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Symmetry energy at subnuclear densities and nuclei in neutron star crusts
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We examine how the properties of inhomogeneous nuclear matter at subnuclear densities depend on the density
dependence of the symmetry energy. Using a macroscopic nuclear model we calculate the size and shape of nuclei
in neutron star matter at zero temperature in a way dependent on the density dependence of the symmetry energy.
We find that for smaller symmetry energy at subnuclear densities, corresponding to the larger density symmetry
coefficient L, the charge number of nuclei is smaller and the critical density at which matter with nuclei or
bubbles becomes uniform is lower. The decrease in the charge number is associated with the dependence of the
surface tension on the nuclear density and the density of a sea of neutrons, whereas the decrease in the critical
density can be generally understood in terms of proton clustering instability in uniform matter.
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I. INTRODUCTION

The inner crust of a neutron star consists of a Coulomb
lattice of nuclei embedded in a roughly uniform neutralizing
background of electrons and in a sea of neutrons [1]. The
equation of state (EOS) of uniform nuclear matter and the
surface tension, both at large neutron excess, are essential
to understanding of the equilibrium properties of matter in
the crust. However, laboratory data on nuclei reflect only
the bulk and surface properties of nearly symmetric nuclear
matter [2,3]. So far, calculations of the equilibrium properties
of matter in the crust depend on the way to extrapolate the
known bulk and surface properties to large neutron excess,
which is different among earlier investigations [1].

In this article we systematically analyze the question of how
the equilibrium properties of inhomogeneous nuclear matter at
subnuclear densities depend on the parameter characterizing
the density dependence of the symmetry energy. In doing
so, we utilize a macroscopic nuclear model [2] in which
the equilibrium nucleon distribution depends on the EOS of
nuclear matter through minimization of the energy density
functional. One of the most important quantities is the charge
number of the equilibrium nuclide. In a liquid-drop picture [1],
this charge number is determined by the size equilibrium
condition that controls the ratio between the Coulomb and
surface energies. This condition tells that the charge number
squared is proportional to the surface tension and the nuclear
volume. As we shall see, the density dependence of the
symmetry energy, which controls the surface tension by
affecting the nuclear density and the density of the neutron
gas, controls the charge number as well.

We also address the question of how matter with nuclei or
bubbles melts into uniform matter with increasing density. In
this melting process, rodlike and slablike nuclei embedded in
a gas of neutrons, as well as rodlike and roughly spherical
neutron-gas regions (bubbles) surrounded by a nucleon liquid,
are expected to occur [4–7]. At a density where roughly
spherical nuclei are so closely packed that they occupy about

1/8 of the system volume, the nuclei tend to be elongated
and eventually fuse into nuclear rods. The advantage of this
rod formation is a reduction in the total surface area from
the roughly spherical case. However, whether bubbles and
nonspherical nuclei actually appear in neutron star crusts
depends on the critical density at which proton clustering
instability occurs in uniform nuclear matter [8]; they are
expected to appear when the density corresponding to the
nuclear volume fraction of about 1/8 is smaller than the critical
density for proton clustering. We find that this critical density
is in turn controlled by the symmetry energy at subnuclear
densities.

Earlier investigations on such exotic nuclei are more or
less based on specific nuclear models [1,9]. An exception is
the work by Watanabe et al. [10], which is systematic in the
sense that the liquid-drop model calculations were performed
in a way that was dependent on the proton chemical potential
in pure neutron matter, µ(0)

p and the surface tension. It was
found that the density at which the system dissolves into
uniform matter increases with increasing µ(0)

p . However, it
remains to be clarified why some nuclear models [6,11,12]
predict the absence of bubbles and nonspherical nuclei. It is
important to note that these models predict relatively high
pressure for pure neutron matter (or, equivalently, relatively
small symmetry energy) at densities around half the normal
nuclear density, whereas the work by Watanabe et al. [10] used
a parametrization [13] based on the microscopic calculations
by Siemens and Pandharipande [14] as the EOS of pure neutron
matter and fix the density dependence of the symmetry energy.
This parametrization is consistent with the recent Green’s
function Monte Carlo (GFMC) calculations [15] at neutron
densities up to about half the normal nuclear density. We
will give a unified picture about the presence of bubbles and
nonspherical nuclei by describing the pressure of pure neutron
matter in terms of the density dependence of the symmetry
energy.

