1	Single amino acid substitution in the methyltransferase domain of Paprika mild
2	mottle virus replicase proteins confers the ability to overcome the high
3	temperature-dependent Hk gene-mediated resistance in Capsicum plants
4	
5	Katsutoshi Matsumoto ^a , Kousuke Johnishi ^b , Hiroyuki Hamada ^{a, e} , Hiromasa Sawada ^c ,
6	Shigeharu Takeuchi ^c , Kappei Kobayashi ^d , Kazumi Suzuki ^b , Akinori Kiba ^a and Yasufumi
7	Hikichi ^a
8	
9	^a Laboratory of Plant Pathology and Biotechnology, Kochi University, Nankoku, Kochi
10	783-8502, Japan,
11	^b Laboratory of Plant Pathology, The University of Shiga Prefecture, Hikone, Shiga
12	522-8533, Japan,
13	^c Kochi Prefectural Agriculture Research Center, Nankoku, Kochi 783-0023, Japan,
14	^d Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003, Japan.
15	^e Present address, National Agricultural Research Center, Tsukuba, Ibaraki 305-8666,
16	Japan,
17	
18	
19	Key words: <i>Hk</i> -resistance, PaMMV, replicase genes
20	
21	Corresponding author: Y. Hikichi
22	TEL: +81-88-864-5218
23	FAX : +81-88-864-5200
24	E-mail : yhikichi@cc.kochi-u.ac.jp
25	

1 Abstract

Capsicum plants harboring the Hk gene (Hk) show resistance to Paprika mild mottle 2 virus (PaMMV) at 32 °C but not 24 °C. To identify the viral elicitor that activates the 3 Hk-mediated resistance, several chimeric viral genomes were constructed between 4 5 PaMMV and Tobacco mosaic virus-L. Infection patterns of these chimeric viruses in 6 Hk-harboring plants revealed responsibility of PaMMV replicase genes for activation of 7 the Hk-mediated resistance. The comparison of nucleotide sequence of replicase genes 8 between PaMMV and PaHk1, an Hk-resistance-breaking strain of PaMMV, revealed 9 that the adenine-to-uracil substitution at the nucleotide position 721 causes an amino 10 acid change from Threonine to Serine at the 241st residue in the methyltransferase 11 domain. Introduction of the A721U mutation into the replicase genes of parental 12 PaMMV overcame the Hk resistance at 32 °C. The results indicate that Hk-mediated 13 resistance is induced by PaMMV replicase proteins and that methyltransferase domain 14 has a role in this elicitation.

1 The genus Tobamovirus includes devastating viral pathogens in solanaceous plants. A tobamovirus, Paprika mild mottle virus (PaMMV) encodes two replicase proteins from 2 3 overlapping open reading frames: the 126 kDa protein and the 183 kDa read-through 4 protein (Hamada et al., 2003). The 126 kDa replicase protein contains domains with 5 methyltransferase and putative helicase activities, whereas the 183 kDa protein contains 6 an additional polymerase domain (Buck, 1999). In addition, tobamoviruses encode a 7 movement protein involved in cell-to-cell movement of the viruses and a coat protein 8 (CP) involved in the encapsidation of the viral RNA into virions. For control of 9 tobamovirus diseases, tobamovirus resistance genes, such as N gene and N' gene in 10 tobacco plants and Tm-1 gene in tomato plants, were incorporated into commercial 11 cultivars. Virus elicitors for these tobamovirus-resistance genes differ from each other: 12 features of replicase proteins and CP are recognized by N gene-haboring tobacco plants 13 (Padgett and Beachy, 1993; Erickson et al., 1999) and Tm-1 gene-harboring tomato 14 plants (Hamamoto et al., 1997; Meshi, et al., 1988; Strasser and Pfitzner, 2007), and 15 N'gene-harboring tobacco plants (Saito et al., 1987), respectively. A common problem with these tobamovirus resistance genes is that most of them lose their function at high 16 17 temperatures (eg. 30°C).

