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HIGHER HOMOTOPY COMMUTATIVITY OF H-SPACES
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Dedicated to the memory of Professor Masahiro Sugawara

Abstract. In this paper, we give a combinatorial definition of a higher ho-
motopy commutativity of the multiplication for an An-space. To give the
definition, we use polyhedra called the permuto-associahedra which are con-
structed by Kapranov. We also show that if a connected Ap-space has the
finitely generated mod p cohomology for a prime p and the multiplication of it
is homotopy commutative of the p-th order, then it has the mod p homotopy
type of a finite product of Eilenberg-Mac Lane spaces K(Z, 1)s, K(Z, 2)s and
K(Z/pi, 1)s for i ≥ 1.

1. Introduction

The notion of H-spaces was introduced to study Lie groups from a homotopy
theoretic point of view. In recent decades, several theorems have been proved about
the finite H-spaces (cf. [7] and [15]), which suggest that the finite H-spaces have
many similar properties to those of the Lie groups.

Since being an H-space is a homotopy theoretic property, a space with the ho-
motopy type of an H-space is also an H-space. The typical example of an H-space
is a space X of the homotopy type of a loop space ΩY for some space Y . Sugawara
[24] gave a criterion for a space to be of the homotopy type of a loop space. His
criterion is a higher homotopy associativity of the multiplication. Later Stasheff
[22] expanded the definition of Sugawara and reached the concept of the An-space.
An An-space is by definition an H-space such that the multiplication is higher
homotopy associative of the n-th order. The polyhedra used in his combinatorial
definition are called the associahedra.

In 1960, Sugawara [25] also considered a higher homotopy commutativity of the
multiplication of an associative H-space. Later Williams [26] considered another
type of higher homotopy commutativity which is weaker than the one of Sugawara.
In his combinatorial definition, Williams used polyhedra called the permutohedra
which are originally introduced by Milgram [18] to construct approximations to the
iterated loop spaces.

In the definitions by Sugawara and Williams, the multiplications of the spaces
are assumed to be strictly associative. In this paper, we prove that we can define the
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Figure 1. Higher homotopy commutativity of the third order

higher homotopy commutativity of the n-th order only assuming the multiplication
is homotopy associative of the n-th order. For example, the higher homotopy
commutativity of the second order is just the homotopy commutativity, so it does
not need to assume any homotopy associativity on the multiplication. The higher
homotopy commutativity of Williams of the third order is illustrated by the left
hexagon in Figure 1. Thus, the definition is generalized for homotopy associative
H-spaces by using the right dodecagon in Figure 1.

Hemmi [5] considered a generalization of the higher homotopy commutativity of
Williams in the case of An-spaces, and introduced the quasi Cn-space. However,
his definition is not a combinatorial one. Moreover, the definition of the quasi
Cn-space uses the projective spaces of the multiplication of the An-space (see §3).
Since it is not known if the projective spaces are compatible with fibrations, the
quasi Cn-space is not easy to handle. For example, the authors do not know if the
covering spaces inherit the property of being a quasi Cn-space.

The reason why Hemmi gave such an artificial definition is that the polyhedra
used in a proper combinatorial definition become very complicated since they should
be given by combining the permutohedra and the associahedra.

In 1993, such polyhedra called the permuto-associahedra were constructed by
Kapranov [8]. Due to his construction, a combinatorial definition of the higher
homotopy commutativity has been possible now. In the present paper, we give the
combinatorial definition. An An-space with a multiplication of this sort is called
an ACn-space (see Definition 3.1). From the definition, X is an AC2-space if and
only if X is a homotopy commutative H-space (see Example 3.2 (1)). Moreover,
our definition coincides with the one of Williams if the multiplication of the given
space is strictly associative (see Corollary 3.6).

According to Hemmi [5, Prop. 2.3], a homotopy commutative H-space is a quasi
C2-space, and if the multiplication is homotopy associative, then the converse also
holds (see also [23, Thm. 13.6]). In the case of ACn-spaces, we have the following
result:

Theorem A. (1) If X is an ACn-space, then X is a quasi Cn-space.
(2) If X is an An+1-space having a quasi Cn-space structure, then X is an ACn-

space.

Since ACn-spaces are quasi Cn-spaces, the theorems for quasi Cn-spaces are also
valid for ACn-spaces. In particular, the mod p torus theorems proved by Hemmi
[5] and Kawamoto [11] are also true for ACp-spaces. Besides, since the universal
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covering of an ACn-space is also an ACn-space (see Lemma 3.9), we have the
following stronger version:

Theorem B. Let p be a prime. If X is a connected ACp-space such that the mod
p cohomology H∗(X ;Z/p) is finitely generated as an algebra, then X is mod p
homotopy equivalent to a finite product of Eilenberg-Mac Lane spaces K(Z, 1)s,
K(Z, 2)s and K(Z/pi, 1)s for i ≥ 1.

In the above theorem, the condition of ACp-space cannot be relaxed to ACp−1-
space. In fact, the odd dimensional sphere (S2n−1)∧p completed at p is an ACp−1-
space for any n ≥ 1 (see Proposition 3.8).

In the case of finite ACp-spaces, we have the following corollary:

Corollary 1.1. Let p be a prime. If X is a connected finite ACp-space, then X is
mod p homotopy equivalent to a torus.

The above results are considered as mod p versions of the torus theorems by
Hubbuck [6], Lin [13], Slack [21], Lin-Williams [16] and Broto-Crespo [3]. For the
details of the mod p torus theorems, see Aguadé-Smith [1], Hemmi [5], Kawamoto
[9], [10], [11], Kawamoto-Lin [12], Lin [14] and McGibbon [17]. In particular, since
the loop space of an H-space is an ACn-space for any n ≥ 1 (see Example 3.2 (3)),
we have the following result:

Theorem 1.2 ([9, Thm. A]). Let p be a prime. If X is a simply connected mod p
H-space such that the mod p cohomology H∗(ΩX ;Z/p) is finitely generated as an
algebra, then ΩX is mod p homotopy equivalent to a finite product of Eilenberg-Mac
Lane spaces K(Z, 1)s, K(Z, 2)s and K(Z/pi, 1)s for i ≥ 1.