The size and shape of nuclei in the crust bear relevance
to the thermal and rotational evolution of neutron stars. This
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is because thermal conductivity and neutrino emissivity in
the crust are controlled by electron-nucleus scattering [16],
whereas the motion of superfluid neutron vortices in the crust
is affected by vortex-nucleus interactions [17]. However, real
crustal matter has to be accompanied by defects and impurities,
which can play a more important role in the star’s evolution
[18]. In a real neutron star, furthermore, the nuclear system is
more or less out of equilibrium in the course of mass accretion
onto the surface of the star and the star’s spin-down [19–21].
Such disordered and nonequilibrium properties are beyond the
scope of this article.

In Sec. II, we construct a model for inhomogeneous nuclear
matter at subnuclear densities in a way dependent on the EOS
of nearly symmetric nuclear matter near the saturation point.
The equilibrium size and shape of nuclei at given density
are then calculated from the model constructed in Sec. III.
Section IV is devoted to evaluations of the critical density
at which uniform matter becomes unstable against proton
clustering. Our conclusions are given in Sec. V.

II. MODEL FOR MATTER AT SUBNUCLEAR DENSITIES

In this section, we construct a macroscopic model for zero-
temperature, β-equilibrated, inhomogeneous nuclear matter at
subnuclear densities. This is an extension of Ref. [2] to the case
in which a gas of dripped neutrons is present, which is based
on Ref. [7]. Here we focus on how macroscopic properties of
the system depend on the EOS of nearly symmetric nuclear
matter and, for simplicity, ignore various effects such as
nucleon pairing effects [22], shell effects in inhomogeneous
matter [23,24], fluctuation-induced displacements of nuclei
and bubbles [10], and electron screening effects [25].

The bulk energy per nucleon is an essential ingredient of
the macroscopic nuclear model. We set this energy as

w = 3h̄2(3π2)2/3

10mnn

(
n5/3

n + n5/3
p

)

+ (1 − α2)vs(n)/n + α2vn(n)/n, (1)

where

vs = a1n
2 + a2n

3

1 + a3n
(2)

and

vn = b1n
2 + b2n

3

1 + b3n
(3)

are the potential energy densities for symmetric nuclear
matter and pure neutron matter, nn and np are the neu-
tron and proton number densities, n = nn + np, α = (nn −
np)/n is the neutron excess, and mn is the neutron mass.
Expressions (1)–(3) can well reproduce the microscopic
calculations of symmetric nuclear matter and pure neutron
matter by Friedman and Pandharipande [26] in the variational
method. In this method, the isospin dependence of asymmetric
matter EOS is shown to be well approximated by Eq. (1) [27].
(Replacement of the proton mass mp by mn in the proton ki-
netic energy would make only a negligible difference.) For the
later purpose of roughly describing the nucleon distribution in

a nucleus, we incorporate into the potential energy densities (2)
and (3) a low-density behavior ∝ n2 as expected from a contact
two-nucleon interaction.

A set of expressions (1)–(3) is one of the simplest that
reduces to the usual form (4) in the limit of n → n0 and α → 0,

w = w0 + K0

18n2
0

(n − n0)2 +
[
S0 + L

3n0
(n − n0)

]
α2. (4)

Here w0, n0, and K0 are the saturation energy, saturation
density, and incompressibility of symmetric nuclear matter.
The parameters L and S0 are associated with the density-
dependent symmetry energy coefficient S(n): S0 is the sym-
metry energy coefficient at n = n0 and L = 3n0(dS/dn)n=n0 is
the symmetry energy density derivative coefficient (hereafter
referred to as the density symmetry coefficient). As the neutron
excess increases from zero, the saturation point moves in the
density versus energy plane (see, e.g., the dotted lines in
Fig. 2). This movement is determined mainly by the parameters
L and S0. Up to second order in α, the saturation energy ws

and density ns are given by

ws = w0 + S0α
2 (5)

and

ns = n0 − 3n0L

K0
α2. (6)

The slope, y, of the saturation line near α = 0 is thus expressed
as

y = −K0S0

3n0L
. (7)

We determine the parameters a1, . . . , b3 in such a way that
the charge number, charge radius, and mass of stable nuclei
calculated in a macroscopic nuclear model constructed in
Ref. [2] are consistent with the empirical data. In the course of
this determination, we fix b3, which controls the EOS of matter
for large neutron excess and high density, at 1.58632 fm3.
This value was obtained by one of the authors [7] in such a
way as to reproduce the neutron matter energy of Friedman
and Pandharipande [26]. Change in this parameter would make
no significant difference in the determination of the other
parameters and the final phase diagram.