Four allelic genes at L locus, L^1 , L^2 , L^3 and L^4 , provide increased protection against 18 19 different kinds of tobamovirus pathotypes P₀, P₁, P_{1,2} and P_{1,2,3} in Capsicum plants 20 (Boukema, 1980 and 1982; Rast and Th, 1988). The tobamovirus CP is the elicitor of 21 the L genes-mediated hypersensitive response in the genus Capsicum (Berzal-Herranz et 22 al., 1995; Dardick et al., 1999; de la Cruz et al., 1997; Gilardi et al., 1998 and 2004; 23 Hamada et al., 2002; Tsuda et al. 1998). The L genes-mediated resistance also loses its function at high temperatures. However, we previously identified the L^{la} gene, a new 24 25 allele of L genes, which confers temperature-insensitive resistance against tobamovirus

P₀ pathotype (Sawada et al., 2004). L^{1a} gene-mediated resistance shares a common viral
 elicitor with temperature-sensitive L genes (Matsumoto et al., 2008).

In addition to the temperature-insensitive L^{la} gene, we identified a new tobamovirus 3 resistance gene in Capsicum plants, Hk (Sawada et al., 2005), which conferred 4 5 resistance to PaMMV but not to other tobamoviruses tested so far, including Tobacco 6 mosaic virus-Ob (TMV-Ob), Tobacco mosaic virus-L (TMV-L), Tobacco mild green 7 mosaic virus (TMGMV), and Pepper mild mottle virus (PMMoV). A remarkable feature 8 of *Hk* gene-mediated resistance is high temperature-dependent: it functions at high 9 temperatures such as 32°C but not at lower temperatures, (eg. 24°C), under which other 10 tobamovirus resistance genes work. The Hk gene is a single incompletely dominant 11 gene located in a chromosome differed to that of L genes. In this study we aimed to 12 identify the viral elicitor involved in the induction of Hk gene-mediated resistance in 13 Capsicum plants cultivated at high temperatures.

14 We constructed chimeric viral genomes between TMV-L and PaMMV-J, a Japanese 15 Capsicum strain of PaMMV (PaMMV-J, Hamada et al. 2003), investigated in a previous 16 study (Matsumoto et al., 2008). Chimeric tobamovirus genomes were constructed by recombining DNA fragments from cDNA clones, pTLW3 (Hamamoto et al., 1997) and 17 18 pPAJ (Hamada et al., 2003), from which infectious virus RNA genomes are transcribed 19 *in vitro*. The resulting recombinant DNAs were used as templates for transcription by 20 T7 RNA polymerase (TaKaRa). RNA transcripts were mechanically inoculated onto 21 Nicotiana benthamiana with inoculation buffer (Tris-EDTA buffer, pH. 8.0 and 0.25% 22 bentonite). Infected leaves harvested 6 to 7 days post inoculation (dpi) were ground 23 with 10 mM sodium phosphate buffer (pH 7.4), and the leaf sap was used as the 24 inoculum to mechanically inoculate pepper plants cultivated in growth chambers at 25 25 °C, with a 16 h photoperiod and a light intensity of 10,000 lux. For each inoculum,

five plants were used and experiments were performed in triplicate. Chimeric tobamoviruses used in this study were named as follows: the first letter was an abbreviation of the background virus (L or Pa for TMV-L or PaMMV-J, respectively), followed by an abbreviation of the virus from which the recombined gene derives (L or Pa), and the name of the gene (Rep, MP or CP, for replicase, movement protein or coat protein, respectively). For example, L-CPPa is a TMV-L mutant whose CP gene is replaced by the CP gene of PaMMV-J.