For the rest of this paper, all spaces are assumed to be completed at a prime p
in the sense of Bousfield-Kan [2]. An H-space which is completed at p is called a
mod p H-space, and it is called finite if its mod p cohomology is finite dimensional.

This paper is organized as follows: In §2, we first recall the permuto-associahedra
constructed by Kapranov [8]. Then we show that the permutohedra are decomposed
by using the associahedra and the permuto-associahedra (see Proposition 2.5). In
§3, we give the combinatorial definition of the ACn-form on an An-space by using
the permuto-associahedra. Then we prove Theorem A by using the decompositions
of the permutohedra in §2. By combining Theorem A with a result of Kawamoto
[11] on quasi Cp-spaces with finitely generated mod p cohomology, we give the proof
of Theorem B.

2. Permuto-associahedra

Stasheff [22] constructed a collection of special complexes {Kn}n≥2 such that
Kn is homeomorphic to the (n − 2)-dimensional ball for n ≥ 2. He used the
collection {Kn}n≥2 to introduce the higher homotopy associativity of H-spaces (see
§3). The complex Kn is called the (n − 2)-dimensional associahedron for n ≥ 2.
Let Ln = ∂Kn. Then by [22, p. 278],

Ln =
⋃
r,s,k

Kk(r, s)

for r, s ≥ 2 with r + s = n + 1 and 1 ≤ k ≤ r. The facet (codimension one face)
Kk(r, s) is homeomorphic to Kr × Ks by the face operator ∂k(r, s) : Kr × Ks →
Kk(r, s) satisfying some relations (see [22, p. 278, 3(a),(b)]). Furthermore, there is
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Figure 2. The associahedra K3 and K4

a collection of degeneracy operators {θj : Kn → Kn−1}1≤j≤n satisfying suitable
conditions (see [22, I, Prop. 3]). Here Figure 2 illustrates the associahedra K3 and
K4.

Later Kapranov [8] constructed another collection of special complexes {Γn}n≥1.
By [8, Thm. 2.5], Γn is homeomorphic to the (n − 1)-dimensional ball for n ≥ 1.
The complex Γn is closely related to the associahedra {Kn}n≥2, and is called the
(n − 1)-dimensional permuto-associahedron for n ≥ 1 (Kapranov [8] denoted the
complex by KPn for n ≥ 1). It is remarkable that Reiner-Ziegler [20, Thm. 2]
reconstructed Γn as the convex hull of a finite set of points in Rn for n ≥ 1 (see
also Ziegler [29, Example 9.14]).

Let n = (1, . . . , n). For l ≥ 1, we denote a subsequence of n of length l by
α = (a1, . . . , al). Let α : l → n denote the composite iαjα, where iα : α → n is
the inclusion and jα : l → α is the map defined by jα(i) = ai for 1 ≤ i ≤ l. Let
t1, . . . , tm ≥ 1 with t1 + · · · + tm = n. A partition of n of type (t1, . . . , tm) is an
ordered sequence (α1, . . . , αm) consisting of disjoint subsequences αi of length ti
for 1 ≤ i ≤ m with iα1(α1) ∪ · · · ∪ iαm(αm) = n.

From the construction of Γn, there is a natural way to describe all the faces of
it. By [29, Def. 9.13], a facet (codimension one face) of Γn is represented by a
partition (α1, . . . , αm) of n with m ≥ 2, and a codimension two face is represented
by inserting a pair of parentheses in a partition (α1, . . . , αm) as

(α1, . . . , αi−1, (αi, . . . , αj), αj+1, . . . , αm)

with 1 ≤ i < j ≤ m. In general, a codimension s + 1 face of Γn is represented by
inserting s pairs of parentheses in a meaningful way to a partition (α1, . . . , αm) of
n such that any pair of parentheses includes at least two elements each of which
is αi or a parenthesized sequence. In this manner, vertices of Γn are represented
by all meaningful complete ways of inserting parentheses to partitions of n of type
(1, . . . , 1).

Now the facet of Γn corresponding to a partition (α1, . . . , αm) is denoted by
Γ(α1, . . . , αm). Let Λn = ∂Γn. Then we have that

(2.1) Λn =
⋃

(α1,...,αm)

Γ(α1, . . . , αm),

where the union covers all partitions (α1, . . . , αm) of n for m ≥ 2.
The permuto-associahedra Γ2 and Γ3 are illustrated by Figure 3 (see [29, p. 314]

for the 3-dimensional permuto-associahedron Γ4).
Here we briefly explain how to label the permuto-associahedron Γ3 in Figure

3. Recall that the permuto-associahedra are used to describe the higher homotopy
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Figure 3. The permuto-associahedra Γ2 and Γ3

commutativity of An-spaces. When the multiplication of the space is strictly as-
sociative, the permutohedra are enough to describe it. Then we expect that the
permuto-associahedra Γn are given by modifying the permutohedra Pn. In fact,
Γn is given by cutting off all the faces of Pn in an appropriate way, so that each
of the facets of Γn corresponds to one of the faces of Pn. Let us explain the case
of n = 3. In Figure 1, the left hexagon is P3 and the right dodecagon is Γ3. In
those pictures, we need to take x, y and z as 1, 2 and 3, respectively. The upper-
most edge is a commuting homotopy between xy and yx, and thus it is relabeled
by ((1, 2), (3)). The vertex labeled by xyz in the left hexagon is relabeled by the
partition ((1), (2), (3)) in the right dodecagon. Since each of the faces of P3 gives
a facet of Γ3, to make Γ3, the vertex xyz in P3 is replaced by an edge which is K3

representing the associating homotopy between (xy)z and x(yz).
Now we construct the face operators for Γn. If (α1, . . . , αm) is a partition of n

of type (t1, . . . , tm), then the facet Γ(α1, . . . , αm) is homeomorphic to Km × Γt1 ×
· · · × Γtm by the face operator ε(α1,...,αm) : Km × Γt1 × · · · × Γtm → Γ(α1, . . . , αm)
(see [8, p. 139]).