We describe macroscopic nuclear properties in a way
dependent on the EOS parameters a1, . . . , b3 by using a
Thomas-Fermi model [2]. The essential point of this model is
to write down the total energy of a nucleus of mass number A

and charge number Z as a function of the density distributions
nn(r) and np(r) in the form

E = Eb + Eg + EC + Nmnc
2 + Zmpc2, (8)

where

Eb =
∫

d3rn(r)w
[
nn(r), np(r)

]
(9)

is the bulk energy,

Eg = F0

∫
d3r|∇n(r)|2 (10)
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is the gradient energy with adjustable constant F0,

EC = e2

2

∫
d3r

∫
d3r ′ np(r)np(r′)

|r − r′| (11)

is the Coulomb energy, and N = A − Z is the neutron
number. This functional allows us to connect the EOS and
the nuclear binding energy through the bulk energy part Eb.
For simplicity we use the following parametrization for the
nucleon distributions ni(r) (i = n, p):

ni(r) =

nin

i

[
1 −

(
r

Ri

)ti
]3

, r < Ri,

0, r � Ri.

(12)

This parametrization allows for the central density, half-
density radius, and surface diffuseness for neutrons and
protons separately. To construct the nuclear model in such
a way as to reproduce empirical masses and radii of stable
nuclei, we first extremized the binding energy with respect
to the particle distributions for fixed mass number, five EOS
parameters, and gradient coefficient. Next, for various sets of
the incompressibility and the density symmetry coefficient, we
obtained the remaining three EOS parameters and the gradient
coefficient by fitting the calculated optimal values of charge
number, mass excess, root-mean-square (rms) charge radius
to empirical data for stable nuclei on the smoothed β stability
line [7]. In the range of the parameters 0 < L < 160 MeV and
180 MeV < K0 < 360 MeV, as long as y <∼ −200 MeV fm3,
we obtained a reasonable fitting to such data (see Fig. 1).
As a result of this fitting, the parameters n0, w0, S0, and F0

are constrained as n0 = 0.14–0.17 fm−3, w0 = −16 ± 1 MeV,
S0 = 25–40 MeV, and F0 = 66 ± 6 MeV fm5. We remark that
a negative L is inconsistent with the fact that the size of A =
17, 20, 31 isobars deduced from the experimental values of the
interaction cross section tends to increase with neutron/proton
excess [29]. This inconsistency can be seen from Eq. (6),
which shows that the saturation density ns increases (and
hence the isobar size decreases) with neutron/proton excess
for a negative L.

We remark that in this range the calculations agree well
with a more extended data set of nuclear masses for A � 2 [30]
and charge radii for A � 50 [31]. The rms deviations of the
calculated masses from the measured values are ∼3–5 MeV,
which are comparable with the deviations obtained from a
Weizsäcker Bethe formula, whereas the rms deviations of the
calculated charge radii from the measured values are about
0.06 fm, which are comparable with the deviations obtained
from the A1/3 law.

Let us summarize the macroscopic nuclear model used
here. This model can describe global nuclear properties such
as masses and rms radii in a manner that is dependent on
the EOS of nuclear matter. One of the important predictions
of this model was that the matter radii depend appreciably
on the density symmetry coefficient L, while being almost
independent of the incompressibility K0. Although the present
macroscopic approach has some limitations in describing the
nuclear surface, it is still useful for examining the phase
diagram of nuclear matter at subnuclear densities [7].

For the purpose of describing matter in neutron star crusts,
we proceed to extend the above-described nuclear model to the
case of nuclei of various shapes embedded in a gas of dripped
neutrons by following a line of arguments of Ref. [7]. Here
we also take into account a gas of electrons as a constituent of
matter in the crust and impose β stability and charge neutrality
in the system.