Virus infections in inoculated and uninoculated upper leaves at both 24 and 32 °C 8 9 were assessed by press blot immunoassay (Srinivasan and Tolin, 1992). In press blot 10 immunoassay, blots of inoculated leaves and uninoculated upper leaves were prepared at 11 5 and 9 dpi, respectively, and the viral CP was detected using an appropriate antibody. 12 The press blot immunoassay showed that PaMMV-J systematically infected C. annuum 13 L. cv. Nanbu-Ohnaga (Hk/Hk, Sawada et al., 2005) at 24 °C (Fig. 1); with vein necrosis 14 and systemic necrosis in inoculated leaves and uninoculated upper leaves, respectively 15 (Table 1). On the other hand, the virus induced necrotic lesions in the inoculated leaves 16 at 32 °C (Table 1) and no virions were detected in uninoculated upper leaves (Fig. 1): ie, 17 Hk gene inhibits systemic infectivity of PaMMV-J at 32 but not 24 °C. In contrast, TMV-L systemically infected the *Hk/Hk* plants (Fig. 1) with no symptoms in inoculated 18 19 leaves and mosaic symptoms in uninoculated upper leaves at both 32 and 24 °C (Table 20 1).

All chimeric viruses caused systemic infection with mosaic symptoms in *C. annuum* cv. Shosuke (L^+/L^+) at both 24 and 32 °C (Data not shown). When *Hk* plants were inoculated with the chimeric viruses having the replicase genes of TMV-L (Pa-RepL, L-MPPa, L-CPPa), no symptoms were induced in inoculated leaves and mosaic symptoms were induced in uninoculated upper leaves at both 24 and 32 °C (Table 1). Furthermore, the virions were detected in both inoculated leaves and uninoculated upper
 leaves (Fig. 1). Therefore, the chimeric viruses having the replicase genes of TMV-L

systematically infected *Hk* plants at any temperature, like TMV-L.

3

4 In contrast, the chimeric viruses having the replicase genes of PaMMV-J (Pa-MPL, 5 Pa-CPL and L-RepPa) failed to cause systemic infection (Fig. 1), and the viruses 6 induced necrotic lesions in the inoculated leaves at 32 °C (Table 1). On the other hand, 7 these chimeric viruses succeeded in the systemic infection of *Hk* plants at 24 °C (Fig. 1), 8 and vein necrosis and systemic necrotic symptoms were induced in inoculated leaves 9 and uninoculated upper leaves, respectively (Table 1). These results suggest that the 10 replicase genes of PaMMV-J are responsible for the induction of high 11 temperature-dependent *Hk* gene-mediated resistance to PaMMV-J.

12 A spontaneous mutant strain of PaMMV-J that overcame Hk resistance and was 13 designated as PaHk1, was isolated from a PaMMV-J-inoculated Capsicum plants 14 holding the Hk gene. The press blot immunoassay analysis showed that PaHk1 15 systemically infected *Hk* plants at 32 °C as well as 24 °C (Fig. 1). The chimeric viruses 16 between PaMMV-J and TMV-L showed that the replicase genes of PaMMV-J are 17 responsible for the elicitation of high temperature-dependent Hk gene-mediated resistance to PaMMV-J. Therefore, we compared nucleotide sequences of replicase 18 19 genes between PaMMV-J and PaHk1 and found one nucleotide substitution at position 20 721 of PaHk1 replicase genes from adenine (PaMMV-J) to uracil (PaHk1). This 21 mutation causes an amino acid substitution from threonine at position 241 of replicase 22 protein to serine. The mutation resided in the methyltransferase domain.

To analyze the involvement of A721U in replicase genes in overcoming *Hk* gene-mediated resistance, we constructed a mutant PaRepT241S, in which A721U mutation alone was introduced. Two DNA fragments, fragment 721-1 and fragment

1	721-2,	were	PCR-amplified	using	pPAJ	as	а	template	and	M4
2	(5'-GTT	TTCCC	AGTCACGAC-3'))		and			PaA	789T-
3	(5'-GCT	CCACC	GGAGCTTGCCTC	AAG-3'),			and		RV

4 (5'-GTCCTTTGTCGATACTG-3') and a primer complementary to primer PaA789T-, 5 respectively. A cDNA clone of PaRepT241S was then created by recombinant 6 PCR-amplification using fragment 721-1 and fragment 721-2 as templates and M4 and 7 RV as primers. The nucleotide sequences of recombinant DNA were analyzed using an 8 Automated DNA Sequencer Model 373 (Applied Biosystems). The mutant, 9 PaRepT241S, systemically infected Hk plants at both 24 and 32 °C, as did PaHk1 (Fig. 10 1). These results suggest that replacement of A-721 by U in replicase genes is sufficient 11 to overcome *Hk* resistance in *Capsicum* plants.