First we give a rough idea of the construction. Again, let us explain the case
of n = 3. In the right dodecagon of Figure 3, the uppermost edge labeled with
((1, 2), (3)) is homeomorphic to K2 × Γ2 × Γ1 by the face operator ε((1,2),(3)). On
the other hand, the edge labeled with ((1), (2), (3)) is homeomorphic to K3 × Γ1 ×
Γ1×Γ1 by ε((1),(2),(3)). The intersection of these two edges is a vertex, the images of
(∗, ε((1),(2))(∗, ∗, ∗), ∗) by ε((1,2),(3)) and (∂1(2, 2)(∗, ∗), ∗, ∗, ∗) by ε((1),(2),(3)), where
∂1(2, 2) : K2 ×K2 → K3 denotes a face operator of the associahedron K3.

The next right vertex is the intersection of the two edges labeled with ((1), (2), (3))
and ((1), (2, 3)), the images of (∂2(2, 2)(∗, ∗), ∗, ∗, ∗) in K3 × Γ1 × Γ1 × Γ1 by
ε((1),(2),(3)) and (∗, ∗, ε((1),(2))(∗, ∗, ∗)) in K2 × Γ1 × Γ2 by ε((1),(2,3)). Another next
vertex, the intersection of the two edges ((1), (2, 3)) and ((1), (3), (2)), is the images
of (∗, ∗, ε((2),(1))(∗, ∗, ∗)) in K2 × Γ1 × Γ2 by ε((1),(2,3)) and (∂2(2, 2)(∗, ∗), ∗, ∗, ∗) in
K3 × Γ1 × Γ1 × Γ1 by ε((1),(3),(2)).

In Γ4, the facet labeled with ((1, 2, 4), (3)) is a dodecagon homeomorphic to
K2×Γ3×Γ1, while the facet labeled with ((1, 4), (2), (3)) is a square homeomorphic
to K3 × Γ2 × Γ1 × Γ1. The intersection of these two facets is an edge which is
also the images of (∗, ε((1,3),(2))(∗, t, ∗), ∗) by ε((1,2,4),(3)) and (∂2(2, 2)(∗, ∗), t, ∗) by
ε((1,4),(2),(3)) for t ∈ Γ2.
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In general, we have the following:

Proposition 2.1. Let (α1, . . . , αm) be a partition of n of type (t1, . . . , tm) with
m ≥ 2. Then we have the following relations:

(1) If r, s ≥ 2 with r + s = m+ 1 and 1 ≤ k ≤ r, then

ε(α1,...,αm)(∂k(r, s)(ρ, σ), τ1, . . . , τm)

= ε(β1,...,βr)(ρ, τ1, . . . , τk−1, ε
(γ1,...,γs)(σ, τk , . . . , τk+s−1), τk+s, . . . , τm),

where (β1, . . . , βr) is the partition of n of type (t1, . . . , tk−1, tk + · · ·+ tk+s−1, tk+s,
. . . , tm) defined by

βi(t) =

{
αi(t) for 1 ≤ i ≤ k − 1, 1 ≤ t ≤ ti,
αi+s−1(t) for k + 1 ≤ i ≤ r, 1 ≤ t ≤ ti+s−1

and
βk = αk ∪ · · · ∪ αk+s−1,

and (γ1, . . . , γs) is the partition of (1, . . . , tk + · · ·+ tk+s−1) of type (tk, . . . , tk+s−1)
given by βkγi(t) = αi+k−1(t) for 1 ≤ i ≤ s and 1 ≤ t ≤ ti+k−1.

(2) If (ζ1, . . . , ζl) is a partition of (1, . . . , tk) of type (u1, . . . , ul) with l ≥ 2, then

ε(α1,...,αm)(ρ, τ1, . . . , τk−1, ε
(ζ1,...,ζl)(σ, ω1, . . . , ωl), τk+1, . . . , τm)

= ε(η1,...,ηq)(∂k(m, l)(ρ, σ), τ1, . . . , τk−1, ω1, . . . , ωl, τk+1, . . . , τm),

where q = m+l−1 and (η1, . . . , ηq) is the partition of n of type (t1, . . . , tk−1, u1, . . . ,
ul, tk+1, . . . , tm) defined by

ηi(t) =


αi(t) for 1 ≤ i ≤ k − 1, 1 ≤ t ≤ ti,
αkζi−k+1(t) for k ≤ i ≤ k + l − 1, 1 ≤ t ≤ ui−k+1,
αi−l+1(t) for k + l ≤ i ≤ q, 1 ≤ t ≤ ti−l+1.

Remark 2.2. In Proposition 2.1, the statements (1) and (2) are equivalent. In fact,
the partitions (α1, . . . , αm), (β1, . . . , βr) and (γ1, . . . , γs) in (1) correspond to the
partitions (η1, . . . , ηq), (α1, . . . , αm) and (ζ1, . . . , ζl) in (2), respectively.

Next we construct the degeneracy operators δj : Γn → Γn−1 for 1 ≤ j ≤ n. Let e
be a face of Γn represented by an insertion of parentheses of a partition (α1, . . . , αm)
of n. To get the representation of δj(e), we remove j in the partition (α1, . . . , αm)
and replace k by k − 1 if k > j. Then we modify naturally to get a parenthesized
sequence in a meaningful way.

For example, if e is the edge represented by (α1, α2) in Γ3 with α1 = (1, 2) and
α2 = (3), then δ2(e) is the vertex of Γ2 represented by (β1, β2) with β1 = (1) and
β2 = (2), and δ3(e) is the edge represented by (1, 2). As another example, let v be
the vertex of Γ4 represented by (((1), (2)), ((3), (4))). Then δ3(v) is the vertex of
Γ3 represented by (((1), (2)), (3)).

In general, we have the following result by using a similar argument to the proof
of [22, I, Prop. 3] (see also [18, Lemma 4.5]):

Proposition 2.3. Let n ≥ 1. Then there is a collection of degeneracy operators
{δj : Γn → Γn−1}1≤j≤n satisfying the following conditions:

(1) Assume that (α1, . . . , αm) is a partition of n of type (t1, . . . , tm) with m ≥ 2.
If 1 ≤ j ≤ n, then we can choose 1 ≤ k ≤ m and 1 ≤ t ≤ tk with αk(t) = j.
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(i) If tk ≥ 2, then

δjε
(α1,...,αm)(σ, τ1, . . . , τm) = ε(α̃1,...,α̃m)(σ, τ1, . . . , τk−1, δt(τk), τk+1, . . . , τm),

where (α̃1, . . . , α̃m) is the partition of (1, . . . , n−1) of type (t1, . . . , tk−1, tk−1, tk+1,
. . . , tm) given by

(2.2) α̃k(s) =

{
αk(s) if αk(s) < j,
αk(s+ 1)− 1 if αk(s) ≥ j

and for l 6= k,

(2.3) α̃l(s) =

{
αl(s) if αl(s) < j,
αl(s)− 1 if αl(s) > j.