We consider five phases that consist of spherical nuclei,
cylindrical nuclei, planar nuclei, cylindrical bubbles, and
spherical bubbles, respectively. Each phase is assumed to
be composed of a Coulomb lattice of a single species of
nucleus or bubble at a given baryon density nb. For the
convenience of practical calculations, we adopt the Wigner-
Seitz approximation. In this approximation, a cell in the bcc
lattice, including a spherical nucleus or bubble, is replaced
by a Wigner-Seitz cell defined as a sphere having the same
volume (a3) and center. We refer to a as the lattice constant.
A cylindrical nucleus or bubble having an infinitely long axis
and a circular section is taken to be contained in a cylindrical
Wigner-Seitz cell having the same axis in place of a cell in
the two-dimensional triangular lattice. For a planar nucleus, a
Wigner-Seitz cell is identical with a cell in the one-dimensional
layered lattice. For the sake of convenience, we redefine the
cylindrical and slab Wigner-Seitz cells as a cylinder of height
a and base area a2 and a slab of thickness a and surface area
a2, respectively (see Figs. 1 and 2 in Ref. [7]).

For each unit cell, we write the total energy as

W = WN + We + WC, (13)

where WN,We, and WC are the nuclear energy, the electron
energy, and the Coulomb energy.

As in Eq. (8), the nuclear energy is again expressed in the
density functional form:

WN =
∫

cell
d3r{n(r)w

[
nn(r), np(r)

]

+mnc
2nn(r) + mpc2np(r) + F0|∇n(r)|2}. (14)
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FIG. 1. (Color online) The sets of (L, K0) (crosses) consistent
with the mass and radius data for stable nuclei. The thin lines are lines
of constant y. The labels A–I denote the sets for which we perform
detailed calculations of the ground-state properties of inhomogeneous
nuclear matter at subnuclear densities. For comparison, the values
calculated from two mean-field models [TM1 (square) and SIII (dot)],
which are known to be extreme cases [28], are plotted. The plot shows
that our sets of (L, K0) effectively cover such extreme cases.
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A B C

G H I

FIG. 2. Energy per nucleon of nuclear mat-
ter for the nine sets of (L, K0) referred to as A–I
in Fig. 1. In each panel, the solid lines are the
energy at α = 0, 0.3, 0.5, 0.8, 1, and the dotted
line is the saturation line.

For a spherical nucleus in vacuum, this expression reduces to
E − EC [see Eq. (8)].

The electron energy can be approximated as the energy of
an ideal uniform Fermi gas,

We

a3
= m4

ec
5

8π2h̄3

{
xe

(
2x2

e + 1
)(

x2
e + 1

)1/2

− ln
[
xe + (

x2
e + 1

)1/2]}
(15)

with

xe = h̄(3π2ne)1/3

mec
, (16)

where me is the electron mass and ne is the electron number
density that satisfies the charge neutrality condition,

a3ne =
∫

cell
d3rnp(r). (17)

We remark that ne is so high that we can safely ignore
inhomogeneity of the electron density induced by the electron
screening of nuclei or bubbles [25] and the Hartree-Fock
corrections to the electron energy.

The Coulomb energy is composed of the proton self-
Coulomb energy and the lattice energy. We write the Coulomb
energy as

WC = 1

2

∫
cell

d3re[np(r) − ne]φ(r) + �W1, (18)

where φ(r) is the electrostatic potential in a Wigner-Seitz cell,
and �W1 is the difference of the rigorous calculation [32] for
a cell in the bcc (triangular) lattice of spherical (cylindrical)

nuclei or bubbles having sharp surfaces from the Wigner-Seitz
value, as parametrized in Ref. [7]. We take into account �W1,
which is a less than 1% correction, because �W1 depends
sensitively on the dimensionality of the lattice. (Note that
�W1 = 0 for the layered lattice of slab nuclei.)

For nucleon distributions in the Wigner-Seitz cell, we
simply generalize the parametrization (12) for a nucleus in
vacuum into

ni(r) =




(
nin

i − nout
i

) [
1 −

(
r

Ri

)ti
]3

+ nout
i , r < Ri,

nout
i , Ri � r.

