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Background  

   The allyl thiocyanate-to-isothiocyanate rearrangement is an old, well known method 

for the synthesis of allyl amines (Scheme 1). In 1925, Billeter first discussed the 

mechanism of this isomerization reaction and proposed that the process proceeds via a 

cyclic transition state.
1)

  Systematic investigations focusing on the reaction mechanism 

were carried out by Smith and Emerson, who observed that the rearrangement of allyl 

thiocyanate (1→2) obeys first-order kinetics over a temperature range from 57.8 to 86.4 °C. 

The kinetic parameters and, in particular the negative activation entropy (∆S
≠

 = –9.4 eu) 

confirmed that the isomerization proceeds via a highly ordered cyclic transition state.
2)

  

Hydrolysis of the allyl isothiocyanate product 2 with mineral acid completes the good 

preparative synthetic method for the allyl amine 3.
3)

   

 

Scheme 1 
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   In contrast to studies of the allyl thiocyanate-to-isothiocyanate rearrangement, no 

reports existed describing the oxygen-counterpart, allyl cyanate-to-isocyanate 

rearrangement.  The long-standing lack of interest in this process by the synthetic 

community may have been caused by difficulties associated with the synthesis of esters of 

cyanic acid (H–OCN), in which the aryl or alkyl group is bonded to oxygen (R–OCN).  
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 The preparation and isolation of R–OCN is a tough problem that remained unsolved for a 

long period. The first reported preparation of R–OCN dates back as far as 1857 when 

Cloez described the reaction of sodium alkoxides with cyanogen chloride (Scheme 2).
4)

  

However, subsequent investigations showed that the actual products obtained by Cloez are 

mixtures containing mainly the trimeric trialkyl cyanurates 4 together with dialkyl 

imidocarbonates 5. Many unsuccessful attempts to synthesize R–OCN continued for more 

than 100 years.   As a result, the existence of esters of cyanic acid has been questioned 

for a long time.
5)
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     In 1960, the first successful synthesis of an aryl cyanate by reaction of the sterically 

hindered phenol 6 with cyanogen chloride was reported by Stroh and Gerber (Scheme 3).
6)

  

Bulky ortho-substituents in the phenyl ring apparently prevent the initially formed aryl 

cyanate 7 from undergoing further reactions.  In addition, the high energy cost  

associated with the formation of the phenyl cation intermediate blocks the solvolysis and 

isomerization reactions of 7. 

Scheme 3 
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     In 1964, four papers describing the synthesis of aryl and alkyl cyanates were 

published simultaneously (Scheme 4). In one, the German chemists Grigat and Pütter, 

reported the reaction of phenol 8 with cyanogen chloride in the presence of triethylamine 

to afford the phenyl cyanate 9.
7)

  Holm in Copenhagen
8)

 and Martin in Berlin
9)

 

independently described the cheletropic reaction of ethoxy and phenoxy 

1,2,3,4-thiatriazole to form ethyl and phenyl cyanates (10→ 11 or 9) together with nitrogen 

and sulfur.  Lastly, Kauer in the United States also accomplished the preparation of 

tertiary alkyl cyanate 13 by employing the reaction of bridgehead alkoxide 12 with 

cyanogen chloride.
10) 
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     In 1970, Holm attempted to synthesize the allyl cyanate 16 by using cheletropic 

reaction of allyl thiatriazole 14 at room temperature (Scheme 5).
11)

  Contrary to his 

expectation, only allyl isocyanate 15 was generated as a product of this process.  To 

explain these anomalous experimental results, Holm suggested two possible reaction 

mechanisms, one (A) involving a cheletropic reaction of 14 followed by rearrangement of 

the formed allyl cyanate (16 →15) and the other (B) involving rearrangement of 14 to 

generate 17 and cheletropic reaction of 17 to afford 15.  To the best of our knowledge, the 

hypothesis of the allyl cyanate-to-isocyanate rearrangement put forward by Holm received 

scant attention from the synthetic community except for one report by Larry E. Overman 

(see below).   
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Evolution of the allyl cyanate-to-isocyanate rearrangement. A personal history.  