(ii) If m ≥ 3 and tk = 1, then

δjε
(α1,...,αm)(σ, τ1, . . . , τm)

= ε(α̃1,...,α̃k−1,α̃k+1,...,α̃m)(θk(σ), τ1, . . . , τk−1, τk+1, . . . , τm),

where θk : Km → Km−1 denotes the degeneracy operator of the associahedron Km

in [22, I, Prop. 3], and (α̃1, . . . , α̃k−1, α̃k+1, . . . , α̃m) is the partition of (1, . . . , n−1)
of type (t1, . . . , tk−1, tk+1, . . . , tm) given by (2.3).

(iii) If m = 2 and tk = 1, then

δjε
(α1,α2)(∗, τ1, τ2) =

{
τ2 for k = 1,
τ1 for k = 2.

(2) If i ≤ j, then δjδi = δiδj+1.

Remark 2.4. In general, δj : Γn → Γn−1 maps the two facets ((1, . . . , j − 1,
j+1, . . . , n), (j)) and ((j), (1, . . . , j−1, j+1, . . . , n)) homeomorphically onto Γn−1.
On the other hand, each of the other facets in Γn goes to the corresponding facet
in Γn−1. The reason why the first two facets map homeomorphically onto Γn−1 is
that those cases correspond to (iii) in Proposition 2.3 (1).

For example, δ1 : Γ3 → Γ2 maps the two edges ((2, 3), (1)) and ((1), (2, 3)) of Γ3

homeomorphically onto Γ2, and each of other ten edges of Γ3 corresponds to one of
the vertices ((1), (2)) and ((2), (1)) of Γ2.

Milgram [18] introduced the permutohedra {Pn}n≥1 to construct approximations
to the iterated loop spaces {ΩnΣnX}n≥1. A few years later, Williams [26] used these
complexes to define a higher homotopy commutativity of associative H-spaces.

Let n = (1, . . . , n). Then we can regard n as a point of Rn. The symmetric
group Σn on n letters acts on Rn by the permutation of the coordinates. According
to Milgram [18, Def. 4.1], the permutohedron Pn is defined as the convex hull of
the orbit of n under the action, and is homeomorphic to the (n − 1)-dimensional
ball for n ≥ 1 (see also [26, Def. 2]). Here we illustrate the permutohedra P2 and
P3 by Figure 4. Let Tn = ∂Pn. Then by [26, Thm. 3],

Tn =
⋃

(κ,ν)

P (κ, ν),

where the union covers all partitions (κ, ν) of n of type (u, v) for u, v ≥ 1 with
u+ v = n. By [26, Thm. 3], the facet P (κ, ν) is homeomorphic to Pu × Pv by the
face operator ε(κ,ν) : Pu × Pv → P (κ, ν) (see also [18, Lemma 4.2]).
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Figure 4. The permutohedra P2 and P3

Let n ≥ 1. Assume that (α1, . . . , αm) is a partition of n of type (t1, . . . , tm) for
m ≥ 1 and t1, . . . , tm ≥ 1 with t1 + · · ·+ tm = n. Let A(α1, . . . , αm) be the complex
defined by

A(α1, . . . , αm) = I × Γ(α1, . . . , αm)
for m ≥ 2, where I is the unit interval and Γ(α1, . . . , αm) denotes the facet of Γn
corresponding to the partition (α1, . . . , αm) (see (2.1)). For m = 1, the partition
α = n, and we put A(n) = Γn.

In the proof of Proposition 3.4, we need the following result:

Proposition 2.5. Let n ≥ 1. Then we have the following:
(1) The (n− 1)-dimensional permutohedron Pn is decomposed by

Pn =
⋃

(α1,...,αm)

A(α1, . . . , αm),

where the union covers all partitions (α1, . . . , αm) of n with m ≥ 1.
(2) If (α1, . . . , αm) is a partition of n of type (t1, . . . , tm), then A(α1, . . . , αm) is

homeomorphic to Km+1×Γt1 ×· · ·×Γtm by the operator ι(α1,...,αm) : Km+1×Γt1 ×
· · · × Γtm → A(α1, . . . , αm).

By using a similar way to the proof of [22, I, Prop. 25], we can show the following
lemma:

Lemma 2.6. There is a collection of homeomorphisms {ζm : I×Km → Km+1}m≥2

satisfying the following conditions:

ζm(0, σ) = ∂1(2,m)(∗, σ).(2.4)

ζm(t, ∂k(r, s+ 1)(ρ, σ)) = ∂k(r + 1, s+ 1)(ζr(t, ρ), σ)(2.5)

for r ≥ 2, s ≥ 1 with r + s = m and 1 ≤ k ≤ r.
(2.6) θjζm(t, σ) = ζm−1(t, θj(σ))

for 1 ≤ j ≤ m.

Proof of Proposition 2.5. We prove by induction on n. Since P1 = K2 = Γ1 = ∗, it
is clear for n = 1. Now we put

(2.7) Un = Γn ∪{0}×Λn I × Λn,

where {0}×Λn is identified with Λn ⊂ Γn. Then it is clear that Un is homeomorphic
to the (n − 1)-dimensional ball. Now A(n) = Γn ⊂ Un. Let ι(n) : K2 × Γn →
A(n) denote the operator given by ι(n)(∗, τ) = τ . If m ≥ 2, then by Lemma
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2.6, we can identify the associahedron Km+1 with I ×Km by the homeomorphism
ζm : I × Km → Km+1. Assume that (α1, . . . , αm) is a partition of n of type
(t1, . . . , tm) with m ≥ 2. Then A(α1, . . . , αm) = I × Γ(α1, . . . , αm) ⊂ Un. Let
ι(α1,...,αm) : Km+1×Γt1 × · · · ×Γtm → A(α1, . . . , αm) denote the operator given by

ι(α1,...,αm)(ζm(t, σ), τ1, . . . , τm) = (t, ε(α1,...,αm)(σ, τ1, . . . , τm)).