(19)

Here r is the distance from the central point, axis, or plane
of the unit cell. In the case of nuclei, nout

p = 0, whereas in the
case of bubbles, nin

p = 0.
We finally determine the equilibrium configuration of the

system at given baryon density,

nb = a−3
∫

cell
d3rn(r). (20)

First, for each of the five inhomogeneous phases, we minimize
the total energy density W/a3 with respect to the eight parame-
ters a, nin

n , nout
n , nin

p (for nuclei) or nout
p (for bubbles), Rn,Rp, tn,

and tp. This minimization implicitly allows for the stability
of the nuclear matter region (the region containing protons)
with respect to change in the size, neutron drip, β decay,
and pressurization. In addition to the five inhomogeneous
phases, we consider a uniform phase of β-equilibrated, neutral
nuclear matter. The energy density of this phase is the sum of
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the nucleon part nw + mnc
2nn + mpc2np [see Eq. (1)] and

the electron part (15). By comparing the resultant six energy
densities, we can determine the equilibrium phase.

III. EQUILIBRIUM SIZE AND SHAPE OF NUCLEI

We proceed to show the results for the equilibrium nuclear
matter configuration obtained for various sets of the EOS
parameters L and K0 as shown in Fig. 1. These parameters are
still uncertain because they are little constrained from the mass
and radius data for stable nuclei [2]. As we shall see, the charge
number of spherical nuclei and the density region containing
bubbles and nonspherical nuclei have a strong correlation
with L.

We first focus on spherical nuclei, which constitute an
equilibrium state in the low-density region. We calculate the
charge number of the equilibrium nuclide as a function of nb for
the EOS models A–I as depicted in Fig. 2. Note that the recent
GFMC calculations of the energy of neutron matter based on
the Argonne v8’ potential [15] are close to the behavior of
the model E. Hereafter we will thus call the model E as a
typical one. The result is shown in Fig. 3. For densities below
∼0.01 fm−3, the calculated density dependence of the charge
number Z is almost flat, a feature consistent with the results
in earlier investigations [1]. More important, the calculated
charge number is larger for the EOS models having smaller L,
and this difference in Z is more remarkable at higher densities.

As we shall see later in this section, this property of
Z is related to the tendency that with increasing L, the
nuclear density decreases while the density of the neutron
gas increases. Note that Z is, within a liquid-drop model [1],
determined by the size equilibrium condition relating the
Coulomb and surface energies in such a way that Z increases
with increasing surface tension. Because the Thomas-Fermi
model adopted here can be mapped onto a compressible liquid-
drop model [2], the present results may well be interpreted in
terms of the liquid-drop model. In fact we shall estimate the
surface tension from the Thomas-Fermi model as a function of
L and discuss how the surface tension depends on the nuclear
density and the neutron sea density.

We also note that the density at which the phase with
spherical nuclei ceases to be in the ground state is between
0.05 and 0.07 fm−3. This result, consistent with the results
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FIG. 3. (Color online) The charge number of spherical nuclei as
a function of nb, calculated for the EOS models A–I.
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FIG. 4. (Color online) The average proton fraction as a function
of nb, calculated for the EOS models A–I.

obtained in earlier investigations [1,7,10], will be discussed
below in terms of fission instability.

The average proton fraction, which is the charge number
divided by the total nucleon number in the cell, is plotted in
Fig. 4. We observe that the dependence of the average proton
fraction on the EOS models is similar to that of Z. We also
find that the average proton fraction basically decreases with
baryon density. This is a feature coming from the fact that as
the baryon density increases, the electron chemical potential
increases under charge neutrality and then the nuclei become
more neutron-rich under weak equilibrium.