     During the period from 1979 to 1986 as a member of the Laboratory of Organic 

Chemistry (LOC) in the Faculty of Agricultural Sciences at Nagoya University, I became 

acquainted with the marvelous scientific world of natural products chemistry. As a doctoral 

student under the direction of Minoru Isobe, I carried out research work aimed at the total 

synthesis of okadaic acid. During the early days of my scientific career I hoped to be able 

to carry out future research work in the field of nitrogen-containing natural product 

synthesis.  This taste was partially due to the influence of Toshio Goto, a group leader of 

LOC, who was interested in the nitrogen-containing and highly oxygenated natural 

products.   

     One day, a review article by Isao Kitagawa brought to my attention the 

aminobisabolenes 18 and 19, two interesting nitrogen-containing sesquiterpenes that are 

isolated from marine organisms.12) Aminobisabolene 18 derives from an Okinawan marine 

sponge of Theonella sp. collected on the coral reef of Hatoma–jima, Okinawa.13a)  

Faulkner also reported the isolation of 18 from Hallicondria sp. collected on the fringing 

reef at Ponape, Marshall Islands,13b) and Scheuer reported the isolation of 19 from 

Ciocalypta sp. collected on PupuKea, O’ahu.13c) 
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      Members of the aminobisabolene family contain challenging structural features, in 

particular a quaternary carbon center bearing an amino group.  As part of a strategy 

designed for the synthesis of these natural products, I planned to investigate the allyl 

thiocyanate-to-isothiocyanate rearrangement in the context of natural product synthesis.  

Although the mechanism of this rearrangement reaction had been established, there were 

only a few reports of its synthetic applications.   

     In 1987, when I launched my academic career in the Faculty of Education at Mie 

University, I started on the synthetic studies of the aminobisabolene based on the allyl 

thiocyanate-to-isothiocyanate rearrangement. In initial work using model compounds, 

geranyl thiocyanate 21 was prepared by the reaction of allyl bromide 20 with sodium 

thiocyanate in aqueous ethanol (Scheme 6). 
1
H NMR analysis (60 MHz) showed that the 

products obtained in this process are an equilibrium mixture of thiocyanate 21 and 

isothiocyanate 22.  Since the rearrangement reaction interconverting 21 and 22 has a 

relatively small equilibrium constant, the reaction mixture was treated with benzylamine to 

drive the equilibrium to the right and produce the thiourea 23.  Although a quaternary 

carbon bearing nitrogen atom is successfully constructed by using this methodology, 

further functional group manipulations were hampered by the robust nature of the thiourea 

moiety in 23.    

Scheme 6 

S

N C S

CN

Br

KSCN

aq. EtOH

HN

S

H
N

H2N

Ph

20 21

22 23

Ph



9 

     By browsing the chemical literature related to the rearrangement of allyl 

xanthates,14)  I encountered a gold mine of suggestions reported by Holm (Scheme 5). 

After reading about the unexpected results documented by Holm, I immediately believed 

that the hypothesis of an allyl cyanate-to-isocyanate rearrangement is true.  It was 

particularly remarkable for me that this rearrangement appears to occur below room 

temperature, which is in sharp contrast to the related Overman rearrangement (Scheme 7).  

Allyl imidate 24 undergoes [3.3] sigmatropic rearrangement to form allyl 

trichloroacetamide 25 in refluxing xylene (140 °C).  As a result of these thoughts, I 

outlined an ambitious project aimed at developing the allyl cyanate rearrangement as a new 

synthetic method in the context of the synthesis of the aminobisabolens.    