By (2.1) and (2.7), we see that

Un =
⋃

(α1,...,αm)

A(α1, . . . , αm),

where the union covers all partitions (α1, . . . , αm) of n with m ≥ 1. If we show that
Un is the (n−1)-dimensional permutohedron, then we have the required conclusion.

Let Vn = ∂Un. Since

ζm({1} ×Km) =
⋃
r,s

Kr+1(r + 1, s+ 1),

we have that

(2.8) Vn =
⋃

(α1,...,αm)

ι(α1,...,αm)

((⋃
r,s

Kr+1(r + 1, s+ 1)

)
× Γt1 × · · · × Γtm

)
,

where (α1, . . . , αm) is a partition of n of type (t1, . . . , tm) with m ≥ 2, and r, s ≥ 1
with r + s = m.

To prove that Vn is homeomorphic to Tn = ∂Pn, we need to define a collection
of face operators on Vn satisfying the conditions of [26, Thm. 3]. Assume that
(κ, ν) is a partition of n of type (u, v). By the inductive hypothesis, there are
decompositions

Pu =
⋃

(η1,...,ηr)

A(η1, . . . , ηr)

and
Pv =

⋃
(λ1,...,λs)

A(λ1, . . . , λs),

where the unions cover all partitions (η1, . . . , ηr) of u with r ≥ 1 and (λ1, . . . , λs) of
v with s ≥ 1, respectively. If (η1, . . . , ηr) and (λ1, . . . , λs) are of types (u1, . . . , ur)
and (v1, . . . , vs), then there are homeomorphisms ι(η1,...,ηr) : Kr+1 × Γu1 × · · · ×
Γur → A(η1, . . . , ηr) and ι(λ1,...,λs) : Ks+1 × Γv1 × · · · × Γvs → A(λ1, . . . , λs). Put
m = r + s. Let (α1, . . . , αm) be the partition of n of type (u1, . . . , ur, v1, . . . , vs)
given by

αi(t) =

{
κηi(t) for 1 ≤ i ≤ r, 1 ≤ t ≤ ui,
νλi−r(t) for r + 1 ≤ i ≤ m, 1 ≤ t ≤ vi−r.

If we define a face operator ε(κ,ν) : Pu × Pv → Vn by

ε(κ,ν)(ι(η1,...,ηr)(ρ, τ1, . . . , τr), ι(λ1,...,λs)(σ, ω1, . . . , ωs))

= ι(α1,...,αm)(∂r+1(r + 1, s+ 1)(ρ, σ), τ1, . . . , τr, ω1, . . . , ωs),

then by (2.8),

Vn =
⋃

(κ,ν)

ε(κ,ν)(Pu × Pv),
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Figure 5. The decompositions of the permutohedra P2 and P3

where the union covers all partitions (κ, ν) of n. By using the relation

∂r+s+1(r + s+ 1, t+ 1)(∂r+1(r + 1, s+ 1)× 1Kt+1)

= ∂r+1(r + 1, s+ t+ 1)(1Kr+1 × ∂s+1(s+ 1, t+ 1))

for r, s, t ≥ 1, we can show that the collection of face operators satisfies the condi-
tions of [26, Thm. 3], and so Vn is homeomorphic to Tn = ∂Pn. This implies that
Un is the (n−1)-dimensional permutohedron, and we have the required conclusion.
For example, the decompositions of the permutohedra P2 and P3 are illustrated by
Figure 5. This completes the proof. �

A collection of degeneracy operators {ξj : Pn → Pn−1}1≤j≤n for the permuto-
hedra is originally constructed by Milgram [18, Lemma 4.5] (see also [26, Lemma
4]). By using Proposition 2.5, we give another construction of {ξj}1≤j≤n which is
useful for our arguments.

By Proposition 2.5, there is a decomposition

Pn =
⋃

(α1,...,αm)

A(α1, . . . , αm),

where the union covers all partitions (α1, . . . , αm) of n withm ≥ 1. Let (α1, . . . , αm)
be a partition of n of type (t1, . . . , tm). If 1 ≤ j ≤ n, then αk(t) = j for some
1 ≤ k ≤ m and 1 ≤ t ≤ tk. The map ξj : Pn → Pn−1 is defined by

ξjι
(α1,...,αm)(ρ, τ1, . . . , τm)

=

{
ι(α̃1,...,α̃m)(ρ, τ1, . . . , τk−1, δt(τk), τk+1, . . . , τm) if tk ≥ 2,
ι(α̃1,...,α̃k−1,α̃k+1,...,α̃m)(θk(ρ), τ1, . . . , τk−1, τk+1, . . . , τm) if tk = 1,

where the partitions (α̃1, . . . , α̃m) and (α̃1, . . . , α̃k−1, α̃k+1, . . . , α̃m) are defined by
(2.2)–(2.3), and {δt}1≤t≤tk and {θk}1≤k≤m denote the degeneracy operators for Γtk
and Km+1, respectively. Since we can show that {ξj}1≤j≤n satisfies the conditions
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of [18, Lemma 4.5] (see also [26, Lemma 4]), {ξj}1≤j≤n is a collection of degeneracy
operators for the permutohedra {Pn}n≥1.

