30)

Substituting (4.30) and using the integration by parts, we deduce

b1

∫
T
([∂5

x,Λ(u)]G, G̃)dx

⩽ C(∥ux∥C([0,Tε];H7))E(h)2 − 10b1M1

∫
T
(∂xux, ux)|∂xG̃|2 dx. (4.31)

We omit the detail, since the computation is almost same as that we obtain (2.80).
Combining (4.29) and (4.31), we obtain

J3 ⩽
ε

4
∥∂3

xG̃∥2L2 + C(∥ux∥C([0,Tε];H7))E(h)2 − 10b1M1

∫
T
(∂xux, ux)|∂xG̃|2 dx.

(4.32)

Collecting (4.23), (4.24), (4.29), and (4.32), we obtain

1

2

d

dt
∥G̃∥2L2 ⩽ −ε

4
∥∂3

xG̃∥2L2
+ C(∥ux∥C([0,Tε];H7))E(h(t))2

+ (3d0 − d1 − 10b1M1)

∫
T
(∂xux, ux))|∂xG̃|2dx.
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Since b1 ̸= 0, we can set M1 =
3d0−d1
10b1

. Then, we obtain

1

2

d

dt
∥G̃∥2L2 ⩽ C(∥ux∥C([0,Tε];H7))E(h(t))2, (4.33)

which is the desired result.
It is now easy to obtain the estimate for ∥h∥L2 and ∥∂xh∥L2 permitting loss of

derivatives of order one. Indeed, after a lengthy calculations applying (4.10), we
show that there exists a constant C = C(∥ux∥C([0,Tε];H7)) > 0 such that

1

2

d

dt

{
∥h(t)∥2L2 + ∥∂xh(t)∥2L2

}
⩽ C E(h(t))2 (4.34)

for all t ∈ [0, Tε]. Combining (4.33) and (4.34), we derive the desired estimate
(4.14). This completes the proof.
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