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Abstract. It is known that the weight enumerator of a self-dual doubly-
even code in genus g = 1 can be uniquely written as an isobaric polynomial
in certain homogeneous polynomials with integral coefficients. We settle the
case where g = 2 and prove the non-existence of such polynomials under some
conditions.

1. Introduction. In this paper we deal with binary self-dual doubly-even
codes only. We refer to [8], [3], [7] for the general facts on coding theory. We
shall first recall our problem in the case where g = 1, which explains what
this paper concerns about. It is known that the weight enumerator of any self-
dual doubly-even code can be uniquely written as an isobaric polynomial in
ϕ8 = x8 + 14x4y4 + y8 and ϕ24 = x4y4(x4 − y4)4 with integral coefficients ([5],
[10]). We note that ϕ24 itself is not the weight enumerator of a code but a linear
combination of the weight enumerators with rational coefficients.

We shall add a few words on this basis. We consider the elements in Z[x, y]
for simplicity. The choice of ϕ8 is unique (up to ±1) since there exists a
unique self-dual doubly-even code d+

8 of length 8. Next we assume that an-
other homogeneous polynomial ξ of degree 24 has the property in question,
i.e., the weight enumerator of any self-dual doubly-even code can be writ-
ten as an isobaric polynomial in ϕ8 and ξ with integral coefficients. We put
ξ = ax24 + bx20y4 + · · · , a, b ∈ Z, in which the unwritten part consists of
terms of degree less than 20 in x. There are 85 classes self-dual doubly-even
codes of length 32([1], [2]) and the weight enumerator of these classes should be
written as mϕ4

8 + nϕ8ξ, in which m,n are integers. Examining these conditions
for all classes, we know that −42a + b must be a divisor of 1. We have that
ξ = aϕ3

8 ± ϕ24 and conversely, such ξ has the said property.

In the rest of this paper we restrict ourselves to the case where g = 2 when
considering the weight enumerators. Let C be a binary self-dual doubly-even
code and WC = WC(x, y, z, w) the weight enumerator of C in genus 2 (cf. [6],
[4], [9]). We remark that WC is symmetric in x, y, z, w. We shall denote by W
the graded ring over the field C of complex numbers generated by WC of all
self-dual doubly-even codes. The degree d-part Wd of W is a finite dimensional
vector space over C. Let d+

4k be a self-dual doubly-even code of length 4k,
generated by 2k elements

(1, 1, 1, 1, 0, 0, · · · , 0, 0, 0, 0),
(0, 0, 1, 1, 1, 1, · · · , 0, 0, 0, 0),

. . .
(0, 0, 0, 0, 0, 0, · · · , 1, 1, 1, 1),
(1, 0, 1, 0, 1, 0, · · · , 1, 0, 1, 0),
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and g24 the extended Golay code of length 24. Then the four elements Wd+
8
,Wd+

24
,Wg24 ,Wd+

40

are algebraically independent over C and the graded ring W is a free C[Wd+
8
,Wd+

24
,Wg24 , Wd+

40
]-

module with a basis 1, Wd+
32

. The dimension formula of this ring is

∑

d≥0

(dimWd) td =
1 + t32

(1 − t8)(1 − t24)2(1 − t40)

= 1 + t8 + t16 + 3t24 + 4t32 + 5t40 + 8t48 + 10t56 + · · · .

We always keep this formula in mind through the next section.

2. Result. For the proof of our theorem, we shall construct homogeneous
polynomials X8, X24, Y24, X32, X40 of degrees 8, 24, 24, 32, 40, respectively. This
is done by analyzing the vector spaces Wd, d = 8, 24, 32, 40.

(degree 8) The extended Hamming code d+
8 of length 8 is a unique self-dual

doubly-even code of this length. We put X8 = Wd+
8
. This polynomial is also

characterized by x8 + · · · .

(degree 24) Two polynomials X24, Y24 are characterized by

0x24 + x20(y4 + · · · ) + 0x18(y2z2w2) + · · · ,

0x24 + 0x20(y4 + · · · ) + x18(y2z2w2) + · · · ,

respectively. As we remarked, the weight enumerator in this paper is symmetric
and x20(y4 + · · · ) stands for x20(y4 +z4 +w4). We note that 0 as a coefficient of
x18(y2z2w2) in the first formula is not much of importance. The general form
of the elements in W24 is

a0x
24 + a1x

20(y4 + · · · ) + a2x
18(y2z2w2) + · · ·

and is uniquely written as

a0X
3
8 + (−42a0 + a1)X24 + (−504a0 + a2)Y24.

(degree 32) The polynomial X32 is characterized by

0x32 + 0x28(y4 + · · · ) + 0x26y2z2w2 + x24(y4z4 + · · · ) + · · · .