3. Proofs of Theorem A and Theorem B

Stasheff [22] introduced the notion of the higher homotopy associativity of H-
spaces. He used the associahedra {Ki}2≤i≤n to define an An-form on an H-space.
Let n ≥ 2 and X be an H-space with a multiplication µ : X × X → X such
that µ(x, ∗) = µ(∗, x) = x for x ∈ X . An An-form on X is a collection of maps
{Mi : Ki ×X i → X}2≤i≤n satisfying the following conditions:

M2(∗, x, y) = µ(x, y).(3.1)

Mi(∂k(r, s)(ρ, σ), x1, . . . , xi)

= Mr(ρ, x1, . . . , xk−1,Ms(σ, xk, . . . , xk+s−1), xk+s, . . . , xi),
(3.2)

where r, s ≥ 2 with r + s = i + 1 and 1 ≤ k ≤ r.
Mi(τ, x1, . . . , xj−1, ∗, xj+1, . . . , xi)

= Mi−1(θj(τ), x1, . . . , xj−1, xj+1, . . . , xi),
(3.3)

where {θj : Ki → Ki−1}1≤j≤i are the degeneracy operators. For convenience, we
define that an A1-space is just a space. For n ≥ 2, anAn-space is anH-spaceX with
a specified An-form on X . If X has a collection of maps {Mi : Ki ×X i → X}i≥2

such that {Mi}2≤i≤n is an An-form on X for any n ≥ 2, then X is called an A∞-
space. From the definition of an An-form, we see that an A2-space and an A3-space
are an H-space and a homotopy associative H-space, respectively. Furthermore,
an A∞-space has the homotopy type of an associative H-space.

Now we introduce the higher homotopy commutativity of H-spaces. An ACn-
form on an An-space is defined by using a collection of the permuto-associahedra
{Γi}1≤i≤n.

Definition 3.1. Let X be an An-space with the An-form {Mi}2≤i≤n. An ACn-
form on X consists of a collection of maps {Qi : Γi ×X i → X}1≤i≤n satisfying the
following conditions:

Q1(∗, x) = x.(3.4)

Qi(ε(α1,...,αm)(σ, τ1, . . . , τm), x1, . . . , xi)

= Mm(σ,Qt1 (τ1, xα1(1), . . . , xα1(t1)), . . . , Qtm(τm, xαm(1), . . . , xαm(tm))),
(3.5)

where (α1, . . . , αm) is a partition of i of type (t1, . . . , tm).

Qi(τ, x1, . . . , xj−1, ∗, xj+1, . . . , xi)

= Qi−1(δj(τ), x1, . . . , xj−1, xj+1, . . . , xi),
(3.6)

where {δj : Γi → Γi−1}1≤j≤i are the degeneracy operators.

An An-space with a specified ACn-form is called an ACn-space. If X has a
collection of maps {Qi : Γi ×X i → X}i≥1 such that {Qi}1≤i≤n is an ACn-form on
X for any n ≥ 1, then X is called an AC∞-space.

Example 3.2. (1) X is an AC2-space if and only if X is a homotopy commutative
H-space since Q2(ε((1),(2))(∗), x, y) = xy andQ2(ε((2),(1))(∗), x, y) = yx for x, y ∈ X .

(2) If X is an associative and commutative H-space, then the collection {Qi :
Γi × X i → X}i≥1 defined by Qi(τ, x1, . . . , xi) = x1 . . . xi for i ≥ 1 makes X an
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AC∞-space. In particular, Eilenberg-Mac Lane spaces are AC∞-spaces by Stasheff
[23, Cor. 13.10].

(3) If X is an H-space, then by Corollary 3.6 and [26, Cor. 26], ΩX is an
AC∞-space.

Now we recall the definition of a quasi Cn-form on an An-space introduced by
Hemmi [5, Def. 2.1]. Let X be an An-space and {Pi(X)}1≤i≤n be the projec-
tive spaces of X . From the construction of Pi(X), we have the inclusion ιi−1 :
Pi−1(X) → Pi(X) and the projection ρi : Pi(X) → Pi(X)/Pi−1(X) ' (ΣX)(i),
where (ΣX)(i) denotes the i-fold smash product of ΣX for 1 ≤ i ≤ n. Let Ji(ΣX)
denote the i-th James reduced product space of ΣX and πi : Ji(ΣX) → (ΣX)(i)

be the obvious projection for 1 ≤ i ≤ n. A quasi Cn-form on X is a collection of
maps {ψi : Ji(ΣX)→ Pi(X)}1≤i≤n satisfying the following conditions:

ψ1 = 1ΣX : ΣX −→ ΣX.(3.7)

ψi|Ji−1(ΣX) = ιi−1ψi−1 for 2 ≤ i ≤ n.(3.8)

ρiψi '
(∑
σ∈Σi

σ

)
πi for 1 ≤ i ≤ n,(3.9)

where the action of the symmetric group Σi on (ΣX)(i) is given by the permutation
of the coordinates, and the summation on the right hand side is defined by using the
obvious co-H-structure on (ΣX)(i). An An-space with a specified quasi Cn-form is
called a quasi Cn-space. Hemmi [5, Thm. 1.1] has shown that a simply connected
finite quasi Cp-space is contractible. Furthermore, Kawamoto [11] generalized the
result to the case of quasi Cp-spaces with finitely generated mod p cohomology.

Theorem 3.3 ([11, Thm. B]). If X is a simply connected quasi Cp-space such that
the mod p cohomology H∗(X ;Z/p) is finitely generated as an algebra, then X is
mod p homotopy equivalent to a finite product of K(Z, 2)s.

To prove Theorem A, we define a Cn-form of a map from a space to a loop space
by using the permutohedra {Pi}1≤i≤n.

Let X and Y be spaces and φ : X → ΩY be a map. A Cn-form on φ is a
collection of maps {Ri : Pi ×X i → ΩY }1≤i≤n satisfying the following conditions:

R1(∗, x) = φ(x).(3.10)

Ri(ε(α,β)(ρ, σ), x1, . . . , xi)

= Rr(ρ, xα(1), . . . , xα(r)) ·Rs(σ, xβ(1), . . . , xβ(s)),
(3.11)

where (α, β) is a partition of i of type (r, s).