12 Viral RNA accumulation was examined by northern hybridization analysis in 13 PaMMV-J, PaHk1- and PaRepT241S-inoculated leaves at 5 dpi and uninoculated upper 14 leaves at 9 dpi, using a sequence corresponding to nucleotide position 6008-6508 of 15 PaMMV-J RNA as a 5'-DIG-labelled RNA probe. The targets were detected using an 16 alkaline phosphatase-conjugated anti-DIG antibody (Roche) and the CDP-Star 17 Detection Reagent (Amersham Biosciences) according to the manufacturer's protocol. Northern analysis showed that RNA of PaMMV-J was detected in inoculated leaves at 18 19 both 24 and 32 °C and in uninoculated upper leaves at 24 but not 32 °C (Fig. 2). On the 20 other hand, RNA of PaHk1 and PaRepT241S was detected not only in inoculated leave 21 but also in uninoculated upper leaves at both 24 and 32 °C. Importantly, viral RNA 22 accumulated to a similar extent at 24°C in both inoculated and uninoculated upper 23 leaves infected with one of PaMMV-J, PaHk1 and PaRepT241S, suggesting that A721U 24 mutation does not affect virus multiplication in plants.

25 In *Hk* plants cultivated at 32 °C but not 24 °C, systemic infectivity of both PaMMV

1 and chimeric viruses harboring the replicase gene of PaMMV was inhibited. The results 2 allowed us to identify the replicase genes of the PaMMV as the viral factor required for 3 activation of Hk gene-mediated resistance in Capsicum plants cultivated at high 4 temperatures. Furthermore, T241S substitution in the methyltransferase domain resulted 5 in the breaking of Hk resistance at 32 °C, suggesting that this domain of PaMMV 6 replicase proteins is responsible for activating the effect of a *Capsicum* resistance gene, 7 *Hk*, at high temperatures. Knapp et al. (2005 and 2007) demonstrated using the bipartite 8 Tobacco mosaic virus-defective RNA system that methyltransferase domain is involved 9 in both cell-to-cell movement and long distance movement in N. benthaminana. 10 However, all chimeric viruses and PaRepT241S tested in this study systemically 11 infected L^+/L^+ plants and Hk plants at 24 °C, suggesting that A721U substitution does 12 not affect virus systemic infectivity in Capsicum plants.

13 Among plant virus resistance genes elicitors that have been identified, tobacco N and 14 tomato Tm-1 genes are also known to be elicited by tobamovirus replicase proteins. 15 Unlike Hk, however, their elicitor activity was mapped to helicase domain of the 16 replicase proteins. Indeed, all parental and chimeric viruses used in this study induced 17 necrotic local lesions on tobacco plants containing N gene, regardless of the reaction of Hk-plants at 32 °C to the viruses (data not shown). These facts highlighted the unique 18 19 property of *Hk* gene that the methyltransferase domain is involved in pathogen 20 recognition by resistance gene product, in addition to its high temperature dependence.

It has been reported that mutations of the methyltransferase domain in replicases is one of major pathogenicity determinants of PMMoV. The mutations had synergistic effects in terms of the attenuation of symptoms and decreased the accumulation of the viral coat protein in infected pepper plants (Hagiwara et al., 2002; Ichiki et al., 2005; Yoon et al., 2006). In contrast, though The T241S substitution in replicases of PaMMV