We next consider the density region where bubbles and
nonspherical nuclei appear in equilibrium, i.e., the density
region of the “pasta” phases. We start with such a density
region calculated for the EOS models A–I. The results are
plotted in Fig. 5. Except for the model C, we obtain the
successive first order transitions with increasing density:
sphere → cylinder → slab → cylindrical hole → spherical
hole → uniform matter. A marked correlation of the upper end
of the density region with the parameter L can be observed by
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FIG. 5. (Color online) The density region containing bubbles and
nonspherical nuclei as a function of L, calculated for the EOS models
A–I. For comparison, the density corresponding to u = 1/8 in the
phase with spherical nuclei and the onset density, n(Q), of proton
clustering in uniform nuclear matter, which will be discussed in
Sec. IV, are also plotted by circles and crosses, respectively.
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FIG. 6. (Color online) The equilibrium properties of matter with spherical nuclei as a function of L, calculated at fixed volume fraction
u = 1/8. The baryon density nb (a), the nucleon densities in the center and boundary of the cell (b), the nuclear charge number Z (c), the
central and average proton fractions (d), the lattice constant a (e), and the effective surface tension σ (f) are plotted.

referring to Fig. 1. This dependence will be examined in detail
in the next section.

As can be seen in Fig. 5, the lower end of the density region
of the pasta phases has only a weak dependence on the EOS
models. To have a closer look at this feature, it is instructive to
calculate a density at which spherical nuclei become suscepti-
ble to fission-inducing quadrupolar deformations. Within the
framework of a liquid-drop model, a spherical liquid-drop in
a Wigner-Seitz cell is predicted to undergo such a fission-like
instability when the volume fraction u, i.e., the ratio of the
liquid-drop volume to the cell volume, becomes approximately
1/8 [1]. In such a closely packed situation, the Coulomb
self-energy of the liquid-drop amounts to twice the surface
energy even under size equilibrium. We note that the density
corresponding to u = 1/8 is generally within ±0.01 fm−3 of
the transition density calculated from the energy comparison
between the phases with spherical nuclei and with cylindrical
nuclei.

In the present model, we evaluate the volume fraction u

as 4π (rp/a)3/3, where rp is the rms radius of the proton

distribution multiplied by a factor
√

5/3. This is because
the proton self-Coulomb energy is relevant to the fission-like
instability. At u = 1/8, we calculate the equilibrium properties
of matter with spherical nuclei for the parameter sets (L,K0)
included in Fig. 1. The results are plotted as a function of L

in Fig. 6. The results for L > 100 MeV are scarce because in
this case the pressure of neutron matter is too high for u to
amount to 1/8. We remark that the results show only a weak
dependence on K0.

It is important to note that the baryon density at u = 1/8
is almost flat at ∼0.06 fm−3 [see Fig. 6(a)]. This is consistent
with the lower end of the density region of the pasta phases
as depicted in Fig. 5. This magnitude of nb at u = 1/8 can
be roughly understood from a simple formula nb � (nin

p +
nin

n )u + nout
n (1 − u) with the values of nin

p , nin
n , and nout

n in
Fig. 6(b). We also note that with increasing L, the central
density decreases, while the neutron sea density increases.
This is natural because both the saturation density of nuclear
matter at nonzero neutron excess and the symmetry energy at
subnuclear densities decreases with L.
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We now turn to the L dependence of the charge number
at u = 1/8 [see Fig. 6(c)]. The charge number decreases with
L. This feature can be understood from the size equilibrium
condition within a liquid-drop picture [1]. This condition states
that the Coulomb energy of a cell is half as large as the nuclear
surface energy. Consequently, the equilibrium charge number
squared is proportional to the surface tension and to the nuclear
volume. Note that the proton fraction in the nuclear center and
the nuclear volume have a relatively weak dependence on L

[see Figs. 6(d) and 6(e)]. The surface tension is thus expected
to have a similar L dependence to that of the charge number
squared, through the dependence on the densities inside and
outside the nucleus. From the Thomas-Fermi model, it is
reasonable to estimate the effective surface tension as

σ = Wg

2πr2
p

, (21)

where

Wg =
∫

cell
d3rF0|∇n(r)|2, (22)

is the gradient energy per cell. This is because in equilibrium,
the Coulomb energy of a cell is as large as Wg [7], implying
that the nuclear surface energy, ≈4πσr2

p, is twice as large as
Wg . The surface tension thus estimated basically follows the
behavior of Z2, as can be seen from Figs. 6(c) and 6(f). The
surface tension is generally the function of the neutron excess
in the nuclear interior and the densities inside and outside
the nucleus [13]. Because the density gradient in the surface
region tends to become small for smaller difference between
the central density and the neutron sea density, the surface
tension decreases with L as shown in Fig. 6(f).