We remark that 0x32+0x28(y4+· · · )+· · · implies that the coefficient of x24(y8+
· · · ) is 0. The similar remark also holds in the following (degree 40). The general
form of the elements in W32 is

a0x
32+a1x

28(y4+· · · )+a2x
26(y2z2w2)+x24

(
a3(y8 + · · · ) + a4(y4z4 + · · · )

)
+· · ·
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and is uniquely written as

a0X
4
8 +(−56a0+a1)X8X24+(−672a0+a2)X8Y24+(784a0−33a1−2a2+a4)X32,

where a3 = 620a0 + 10a1.

(degree 40) The polynomial X40 is characterized by

0x40 + 0x36(y4 + · · · ) + 0x34(y2z2w2) + 0x32(y4z4 + · · · ) + x28(y4z4w4) + · · · .

The general form of the elements in W40 is

a0x
40 + a1x

36(y4 + · · · ) + a2x
34(y2z2w2) + x32(a3(y8 + · · · ) + a4(y4z4 + · · · ))

+a5x
30(y6z2w2 + · · · ) + x28(a6(y12 + · · · ) + a7(y8z4 + · · · ) + a8(y4z4w4)) + · · ·

and is uniquely written as

a0X
5
8 + (−70a0 + a1)X2

8X24 + (−840a0 + a2)X2
8Y24 + (1960a0 − 61a1 − 2a2 + a4)X8X32

+(196560a0 − 7350a1 − 880a2 + 150a4 + a8)X40,

where we have the relations a3 = 285a0 + 24a1, a5 = 84a1 − 8a2 + 12a4, a6 =
21280a0 + 92a1, a7 = 225a1 + 32a2 + 11a4.

The homogeneous polynomials we have thus obtained can be written as

X8 = Wd+
8
,

X24 = 5 · 2−23−17−1W 3
d+
8
− 2−211−1Wd+

24
− 17 · 2−13−17−111−1Wg24 ,

Y24 = −2−43−17−1W 3
d+
8

+ 2−43−111−1Wd+
24

+ 2−23−17−111−1Wg24 ,

X32 = 67 · 2−103−17−1W 4
d+
8
− 5 · 2−711−1Wd+

8
Wd+

24
− 2−33−17−111−1Wd+

8
Wg24 + 2−10Wd+

32
,

X40 = −461 · 2−133−15−17−141−1W 5
d+
8

+ 13 · 2−93−111−141−1W 2
d+
8
Wd+

24

+ 2−63−17−111−141−1W 2
d+
8
Wg24 − 3 · 2−1341−1Wd+

8
Wd+

32
+ 2−103−15−141−1Wd+

40
.

We note that X8, X24, Y24, X32, X40 are in Z[x, y, z, w] and that they generate
the ring W.

These being prepared, we prove

Theorem. There exist no five homogeneous polynomials of degrees 8, 24,
24, 32, 40 in W ∩ Z[x, y, z, w] such that the weight enumerator of any self-dual
doubly-even code can be written as an isobaric polynomial in these five elements
with integral coefficients.

Proof. Suppose that there exist such homogeneous polynomials of degrees
8, 24, 24, 32, 40 satisfying the property in the theorem. As we discussed in this
section, any element in W ∩ Z[x, y, z, w] of degree at most 40 can be uniquely
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written as an isobaric polynomial in X8, X24, Y24, X32, X40 with integral co-
efficients and the five assumed polynomials are hence integral polynomials in
X8, . . . , X40. Therefore X8, . . . , X40 also enjoy the property in the theorem, i.e.,
the weight enumerator of any self-dual doubly-even code can be written as

∑

i,j,k,l,m∈Z≥0

aijklmXi
8X

j
24Y

k
24X

l
32X

m
40,

in which all aijklm are integers. The weight enumerator of the code d+
56 is,

however, written as

X7
8 + 235 · 7X4

8X24 + 243 · 5 · 7 · 11X4
8Y24 + 287 · 23X3

8X32

+2167 · 139 · 3−2X2
8X40 + 287X8X

2
24 + 2103 · 7 · 11X8X24Y24

+2107 · 6521 · 3−2X8Y
2
24 + 2115 · 7X24X32 + 2127 · 227 · 3−1Y24X32.

This expression is unique and we get a contradiction. This completes the proof
of the theorem.

If we take a self-dual doubly-even code C of length 48, and write WC as
an isobaric polynomial in X8, X24, Y24, X32, X40, then we can show that the
coefficients in this expression are in Z[13 ]. It was, therefore, expected to find a
counter example to our assumption in the proof of the theorem at this length,
but it did not work out that way.

We conclude this paper by giving two comments. One is that the author
does not know a solution if we exclude the assumptions on the degrees and the
number of polynomials in our theorem. Another is on the case g = 3. In our
proof, the explicit structure of the ring W is crucial. The corresponding ring in
g = 3 seems not to be fully investigated. See [11], [9], [10].
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