1 led in change of disease symptom in the inoculated leaves of Hk plants at 24 °C (Table 1), the Northern blotting analysis showed PaHk1 and PaRepT241S retained their ability 2 3 to replicate in infected leaves of Hk plants at 24 °C, like PaMMV-J (Fig. 2). Furthermore, 4 the press blotting immunoassay also showed equal systemic infectivity of PaHk1 and 5 PaRepT241S to PaMMV-J in *Hk* plants at 24 °C (Fig. 1). These results collectively 6 suggest that the T241S mutation, which breaks the Hk resistance, does not affect the 7 infectivity function of methyltransferase domain, defect of which leads to viral 8 attenuation. On the other hand, it remains possibility that the avirulence motif could 9 reside in the RNA of replicase genes. The efficient inoculation method with the 10 transcript from cDNA clones of tobamoviruses into Capsicum plants has not yet 11 developed. Furthermore, though we developed the transit expression system of replicase 12 genes using Agrobacterium tumefaciens, the bacteria nonspecially induced necrotic 13 lesion in infiltrated area of Capsicum plants (data not shown). Therefore, the 14 development of experiments involving the creation of stop codon mutants in the 15 replicase genes is required for analysis on elicitor activity of RNA of replicase genes.

16 *Cucumber mosaic virus* (CMV) RNA1 codes for the 1a protein, which bears putative 17 methyltransferase and helicase domains (Palukaitis and Garcia-Arenal, 2003). The amino acid substitution at position 461 in the methyltransferase domain of the 1a 18 19 protein of CMV Ns strain is reportedly involved in HR elicitation on N. tabacum cv. 20 Xanthi-nc and on N. glutinosa (Salánki et al., 2007). The C461A and C461S 21 substitutions led to a lack of necrosis induction on the inoculated leaves while the 22 resistance phenotype did not change. The resistance pathway and the cell death pathway 23 of Cauliflower mosaic virus-induced HR on Nicotiana spp. are reportedly uncoupled (Cawly et al., 2005) and induced selectively (Cole et al., 2001). Kim and Palukaitis 24 25 (1997) also described the presence of an inhibition response distinct from the HR in 1 cowpea infected by CMV. In Hk plants at 24 °C, PaMMV methyltransferase domain may induce cell death pathway but not resistance pathway, resulting in systemic 2 3 PaMMV infection in the *Hk* plants with systemic necrosis. It is possible that viral 4 methyltransferase domain, as a common and intrinsic nature, activate differentially the 5 cell death and resistance signaling pathways in host plants that harbor resistance genes 6 perceiving the viral protein. The A721U mutation abrogated the viral protein function to 7 induce both cell death and resistance pathways in Hk plants regardless of the 8 temperature.

9 The replacement of Thr-241 by Ser, which lies in the methyltransferase domain of the 10 proteins, but not in the consensus sequence motif in type I methyltransferase domain of 11 positive-strand RNA virus (Koonin and Dolja, 1993), was sufficient to overcome Hk 12 resistance in *Capsicum* plants. Identities of deduced amino acid sequences of replicase 13 proteins between PaMMV-J and TMV-Ob showed 86.8 %, and amino acid at position 14 241 of both strains was Thr. Moreover, amino acids at position 241 of ToMV, a Japanese 15 strain of PMMoV (Kirita et al., 1997) and a Japanese strain of TMGMV (Morishima et 16 al., 2003) were His, Tyr and Glu, respectively. These evidences suggest that substituted 17 Ser itself is not involved in the interaction with host machinery for virus perception and that the mutation likely affects conformation of replicase proteins. Since it evident that 18 19 the amino acid substitution at position 241 of replicase proteins do not affect RNA 20 replication in *Hk* plants, it is more likely that T241S mutation slightly affects the 21 conformation and/or the interaction with other protein(s) of the replicase proteins.

22

23 Acknowledgement

We would like to thank Dr. Yuichiro Watanabe, University of Tokyo, for his kind giftof the TMV-L infectious clone.