IV. PROTON CLUSTERING IN UNIFORM MATTER

In this section, we focus on the upper end of the density
region of the pasta phases. This upper end corresponds roughly
to a density at which uniform nuclear matter neutralized and
β equilibrated by electrons becomes unstable against proton
clustering. In fact, this correspondence can be seen from
Fig. 5.

We calculate the onset density of proton clustering by
following a line of argument of Baym, Bethe, and Pethick [13].
This density was obtained in Ref. [13] by expanding the
energy density functional E[ni(r)](i = n, p, e) of the system
with respect to small density fluctuations δni(r) around the
homogeneous state. Whereas the contribution of first order
in δni(r) vanishes due to equilibrium of the unperturbed
homogeneous system, the second-order contribution can be
described in the spirit of the Thomas-Fermi model used here
as

E − E0 = 1

2

∫
d3q

(2π )3
v(q)|δnp(q)|2, (23)

where E0 is the ground-state energy, δnp(q) is the Fourier
transform of δnp(r), and v(q) is the potential of the effective

interaction between protons as given by

v(q) = v0 + βq2 + 4πe2

q2 + k2
TF

. (24)

Here,

v0 = ∂µp

∂np

− (∂µp/∂nn)2

∂µn/∂nn

, (25)

β = 2F0(1 + 2ζ + ζ 2), (26)

ζ = −∂µp/∂nn

∂µn/∂nn

, (27)

with µn(p) as the neutron (proton) chemical potential, and
kTF ≈ 0.3n

1/3
e is the inverse of the Thomas-Fermi screening

length of the electron gas. The effective potential v(q) takes a
minimum value vmin at q = Q, where

Q2 =
(

4πe2

β

)1/2

− k2
TF, (28)

vmin = v0 + 2(4πe2β)1/2 − βk2
TF. (29)

In the energy expansion up to second order in δni , the
condition that uniform nuclear matter becomes unstable with
respect to proton clustering reads vmin = 0. Generally, vmin

is dominated by the bulk contribution v0, which decreases
with decreasing density (see Fig. 7). This density dependence
ensures the presence of a critical density, n(Q), above (below)
which the matter is stable (unstable) with respect to proton
clustering. Hereafter we will estimate n(Q) without including
the gradient and Coulomb contributions to vmin, which act to
reduce n(Q) only by an amount of order 0.02 fm−3 (see Fig. 7
and also Ref. [33]).

The density dependence of v0 can be seen by substituting
Eq. (1) into Eq. (25). In the limit of α → 1, to which nuclear
matter β equilibrated and neutralized by the electron gas is
close at subnuclear densities (see Fig. 7), v0 behaves roughly
as

v0 ∼ 8
(∂µ/∂n)α=0

(∂µ/∂n)α=1

S(n)

n
, (30)

with the symmetry energy coefficient S(n) = wα=1(n) −
wα=0(n). At subnuclear densities, S(n)/n depends only
weakly on n, whereas the compressibility ratio between pure
neutron matter and symmetric nuclear matter, (∂µ/∂n)α=0/

(∂µ/∂n)α=1, increases almost linearly with density because of
the saturation property of the symmetric nuclear matter.

In Fig. 8 we show the results for n(Q) estimated for
the parameter sets (L,K0) included in Fig. 1. We find that
n(Q) decreases with L, whereas it does not have a marked
dependence on K0. The L dependence is correlated with
the L dependence of the symmetry energy coefficient S(n)
since S(n) acts as a driving force of proton clustering. Note
the general tendency that at subnuclear densities, the larger L,
the smaller symmetry energy coefficient S(n) (see Fig. 7). The
proton clustering thus takes place at lower density for larger
L. Figure 7 also shows that for n >∼ 0.1 fm−3, S(n) becomes
larger for larger L. This is a feature coming from the empirical
relation, S0 ≈ 0.075L + 28 MeV, derived in Ref. [2].
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FIG. 7. (Color online) The proton effective potential vmin, its bulk part v0, neutron excess α, and symmetry energy coefficient S(n) as a
function of nucleon density, calculated for the EOS models A–I.