Ri(τ, x1, . . . , xj−1, ∗, xj+1, . . . , xi)

= Ri−1(ξj(τ), x1, . . . , xj−1, xj+1, . . . , xi),
(3.12)

where {ξj : Pi → Pi−1}1≤j≤i are the degeneracy operators.
Now we prove the following result:

Proposition 3.4. Let X be an An-space and φn : X → ΩPn(X) denote the adjoint
of the inclusion ιn−1 . . . ι1 : ΣX → Pn(X). If X admits an ACn-form, then there
is a Cn-form {Ri : Pi ×X i → ΩPn(X)}1≤i≤n on φn.
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Figure 6. The Cn-forms on φn for n = 2, 3

Proof. We prove by induction on n. For n = 1, it is clear by (3.10). Suppose
that we have a Cn−1-form {R̃i}1≤i≤n−1 on φn−1. If we put that Ri = ιn−1R̃i for
1 ≤ i ≤ n − 1, then the collection {Ri}1≤i≤n−1 is a Cn−1-form on φn. According
to Stasheff [23, Thm. 11.10], φn : X → ΩPn(X) is an An-map, and so there is
a collection of maps {Fi : Ki+1 × X i → ΩPn(X)}1≤i≤n satisfying the following
conditions:

F1(∗, x) = φn(x).(3.13)

Fi(∂k(r + 1, s+ 1)(ρ, σ), x1, . . . , xi)

=

{
Fr(ρ, x1, . . . , xk−1,Ms+1(σ, xk , . . . , xk+s), xk+s+1, . . . , xi) if 1 ≤ k ≤ r,
Fr(ρ, x1, . . . , xr) · Fs(σ, xr+1, . . . , xi) if k = r + 1,

where r, s ≥ 1 with r + s = i and 1 ≤ k ≤ r + 1.
Fi(τ, x1, . . . , xj−1, ∗, xj+1, . . . , xi)

= Fi−1(θj(τ), x1, . . . , xj−1, xj+1, . . . , xi)

for 1 ≤ j ≤ i.
By Proposition 2.5, there is a decomposition

Pn =
⋃

(α1,...,αm)

A(α1, . . . , αm),

where the union covers all partitions (α1, . . . , αm) of n with m ≥ 1. If we define a
map Rn : Pn ×Xn → ΩPn(X) by

Rn(ι(α1,...,αm)(σ, τ1, . . . , τm), x1, . . . , xn)

= Fm(σ,Qt1 (τ1, xα1(1), . . . , xα1(t1)), . . . , Qtm(τm, xαm(1), . . . , xαm(tm))),

then the collection {Ri}1≤i≤n satisfies the conditions (3.10)–(3.12). For example,
the Cn-forms on φn for n = 2, 3 are illustrated by Figure 6. This completes the
proof. �
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Now we proceed to the proof of Theorem A.

Proof of Theorem A. First we prove (1) by induction on n. For n = 1, it is clear by
(3.7). Suppose that we have a quasi Cn−1-form {ψi}1≤i≤n−1 on X . By Proposition
3.4, there is a Cn-form {Ri}1≤i≤n on φn. For the same reason as in [28], we can
assume without loss of generality that the image of Ri is contained in the set
of loops of length i for 1 ≤ i ≤ n. Let ζi : [0, i] × Pi × X i → Pn(X) be the
adjoint of Ri for 1 ≤ i ≤ n. It is shown by Williams [27] that there is a map
τi : [0, i] × Pi → Ii satisfying suitable conditions (see also Milgram [18, Lemma
4.6]). Let κi : [0, i]× Pi ×X i → Ji(ΣX) be the map defined by κi = χi(τi × 1Xi),
where χi : Ii ×X i → Ji(ΣX) denotes the obvious projection for 1 ≤ i ≤ n. Then
by [28, Thm. 1.1], we have a map ψn : Jn(ΣX)→ Pn(X) which satisfies (3.8) and
ψnκn = ζn.

Here we explain the construction of ψn briefly since [28, Thm. 1.1] omitted the
proof. By the inductive hypothesis, we can assume that ψiκi = ζi for 1 ≤ i ≤ n−1.
It is known that Jn(ΣX) = Jn−1(ΣX) ∪ηn In ×Xn, where ηn : ∂In ×Xn ∪ In ×
X [n] → Jn−1(ΣX) is the map defined by

ηn(t1, . . . , tn, x1, . . . , xn) = ((t1, x1), . . . , (ti−1, xi−1), (ti+1, xi+1), . . . , (tn, xn))

if ti ∈ ∂I or xi = ∗ for 1 ≤ i ≤ n, and X [n] denotes the n-fold fat wedge of X given
by

X [n] = {(x1, . . . , xn) ∈ Xn | xi = ∗ for some 1 ≤ i ≤ n}.
Let Tn = [0, n]×Pn×Xn and Sn = ∂([0, n]×Pn)×Xn∪[0, n]×Pn×X [n]. If we define
a map λn : Sn → Jn−1(ΣX) by λn = ηn(τn × 1Xn)|Sn , then ιn−1ψn−1λn = ζn|Sn ,
and so there is a map θn : Jn−1(ΣX)∪λnTn → Pn(X) with θn|Jn−1(ΣX) = ιn−1ψn−1

and θn|Tn = ζn. Since there is a homotopy equivalence νn : Jn−1(ΣX) ∪λn Tn →
Jn(ΣX) with νn|Jn−1(ΣX) = εn−1 and νn|Tn = κn, we have a map ψn : Jn(ΣX)→
Pn(X) such that ψn|Jn−1(ΣX) = ιn−1ψn−1 and ψnκn ' ζn rel Sn. By replacing ζn
with ζ̃n = ψnκn, we have the required conclusion.

Now we consider the condition (3.9). It is sufficient to show that

ρnζn '
(∑
σ∈Σn

σ

)
πnκn

since ζn = ψnκn. From the proof of Proposition 3.4, the map Rn : Pn × Xn →
ΩPn(X) is constructed by using the ACn-form {Qi}1≤i≤n on X and the An-form
{Fi}1≤i≤n on φn. Since the image of Fi is contained in ΩPn−1(X) for 1 ≤ i ≤ n−1
from the proof of [23, Thm. 11.10], we have that

(Ωρn)Rn '
( ∨
σ∈Σn

Gσ

)
Hn.

HereGσ : Σn−1X(n) → ΩPn(X) is represented by the map G̃σ : Pn×Xn → ΩPn(X)
given by G̃σ(τ, x1, . . . , xn) = Fn(τ, xσ(1), . . . , xσ(n)) for σ ∈ Σn, and

Hn : Pn ×Xn →
∨
σ∈Σn

Σn−1X(n)

denotes the appropriate collapsing map. From these observations, we have the
condition (3.9).
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Next let us prove (2). For n = 1, it is clear by (3.4). By the inductive hypothesis,
we assume that there is an ACn−1-form {Qi}1≤i≤n−1 on X .