 

Scheme 7 
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     After one year of study without any appreciable success, I recognized that the 

synthesis of allyl cyanates is a difficult problem and became aware of the earlier 

(regrettably, no Sci-finder was available at that time) and important contribution to the 

chemistry of allyl cyanate-to-isocyanate rearrangement made by Overman16) (Scheme 8).  

Overman reported that treatment of geraniol 26 with n-butyllithium, followed by the 

reaction of the resultant alkoxide with cyanogen chloride (Cloez method, Scheme 2) 
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 affords a mixture of linalyl isocyanate 28 and the dimeric carbamate 29.  All attempts to 

optimize formation of the isocyanate 28 were unsuccessful and the competitive reaction of 

the reactive isocyanate 28 with the starting alkoxide remained as a serious complication.  

At this point, I decided to discontinue work on the allyl cyanate project and turned my 

attention to a new approach to the synthesis of aminobisabolenes based upon the Overman 

Hetero-Claisen rearrangement of an allyl imidates.17)    
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OH

N
C

O

Cl C N

NHO

O

0 °C
O

CN26 27

28 (40%) 29 (50%)

1) n-BuLi, THF

2)

 

 

     Our synthesis of aminobisabolenes began with the installation of quaternary carbon 

atom at C-7 (Scheme 9).  Allyl alcohol 30 was transformed into the allyl imidate 31, 

which was heated in toluene at reflux for 5 h to provide an 1:1 mixture of the inseparable 

C-7 diastereoisomers 32 in 45% yield. Repeated hydroboration-oxidation 

Wittig-olefination sequences (32 →33 →34 and 34 →35 →36) gave rise to the 

N-trichloroacetyl aminobisabolenes 36.  Reduction of trichloromethyl moiety in 36 with 

zinc copper couple and careful separation of the resultant N-acetyl aminobisabolenes 

furnished 37 and 38 in pure form.  Independent reactions of 37 and 38 with Meerwein's 
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 reagent gave the corresponding imino ethers, which were treated with acetic acid in 

aqueous tetrahydrofuran and 0.1 N hydrogen chloride to provide the aminobisabolene 

hydrochloride salts 39 and 40 in 46% and 57% yield, respectively.  
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    After completion of this rather lengthy synthetic scheme, a new approach for the 

synthesis of the N-acetyl aminobisabolene derivatives evolved that was patterned after the 

hypothetical biogenetic pathway for these natural products (Scheme 10). Specifically, we 

performed a one-pot process involving acid-catalyzed cyclization of nerolidol 41 in the 

presence of acetonitrile.
18)

 It is interesting to compare the yield of the one pot process 

(4.4%) shown in Scheme 10 to that of 12 step route starting from 30 (1.5%) given in 

Scheme 9.  

Scheme 10  

H
NHAc

1) TFA
    CH3CN, hexane

2) aq. NaHCO3

37 and 38  (4.4%, 3:2)41

OH

H

 

 



13 

 

    After my studies on the synthesis of aminobisabolenes were finished, I visited the 

LOC and enjoyed a stimulating discussion of the chemistry with T. Goto. On being told 

about the difficulties I had with the synthesis of allyl cyanates, Goto stated that it should be 

an easy problem to solve by using the dehydration reaction of carbamates.  In the 

introductory course of organic chemistry, students learned that the dehydration reaction of 

amides serves a synthetic method for preparing nitriles.  Accordingly, the idea of 

dehydration of carbamates to make cyanates should evolve by analogy (Scheme 11). I 

guess I had no imagination at this point in my career, even though Professor Goto was the 

person who taught the undergraduate organic chemistry lecture course I took as a student. 

In fact, Goto’s revelation was the silver lining for a troubled student (Y. I.). 