We can also observe from Fig. 8 that the difference between
n(Q) and the density corresponding to u = 1/8 in the phase
with spherical nuclei decreases with L and eventually vanishes
near L = 100 MeV. This suggests that the density regime of
the pasta phases is limited for a large L, although for the
standard EOS model E, corresponding to L � 40 MeV, it does
appear between ∼0.06 and ∼0.09 fm−3. In our EOS model, a
larger value of L implies a harder EOS of pure neutron matter
as we shall see below. We thus conclude that the absence of
the pasta phases seen in Refs. [6,11,12] from the EOS model
with relatively high pressure of neutron matter at subnuclear
densities is consistent with our result.
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FIG. 8. (Color online) The onset density of proton clustering in
uniform nuclear matter as a function of L. For comparison, we plot
the density corresponding to u = 1/8 in the phase with spherical
nuclei, which is taken from Fig. 6(a).

To clarify this consistency, we calculate the pressure of pure
neutron matter,

Pn = n2
n

∂w

∂nn

∣∣∣∣
α=1

, (31)

for the parameter sets (L,K0) shown in Fig. 1. The results for
Pn at nn = 0.1 fm−3 are plotted as a function of L in Fig. 9. We
find out a roughly linear L dependence of Pn at nn = 0.1 fm−3.
This dependence can be roughly understood by substituting the
expansion (4) into Eq. (31) and thereby obtaining

Pn = K0

9

(
nn

n0

)2

(nn − n0) + L

3
n0

(
nn

n0

)2

. (32)

We remark that this pressure controls the neutron skin
thickness of 208Pb evaluated within the framework of the
Skyrme Hartree-Fock model [34].

We conclude this section by mentioning a relation between
the systematic liquid-drop analysis [10] and the present
analysis. In Ref. [10], the value of L was fixed at L = 60 MeV,
and the proton chemical potential in pure neutron matter,

µ(0)
p = ∂(nw)

∂np

∣∣∣∣
α=1

, (33)

was changed by a factor of 2. In the present analysis, however,
the value of L was taken between 0 and 160 MeV, whereas µ(0)

p

depends only weakly on the value of L, as shown in Fig. 9, in
which the results for µ(0)

p calculated at nn = 0.1 fm−3 for the
parameter sets (L,K0) shown in Fig. 1 are plotted as a function
of L. According to Ref. [10], µ(0)

p plays a role in shifting the
density region of the pasta phases without changing its width
significantly. We may thus conclude that it is the parameter L

that controls the presence of the pasta phases.
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FIG. 9. (Color online) The proton chemical potential and pressure in pure neutron matter of density 0.1 fm−3 as a function of L.

V. CONCLUSIONS

We have analyzed the equilibrium properties of inhomo-
geneous nuclear matter at subnuclear densities in a way
dependent on the density symmetry coefficient L by using a
macroscopic nuclear model. We have estimated the upper and
lower ends of the density region of the pasta phases from the
onset densities of proton clustering in uniform nuclear matter
and fission-like instability of spherical nuclei, respectively.
We find that the upper end decreases with L, whereas the
lower end is almost flat at 0.05–0.07 fm−3. The former arises
from the L dependence of the symmetry energy, whereas the
latter can be understood from the volume fraction u � 1/8 at
which spherical nuclei become susceptible to fission-inducing
deformations. For a typical EOS model consistent with the
GFMC calculations of pure neutron matter, the calculated pasta
regime is appreciable. In fact, the pasta regime is predicted to
appear when L <∼ 100 MeV.

The present analysis is the first to attempt a systematic
analysis of the pasta region in terms of L. However, much care
needs to be taken of the interpretation of the results. Although

L is the parameter characterizing the expansion of w with
respect to n and α around n = n0 and α = 0, the system
of interest here is at large neutron excess and at subnuclear
densities. The relation between the parameter L and neutron
star matter depends on how to parametrize w with respect to
n and α. It is thus useful to keep in mind that we confined
ourselves to expressions (1)–(3) although they are known
to be capable of reproducing various existing microscopic
calculations of the EOS of uniform nuclear matter.

We have also calculated the charge number Z of spherical
nuclei as a function of density for various values of L.
Generally, the charge number Z becomes smaller for larger
L, a feature that could be of relevance to the evolution of
neutron stars [16]. To make better estimate of Z, however,
shell and pairing effects should be taken into account.
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