1	
2	References
3	Berzal-Herranz, A., de la Cruz, A., Tenllado, F., Díaz-Ruíz, J.R., López, L., Sanz, A.I.,
4	Vaquero, C., Serra, M.T., García-Luque, I., 1995. The Capsicum L ³ gene-mediated
5	resistance against tobamovirus is elicited by the coat protein. Virology 209, 498–505.
6	Boukema, I.W., 1980. Allelism of genes controlling resistance to TMV in Capsicum L.
7	Euphytica 29, 433–439.
8	Boukema, I.W., 1982. Resistance to TMV in Capsicum chacoense Hunz. is governed by
9	an allele of the L-locus. Capsicum Newslet. 3, 47–48.
10	Buck, K.W., 1999. Replication of tobacco mosaic virus. Phil. Trans. R. Soc. Lond. B
11	354, 613-627.
12	Cawly, J., Cole, A.B., Király, L., Qiu, W., Schoelz, J.E., 2005. The plant gene CCD1
13	selectively blocks cell death during the hypersensitive response to Cauliflower
14	mosaic virus infection. Mol. Plant-Microb. Interact. 18, 212–219.
15	Cole, A.B., Király, L., Ross, K., Schoelz, J.E., 2001. Uncoupling resistance from cell
16	death in the hypersensitive response of Nicotiana species to Cauliflower mosaic virus
17	infection. Mol. Plant-Microb. Interact. 14, 31-41.
18	Dardick, C.D., Taraporewala, Z., Lu, B., Culver, J.N., 1999. Comparison of tobamovirus
19	coat protein structural features that affect elicitor activity in pepper, eggplant, and
20	tobacco. Mol. Plant Microbe Interact. 12, 247–251.
21	de la Cruz, A., López, L., Tenllado, F., Díaz-Ruíz, J.R., Sanz, A.I., Vaquero, C., Serra,
22	M.T., García-Luque, I., 1997. The coat protein is required for the elicitation of the
23	Capsicum L^2 gene-mediated resistance against the tobamoviruses. Mol. Plant
24	Microbe Interact. 10, 107–113.
25	Erickson, F.L., Dinesh-Kumar, S.P., Holzberg, S., Ustach, C.V., Dutton, M., Handley, V.,

1	Corr, C., Baker, B.J., 1999. Interactions between tobacco mosaic virus and the
2	tobacco N gene. Philos. Trans. R. Soc. Lond. B Biol. Sci. 354, 653–658.
3	Gilardi, P., García-Luque, I., Serra, M.T., 1998. Pepper mild mottle virus coat protein
4	alone can elicit the <i>Capsicum</i> spp. L^3 gene-mediated resistance. Mol. Plant Microbe
5	Interact. 11, 1253–1257.
6	Gilardi, P., García-Luque, I., Serra, M.T., 2004. The coat protein of tobamovirus acts as
7	elicitor of both L^2 and L^4 gene-mediated resistance in <i>Capsicum</i> . J. Gen. Virol. 85,
8	2077–2085.
9	Hagiwara, K., Ichiki, T.U., Ogawa, Y., Omura, T., Tsuda, S., 2002. A single amino acid
10	substitution in 126-kDa protein of Pepper mild mottle virus associates with symptom
11	attenuation in pepper; the complete nucleotide sequence of an attenuated strain,
12	C-1421. Arch. Virol. 147, 833-840.
13	Hamada, H., Takeuchi, S., Kiba, A., Tsuda, S., Hikichi, Y., Okuno, T., 2002. Amino acid
14	changes in Pepper mild mottle virus coat protein that affect L^3 gene-mediated
15	resistance in pepper. J. Gen. Plant Pathol. 68, 155–162.
16	Hamada, H., Takeuchi, S., Morita, Y., Sawada, H., Kiba, A., Hikichi, Y., 2003.
17	Characterization of Paprika mild mottle virus first isolated in Japan. J. Gen. Plant
18	Pathol. 69, 199–204.
19	Hamamoto, H., Watanabe, Y., Kamada, H., Okada, Y., 1997. Amino acid changes in the
20	putative replicase of tomato mosaic tobamovirus that overcome resistance in Tm-1
21	tomato. J. Gen. Virol. 78, 461-464.
22	Ichiki, T.U., Nagaoka, E.N., Hagiwara, K., Uchikawa, K., Tsuda, S., Omura, T.,
23	Integration of mutations responsible for the attenuated phenotype of Pepper mild
24	mottle virus strains results in a symptomless cross-protecting strain. Arch. Virol. 150,
25	2009-2020.