 

Scheme 11 
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     Following the return to my laboratory at Mie University, I searched the literature for 

the synthesis of carbamates and explored for possible dehydration reagents among those 

used to form nitriles and isonitriles from amides and formamides.  After some 

experimentation, on October 17 1990 I have found it (eureka !).  The long-awaited 

reactions are exemplified in Scheme 12.
19)

  Reaction of geraniol 26 with trichloroacetyl 
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 isocyanate followed by hydrolysis with potassium carbonate in aqueous methanol 

provides the allyl carbamate 42.  Treatment of 42 with trifluoromethanesulfonic 

anhydride (Tf2O) and diisopropylethylamine in CH2Cl2 at –78 °C for 20 min (Method A) 

gave a low polarity product (TLC analysis: Rf = 0.8; SiO2 plates; hexane).  This 

dehydration condition was used earlier for the synthesis of isonitriles from formamides by 

Baldwin, my postdoctoral mentor.
20) 

Frankly speaking, I had no experience to prepare the 

isocyanates until this time and did not know that theses highly reactive substances are 

easily hydrolyzed during workup and purification.  In spite of my ignorance about the 

chemistry of isocyanates, I was fortunate enough to isolate the isocyanate 28 using 

aqueous workup and silica-gel chromatography. Later, I realized that compounds 

containing isocyanate groups located at sterically congested positions are relatively stable 

and isolable using aqueous workup.  On the same day of the initial discovery, I also found 

another dehydration condition (CCl4, PPh3, Et3N, ClCH2Cl2Cl, 60 °C, 100 min), reported 

by Appel as a synthetic method for the preparation of nitriles from amides,
21)

 that also can 

be used to transform 42 to 28. This protocol was later improved by using the modified 

Appel’s condition (Method B: CBr4, PPh3, Et3N, CH2Cl2, –20 °C), which was initially 

reported for the preparation of isonitriles from formamides.
22)

 To confirm its structure, the 

linalyl isocyanate 28 was transformed into the known urea 43 by reaction with pyrrolidine.  

Further work established that 42 could be converted to the urea 43 in a one-pot process 

without the need for isolation of the isocyanate 28 in excellent overall yield (90% from 

geraniol 26 by employing Method A). 

     The much faster rate of allyl cyanate-to-isocyanate rearrangement as compared to 

that of its sulfur counterpart may be a consequence of the strong driving force associated 
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 with formation of a carbonyl vs. thiocarbonyl group and the shorter C–O compared to the 

C–S bond distance leading to a more compact six-membered transition state.   

 

Scheme 12 
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    The most impressive example demonstrating the superiority of the allyl 

cyanate-to-isocyanate rearrrangement is found in the case of the phenylallyl system 

(Scheme 13). In contrast to the isomerization that takes place with refluxing 3-phenylallyl 

thiocyanate 44 to give 3-phenylallyl isothiocyanate 45 via an ionization mechanisms,
23)

  

dehydration of the carbamate 46 followed by the allyl cyanate rearrangement and trapping 

the isocyanate with pyrrolidine produces the urea 47 in 83% yield.   
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     I must admit that at that time I was a bit anxious about a scientific coincidence: 

others might be engaged in similar research work on the allyl cyanate-to-isocyanate 

rearrangement. As is often the case, this suspicion proved to be correct as evidenced by the 

report of Klaus Banert in 1992, which will be described later.  One month after the first 

successful experiments realizing the synthesis of allyl cyanates by using dehydration of 

allyl carbamates, I submitted a manuscript to Tetrahedron Letters, a famous international 

journal in the field of organic chemistry, but it was rejected. Although deeply disappointed, 

I recovered and submitted the same manuscript to the, at that time, new journal Synlett in 
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 1991 (the first issue of Synlett was published in 1989).  I vividly remember when the 

editor, Hisashi Yamamoto, contacted me by telephone (it was a good time then without 

e-mail) to read out the decision that my manuscript had been accepted with some minor 

revisions.   