Now we use a result of Williams [27] on the relation between higher homotopy
commutativity and extension of maps. Let g : (ΣX)∨n → Pn(X) be the map
defined by g|ΣX = ιn−1 . . . ι1 for each factor, where (ΣX)∨n denotes the n-fold
wedge of ΣX . Since X is a quasi Cn-space, g is extended to a map g̃ : (ΣX)n →
Pn(X) by using ψn. Then by [27, Thm. 2], there exists a Cn-form {Ri}1≤i≤n on φn.
Now we can assume without loss of generality that the Cn−1-form {Ri}1≤i≤n−1 is
obtained from {Qi}1≤i≤n−1 by using the way in the proof of Proposition 3.4. Since
φn is an An-map, we have a map Q̃n : Γn×Xn → ΩPn(X) such that the {Q̃i}1≤i≤n
satisfy the conditions (3.5)–(3.6), where Q̃i = φnQi for 1 ≤ i ≤ n − 1. Since X
is an An+1-space, there is a map ωn : ΩPn(X) → X with ωnφn = 1X . Put
Qn = ωnQ̃n : Γn × Xn → X . Then {Qi}1≤i≤n is an ACn-form on X , and so we
have the required conclusion. This completes the proof of Theorem A. �

Remark 3.5. The decompositions of the permutohedra in Proposition 2.5 play im-
portant roles in the proof of Theorem A. We note that Hemmi [5] gave another
decomposition of Pn by using the permutohedra {Pi}1≤i≤n−1 and the simplices
{∆i}1≤i≤n−1. He used the result to show that if X is an associative H-space, then
the quasi Cn-form on X is equivalent to a Cn-form in the sense of Williams [26,
Def. 5] (see [5, Thm. 2.2]). The proof of Theorem A is regarded as a generalization
of the one of [5, Thm. 2.2] to the case of An-spaces.

From Theorem A and the result by Hemmi [5, Thm. 2.2], we have the following
result:

Corollary 3.6. Let X be an associative H-space. Then X is an ACn-space if and
only if X is a Cn-space in the sense of Williams.

It is natural to consider the notion of maps between ACn-spaces preserving
ACn-forms.

Let X and Y be An-spaces. According to Stasheff [22, II, Def. 4.1], a map
φ : X → Y is called an An-homomorphism if φMX

i = MY
i (1Ki × φi) for 2 ≤ i ≤ n,

where {MX
i }2≤i≤n and {MY

i }2≤i≤n are An-forms on X and Y , respectively.

Definition 3.7. Let X and Y be ACn-spaces with the ACn-forms {QXi }1≤i≤n
and {QYi }1≤i≤n, respectively. An An-homomorphism φ : X → Y is called an
ACn-homomorphism if φQXi = QYi (1Γi × φi) for 1 ≤ i ≤ n.

Now we consider the odd dimensional sphere (S2n−1)∧p completed at p for n ≥
1. Let εn : (S2n−1)∧p → Ω2(S2n+1)∧p denote the double suspension which is the
double adjoint of the identity 1(S2n+1)∧p

on (S2n+1)∧p ' Σ2(S2n−1)∧p . By Example
3.2 (3), Ω2(S2n+1)∧p is an AC∞-space. According to Stasheff [22, I, Thm. 17],
(S2n−1)∧p admits an Ap−1-form so that εn : (S2n−1)∧p → Ω2(S2n+1)∧p is an Ap−1-
homomorphism. By using a similar argument to the proof of [22, I, Thm. 17], we
can prove the following result:

Proposition 3.8. Let p be a prime. Then (S2n−1)∧p admits an ACp−1-form so that
the double suspension εn : (S2n−1)∧p → Ω2(S2n+1)∧p is an ACp−1-homomorphism
for n ≥ 1.
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In the proof of Theorem B, we need the following lemma:

Lemma 3.9. If X is a connected ACn-space, then the universal covering X̃ is a
simply connected ACn-space and the covering projection map ω : X̃ → X is an
ACn-homomorphism.

Proof. We give an outline of the proof. Let {Mi}2≤i≤n and {Qi}1≤i≤n be the An-
form and the ACn-form on X , respectively. From the covering lifting property (cf.
[19, Ch. 2, Lemma 1.7]), there are maps M̃i : Ki× X̃ i → X̃ and Q̃i : Γi× X̃ i → X̃

such that ωM̃i = Mi(1Ki × ωi) for 2 ≤ i ≤ n and ωQ̃i = Qi(1Γi × ωi) for 1 ≤ i ≤
n. From the uniqueness of the lifting, the collections {M̃i}2≤i≤n and {Q̃i}1≤i≤n
satisfy the conditions (3.1)–(3.3) and (3.4)–(3.6), respectively. This completes the
proof. �

Now we proceed to the proof of Theorem B.

Proof of Theorem B. LetX be a connectedACp-space with finitely generated mod p
cohomology. If X̃ denotes the universal covering of X , then there is an H-fibration

(3.14) X̃ −−−−→ X −−−−→ K(π1(X), 1),

where K(π1(X), 1) has the mod p homotopy type of a finite product of K(Z, 1)s
and K(Z/pi, 1)s for i ≥ 1. According to Browder [4], there is a version of the
Serre spectral sequence associated to the H-fibration (3.14). As in the argument
of [7, §3], we see that the mod p cohomology H∗(X̃ ;Z/p) is finitely generated as
an algebra. From Theorem A, Theorem 3.3 and Lemma 3.9, X̃ is mod p homotopy
equivalent to a finite product of K(Z, 2)s. For dimensional reasons, the spectral
sequence associated to the H-fibration (3.14) collapses. Hence we have that

H∗(X ;Z/p) ∼= H∗(K(π1(X), 1);Z/p)⊗H∗(X̃ ;Z/p),

and there is a map ζ : X → K(π1(X), 1) × X̃ which induces an isomorphism on
the mod p cohomology. Then ζ is a mod p homotopy equivalence (cf. [19, Ch. 4,
Cor. 1.6]), and so we have the required conclusion. This completes the proof of
Theorem B. �
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