1	Kim, C.H., Palukaitis, P., 1997. The plant defense response to cucumber mosaic virus in
2	cowpea is elicited by the viral polymerase gene and affects virus accumulation in
3	single cells. EMBO J. 16, 4060–4068.
4	Kirita, M., Akutsu, K., Watanabe, Y., Tsuda, S. 1997. Nucleotide sequence of the
5	Japanese isolate of Pepper mild mottle tobamovirus (TMV-P) RNA. Ann.
6	Phytopathol. Soc. Jpn. 63, 373-376.
7	Knapp, E., Achor, D., Lewandowski, D.J., 2007. Tobacco mosaic virus defective RNAs
8	expressing C-terminal methyltransferase domain sequences are severely impaired in
9	long-distance movement in Nicotiana benthamiana. Virology 367, 82-91.
10	Knapp, E., Danyluk, G.M., Achor, D., Lewandowski, D.J., 2005. A bipartite Tobacco
11	mosaic virus-defective RNA (dRNA) system to study the role of the N-terminal
12	methyl transferase domain in cell-to-cell movement of dRNAs. Virology 341, 47-58.
13	Koonin, E.V., Dolja, V.V., 1993. Evolution and taxonomy of positive-strand RNA
14	viruses: implications of comparative analysis of amino acid sequences. Crit. Rev.
15	Biochem. Mol. Biol. 28, 375-430.
16	Matsumoto, K., Sawada, H., Matsumoto, K., Hamada, H., Yoshimoto, E., Ito, T.,
17	Takeuchi, S., Tsuda, S., Suzuki, K., Kobayashi, K., Kiba, A., Okuno, T., Hikichi, Y.,
18	2008. The coat protein gene of tobamovirus P_0 pathotype is a determinant to activate
19	temperature-insensitive L^{1a} gene-mediated resistance in <i>Capsicum</i> plants. Arch. Virol.
20	153, 645-650.
21	Meshi, T., Motoyoshi, F., Adachi, A., Watanabe, Y., Takamatsu, N., Okada, Y., 1988.
22	Two concomitant base substitutions in the putative replicase genes of tobacco mosaic
23	virus confer the ability to overcome the effects of tomato resistance genes, $Tm-1$.
24	EMBO J. 7, 1575–1581.

25 Morishima, N., Ido, T., Hamada, H., Yoshimoto, E., Mizumoto, H., Takeuchi, S., Kiba,

1	A., Hikichi, Y., Okuno, T. 2003. Infectious in vitro transcripts from a cDNA clone of
2	Tobacco mild green mosaic tobamovirus and its biological activity in host and
3	nonhost plants and in their protoplasts. J. Gen. Plant Pathol. 69, 335-338.
4	Padgett, H.S., Beachy, R.N., 1993. Analysis of a tobacco mosaic virus strain capable of
5	overcoming N gene-mediated resistance. Plant Cell 5, 577-586.
6	Palukaitis, P., García-Arenal, F., 2003. Cucumoviruses. Adv. Virus Res. 62, 241–323.
7	Rast, A., Th, B., 1988. Pepper tobamovirus and pathotypes used in resistance breeding.
8	Capsicum Newslet. 7, 20–23.
9	Saito, T., Meshi, T., Takamatsu, N., Okada, Y., 1987. Coat protein gene sequence of
10	tobacco mosaic virus encodes a host response determinant. Proc. Natl. Acad. Sci.
11	USA. 84, 6074-6077.
12	Salánki, K., Gellért, Á, Náray-Szabó, G., Balázs, E., 2007. Modeling-based
13	characterization of the elicitor function of amino acid 461 of Cucumber mosaic virus
14	1a protein in the hypersensitive response. Virology 358, 109-118.
15	Sawada, H., Takeuchi, S., Hamada, H., Kiba, A., Matsumoto, M., Hikichi, Y., 2004. A
16	New tobamovirus-resistance gene, L^{1a} , of sweet pepper (Capsicum annum L.). J. Jpn.
17	Soc. Hort. Sci. 73, 552–557.
18	Sawada, H., Takeuchi, S., Matsumoto, K., Hamada, H., Kiba, A., Matsumoto, M.,
19	Watanabe, Y., Suzuki, K., Hikichi, Y., 2005. A new tobamovirus-resistance gene, Hk,
20	in Capsicum annum. J. Jpn. Soc. Hort. Sci. 74, 289–294.
21	Srinivasan, I., Tolin, S.A., 1992. Detection of three viruses of clovers by direct tissue
22	immunoblotting. Phytopathology 82, 721.
23	Strasser, M., Pfitzner, A.J.P., 2007. The double-resistance-breaking Tomato mosaic virus
24	strain ToMV1-2 contains two independent single resistance-breaking domains. Arch.
25	Virol. 152, 903-914.