     Since rearrangement reactions of allyl cyanates represented an unexplored field at 

that time, promising and rich plains were opened for cultivation. Key topics in this area 

that will be discussed below include the stereochemistry of the process and its applications 

to the synthesis of natural products containing nitrogen-substituted quaternary carbons.   
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The stereochemistry and mechanism of the allyl cyanate-to-isocyanate 

rearrangement   

     Although my initial studies established the allyl cyanate-to-isocyanate 

rearrangement as a new synthetic method, there was no information about the 

stereochemistry or mechanism of the process. I was particularly concerned about the 

possibility that the reaction takes place via an ionization-recombination pathway, which 

is the predominant route observed in alkyl cyanate-to-isocyante isomerization reactions 

(Scheme 14).
24) 

Studies of the kinetics of the isomerization reaction of ethyl cyanate 48 

to form ethyl isocyanate 50 in a variety of solvents revealed that the rearrangement could 

occur by way of a solvent separated ion pair, such as 49, and subsequent reaction of the 

recombination product 50 could result in the formation of triethylisocyanurate 51.
 
 In a 

related study, Lewis acid-catalyzed rearrangement of alkyl cyanate 13 was reported to 

form the sterically hindered alkyl isocyanate 52.
10) 
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      In order to answer the question whether an ionic or concerted mechanism is 

responsible for this process, we prepared the chiral allyl carbamate 54 from ethyl 

(S)-(–)-lactate 53 (Scheme 15).
25)

 Dehydration of 54 using PPh3, CBr4, and Et3N 

occurred smoothly at –20 °C to provide the allyl isocyanate 56, which was then treated 

with trimethylaluminum (Me3Al) to furnish the acetamide 57 in 93% yield.     

     Rearrangement of allyl cyanate 55 proceeds with a high degree of stereochemical 

control. 
1
H NMR analysis showed that only the (E)-isomer of the product 57 was formed. 

In addition, the enantiomeric purity of 57 was determined to be 98% by analysis of the 

corresponding MTPA esters 58. The absolute stereochemistry of the formed stereogenic 

center in 57 was determined by analysis of the MTPA amides 59 by using Kusumi’s 

method for elucidation of the absolute configuration of primary amines.
26) 

 The 

mechanistic investigations demonstrated that the allyl cyanate-to-isocyanate 

rearrangement is a concerted [3.3] sigmatropic process involving highly selective 

[1,3]-chirality transfer to the newly formed asymmetric, nitrogen-bearing center. 

Moreover, the results showed that the rearrangement is a new methodology for the 

asymmetric synthesis of allyl amines starting from chiral allyl alcohols.   
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     Further examination of the stereochemistry of the allyl cyanate-to-isocyanate 

rearrangement focused on processes that lead to the construction of nitrogen-substituted 

quaternary stereogenic centers. This effort was driven by the fact that stereoselective 

introduction of nitrogen-substituted quaternary carbons is one of the most challenging 

problems in organic synthesis and that many natural products possess these types of 

stereocenters.  

     In order to gain information about the level of [1,3]-chirality transfer taking place 

from the allyl cyanate to the quaternary asymmetric carbon in the product, we explored 

the synthesis of (R)-α-methylphenylalanine (Scheme 16).
27)

  The synthesis started with 

allyl alcohol 61, which was prepared by enantioselective addition of diethylzinc to the 

α,β-unsaturated aldehyde 60
 
in cyclohexane using the method reported by Soai.

28)
  This 

reaction proceeded smoothly in the presence of a catalytic amount of 
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 (S)-diphenyl(1-methylpyrrolidin-2-yl)methanol (DPMPM, 6 mol%) to provide allyl 

alcohol 61 in 83% yield and 80% ee.  Although 61 was obtained with only a modest % 

ee, the enantiomeric purity of the corresponding carbamate 62 could be increased to 90% 

ee by repeated recrystallization. It should be noted that the highly crystalline nature of 

intermediate carbamates is one of the merits of our protocol.  Dehydration of 

enantiomerically enriched allyl carbamate 62 was carried out by using 

triphenylphosphine, carbon tetrabromide, and triethylamine at 0 °C.  The resulting allyl 

cyanate 63 immediately underwent [3.3] sigmatropic rearrangement to afford allyl 

isocyanate 64, which was treated in situ with tributyltin methoxide in methanol.  