1	Tsuda, S., Kirita, M., Watanabe, Y. 1998. Characterization of a pepper mild mottle
2	tobamovirus strain capable of overcoming the L^3 gene-mediated resistance, distinct
3	from the resistance-breaking Italian isolate. Mol. Plant Microbe Interact. 11,
4	327–331.
5	Yoon, J.Y., Ahn, H.I., Kim, M., Tsuda, S., Ryu, K.H., Pepper mild mottle virus

Yoon, J.Y., Ahn, H.I., Kim, M., Tsuda, S., Ryu, K.H., *Pepper mild mottle virus*pathogenicity determinants and cross protection effect of attenuated mutants in
pepper. Virus Res. 118, 23-30.

- 1 **Table 1.**
- 2 Infectivity of Paprika mild mottle virus Japanese strain (PaMMV-J) and Tobacco
- 3 mosaic virus–L (TMV-L) and their chimeric viruses on Capsicum annum haboring Hk
- 4 gene

Virus	Incubation temperature (°C)			
	24	32		
TMV-L	SM^1	SM		
PaMMV-J	SN	LN		
L-RepPa	SN	LN		
L-MPPa	SM	SM		
L-CPPa	SM	SM		
Pa-RepL	SM	SM		
Pa-MPL	SN	LN		
Pa-CPL	SN	LN		
PaHk1	SM	SM		
PaRepT241S	SM	SM		

5 ¹ SM, no symptoms in the inoculated leaves, mosaic symptoms in the uninoculated 6 upper leaves, and virus systemically infected the inoculated plants; SN, vein necrosis in 7 the inoculated leaves, systemic necrosis symptoms in the uninoculated upper leaves, and 8 virus systemically infected the inoculated plants; LN, necrotic local lesion and vein 9 necrosis in the inoculated leaves, no symptoms in the uninoculated upper leaves, and 10 virus locally infected the only inoculated leaves.

1 Figure legend

Fig. 1. Distribution of the coat protein (CP) of the *Paprika mild mottle virus* Japanese strain (PaMMV-J), *Tobacco mosaic virus*–L (TMV-L) and their chimeric viruses in *Capsicum annum* plants harboring *Hk* gene. In press blot immunoassay, blots of inoculated leaves (Ino.) and uninoculated upper leaves (Upp.) were prepared at 5 and 9 days post inoculation (dpi), respectively, and the viral CP was detected using an appropriate antibody.

8

9 Fig. 2. Accumulation of genomic RNA of *Paprika mild mottle virus* Japanese strain 10 (PaMMV-J), PaRepT241S and PaHk1 in *Capsicum annum* plants harboring *Hk* gene. 11 Total RNA (1 µg) extracted from the viruses-inoculated leaves (I) and uninoculated 12 upper leaves (U) of *C. annum* at 5 and 9 days post-inoculation, respectively, was used 13 for northern blot analysis using a sequence corresponding to nucleotide position 14 6008-6508 of PaMMV-J RNA as a 5'-DIG-labelled RNA probe. Ethidium bromide 15 staining of rRNA is shown as a load control.

- 16
- 17
- 18
- 19
- 20
- 21 22
- 23
- 24
- 25

Fig. 1, Matsumoto et al., Virus Research