Methyl carbamate 65 was isolated after workup and chromatographic purification in 

85% yield.  Transformation of 65 into MTPA ester 66 revealed that excellent chirality 

transfer had occurred to the newly formed quaternary stereogenic center in the product.   

Scheme 16 
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    The absolute stereochemistry of the nitrogen-substituted quaternary carbon center 

was determined by transforming 65 into (R)-α-methylphenylalanine (68) by way of 

oxidative cleavage of the double bond and hydrolysis of the carbamate moiety with 6 N 

hydrogen chloride (Scheme 17). The results of the synthesis of 

(R)-α-methylphenylalanine demonstrated the versatility of this allyl cyanate 

rearrangement-based approach to the stereoselective installation of an amino group on 

the quaternary carbon stereocenter.   

Scheme 17 
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     Our stereochemical investigations enabled us to propose that the rearrangement 

reactions (55→56 and 63→64) take place via a concerted suprafacial pathway involving 

a puckered cyclohexane like transition state (Figure 1), in which the alkyl group R
3
 

occupies a pseudo-equatorial position (transition state A). This proposal explains the 

preference for formation of both the (E)-stereochemistry at the newly formed double 

bond and the absolute configuration at the new stereogenic center bearing nitrogen. In 

contrast, transition state B, in which R
3
 occupies a pseudo-axial position is unfavorable.     
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     Although our mechanistic investigations confirmed the stereochemistry of the allyl 

cyanate-to-isocyanate rearrangement, it did not lead to the isolation or NMR detection of 

allyl cyanates which serve as short-lived intermediates.  My friendly competitor, K. 

Banert was able to isolate propargyl thiatriazole 70 as colorless, explosive crystals, which 

decomposed in solution even at room temperature to produce allenylisocyanate 72 

quantitatively (Scheme 18).
29)

 In this effort, the conversion of 70→72 was followed by 

using NMR spectroscopy. Importantly, 
1
H NMR signals of the intermediate 71 was 

detected, and the maximum proportion of the short-lived quasi-stationary intermediate 71 

in the reaction mixture was found to be only 5%. 
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    In an attempt to synthesize a stable allyl cyanate (Scheme 19), Banert explored the 

reaction of 73 with cyanogen chloride in the presence of triethylamine (Cloez method). 

This process generated 74 as a stable yellowish crystalline substance.
30)

 The 

isomerization reaction (74→ 75) was monitored by employing 
1
H NMR spectroscopy in 

the temperature range of 70 – 120 °C.  The results enabled the determination of 

activation parameters for the first-order process. In particular, the large negative 

activation entropy (ΔS298

≠
 = –126.5±11 J mol

–1
K

–1
) is characteristic of a reaction taking 

place by a mechanism involving a cyclic and highly ordered transition state.   

 

Scheme 19 
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Synthesis of natural products containing nitrogen-substituted quaternary carbon 

centers    

     My love for natural products that contain quaternary carbons led to the design and 

execution of the synthesis of the isonitrile analogue of diterpenoid geranyllinalool 76, 

which was isolated by Scheuer during a screening program for bioactive constituents from 

marine sponges Halichondria sp. This natural product, which possesses a unique 

isonitrile-containing quaternary carbon at C-3, was found to be active against 

Staphylococcus aureus.31)    

 

N

3

76 C  

       Transformation of geranyl geraniol 77 to the allyl acetamide 79 was accomplished 

employing similar conditions to those described in Scheme 12 except that, in this case, in 

situ transformation of isocyanate 78 into the acetamide 79 was performed by reaction with 

Me3Al in 59 % overall yield (Scheme 20).  Transformation of the acetamide in 79 into 

isonitrile functionality was straightforward.  Thus, reaction of 79 with Meerwein's reagent  

followed by treatment with acetic acid in aqueous THF provided the corresponding amine, 

which was reacted with acetic formic anhydride to form the formamide 80 in 84% overall 

yield from 79.  Finally, the formamide 80 was smoothly dehydrated to generate (±)-76 in 

82% yield using the modified Appel’s protocol (PPh
3
, CBr

4
 and iPr

2
NEt –20 °C, 30 min).32)     
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Scheme 20 
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     Conagenin (81) is a unique, biologically important, secondary metabolite isolated 

from the culture broths of Streptomyces roseosporus by Ishizuka and co-workers.33)   

This antibiotic stimulates activated T cells as a low molecular weight immunomodulatory. 

The unique structure of conagenin is comprised of a right fragment consisting of a 

α-methylserine, containing quaternary asymmetric center attached to nitrogen and left 

segment composed of a substituted pentanoic acid with three contiguous stereocenters.   

H
N

OH OH

O

OH

O

Conagenin (81)

OH

 

 

     The nitrogen-substituted quaternary stereocenter in the right α-methylserine moiety 

of conagenin was stereoselectively constructed by using [3.3] sigmatropic rearrangement 
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 of an allyl cyanate (Scheme 21).34)  Starting with D-lactic acid methyl ester (82), allyl 

alcohol 83 was prepared in 64% overall yield over six steps.  Alcohol 83 was then 

transformed into allyl carbamate 84, the dehydration of which was carried out by using the 

modified Appel’s conditions (PPh3, CBr4, Et3N, CH2Cl2, –10 °C) to generate allyl cyanate 

85, which immediately underwent [3.3] sigmatropic rearrangement at –10 °C to afford 

allyl isocyanate 86.  After careful work-up, 86 was treated with sodium benzyl alkoxide 

in THF to produce the benzyl carbamate 87 in 90% overall yield from 86.  

Transformation of the double bond in 87 into the methoxycarbonyl group was 

accomplished by using a four-step sequence, and removal of triphenylmethyl protecting 

group with trifluoroacetic acid gave the α-methylserine 88. 

 

Scheme 21 
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     The pentanoic acid 89 and α-methylserine 88 fragments were joined by employing 

an intramolecular ester-to-amide exchange reaction (Scheme 22).  Thus, esterification of 

89 with 88, removal of the Cbz group in 90 by hydrogenolysis and subsequent treatment of 

the resultant ester 91 with aqueous sodium bicarbonate gave rise to the amide 92 in 90% 

yield over three steps. Finally, deprotection of the acetyl and methyl ester protecting 

groups in 92 completed the synthesis of (+)-conagenin (81). 

 

Scheme 22 
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Coda 

     It is rewarding to see that many synthetic chemists have subsequently enjoyed the 

allyl cyanate-to-isocyanate rearrangement reaction in their work.  For example, Vasella 

reported the synthesis of carbasaccharide (+)-valienamine (95) from D-glucose (Scheme 

23) which employs this process in a key step.35)  Specifically, the allyl amine moiety in 95 

was successfully constructed by way of a [3.3] sigmatropic rearrangement of allyl cyanate 

(93→94). 

 

Scheme 23 
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     A synthesis of the novel 12-amino alkylidenecyclopentenone prostaglandin 98, 

reported by Florent (Scheme 24),  involved use of a [3.3] bond reorganization process of 

allyl cyanate 96 to from 97 as a crucial step for the construction of the nitrogen-substituted 

quaternary stereocenter.36)  
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 Scheme 24 
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     Using p-menthane-3-carboxaldehyde as a chiral auxiliary, Spino 

prepared chiral allyl isocyanate 99 to access N-heterocycles bearing a 

quaternary chiral carbon (Scheme 25). Treatment of isocyanate 100 with 

vinylmagnesium bromide gave the acrylamide 101, which was subjected to 

ring-closing metathesis (RCM) to form pyrrolone 102.37) 

Scheme 25 
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