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Abstract

   Diabetes mellitus is frequently associated with coagulation disorders such as coronary heart

disease or stroke.  We aimed to clarify the molecular mechanism whereby hyperglycemia

causes the procoagulant state.  The HuH7 human hepatocyte cells were treated with high

glucose alone, or in combination with proinflammatory cytokines, and the effects on the activity

of the transcription factor NF- B, which mediates the expression of acute phase and

coagulation-related genes, were examined.  The results showed that increasing the medium

glucose concentration from 3 to 24 mM significantly enhanced the NF- B-luciferase activity by

40% in the presence of insulin.  The effect was promoter-specific, and was not mimicked by

comparable hyperosmolality with L-glucose.  Proinflammatory cytokines such as interleukin-1

and TNF-  also stimulated NF- B-dependent transcription, and showed an additive effect with

high glucose.  Similar effects were obtained on acute phase or coagulation/fibrinolysis-related

gene promoters such as fibrinogen or PAI-1, all of which are shown to have NF- B-mediated

transcription.  Finally, pretreatment of the cells with an antioxidant PDTC completely

abolished the effect of high glucose, and markedly attenuated that of TNF- , suggesting the

involvement of reactive oxygen species.  These results suggest that 1) high glucose as well as

proinflammatory cytokines have positive effects on NF- B-mediated transcription in an

additive manner, and enhance coagulation-related gene expression, and 2) the effects are

mediated, at least partly, by the generation of oxidative stress, and may be responsible for the

high prevalence of thrombotic disorders in the metabolic syndrome with diabetes,

hyperinsulinemia, obesity and/or inflammation.  
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1. Introduction

   It is well known that long-term hyperglycemia causes diabetes-specific microvascular

complications, i.e. retinopathy, nephropathy and neuropathy.  In addition, patients with

uncontrolled diabetes mellitus sometimes suffer from thrombotic disorders like coronary or

cerebrovascular obstruction, which may occur with mild or even postprandial hyperglycemia

(Ceriello, 2000; Bonora, 2002; Haheim, Holme, Hjermann, & Leren, 1995).  Indeed,

enhanced coagulation and/or impaired fibrinolysis are reported to accompany patients with

hyperglycemia (Bruno et al., 1996; Festa et al., 1999), and large population studies suggest

the relationship between postprandial hyperglycemia and cardiovascular risk (Hanefeld et al.,

1996; Tominaga et al., 1999; The DECODE study group, 1999; Hanefeld et al., 2000).

Other risk factors such as hyperinsulinemia, obesity, and high cytokine levels in the metabolic

syndrome may also contribute, to some extent, to the hypercoagulability.  However, the

precise molecular mechanisms regarding how individual risk factors are integrated and are

eventually causative to the thrombotic disorders remain unresolved.  

   In this study, we focused on the effect of each risk factor, especially high glucose, on the

nuclear factor kappa-B (NF- B)-dependent transcription, using the human hepatocyte cell line

in vitro.  NF- B is a transcription factor which is known to play a pivotal role in mediating

the gene expression of acute phase proteins such as C-reactive protein (CRP) or serum

amyloid protein A (SAA), or a variety of inflammation/coagulation-related genes such as

fibrinogen or plasminogen activator inhibitor-I (PAI-1) in the liver (Lavrovsky et al., 2000).

Thus, we hypothesize that high glucose by itself activates the transcriptional activity of NF-

B-dependent genes in the liver, which causes the overproduction of the

proinflammatory/procoagulant proteins.  

2. Materials and Methods

2.1. Cell culture and transfection

   HuH7, a human hepatoma cell line, or HuH7NF, a subclone of the HuH7 cell line in
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which the pNF- B-Luc reporter plasmid containing 5 tandem repeats of NF- B binding sites

(Stratagene, La Jolla, CA) was stably incorporated, were used in this study.  The

characteristics of the latter cell line were previously described (Iwasaki et al., 2004).  Cells

were maintained in a T75 culture flask with DMEM (high glucose; Invitrogen, Carlsbad, CA)

supplemented with 10% FBS (Invitrogen) and antibiotics (50 U/ml penicillin and 50 g/ml

streptomycin; Invitrogen) under a 5% CO2-95% air atmosphere at 37 C.  Culture medium

was changed twice a week, and the cells were subcultured once a week.  In some

experiments (Figs. 4 and 7), HuH7 cells were transfected transiently with RSV-LTR-, human

fibrinogen 5’-promoter ( 1 kb)-, or human plasminogen activator inhibitor-1 (PAI-1) 5’-

promoter ( 0.7 kb)-luciferase fusion genes, by a lipofection method using a commercially

available reagent [FuGene 6, Roche Diagnostics, Penzberg, Germany; Reagent ( l): DNA

amount ( g)=2:1].

2.2. Experiments

   The HuH7NF (or HuH7) cells were plated with 50% confluency and cultured in DMEM

(high glucose) supplemented with 1% FBS in 24-well plates.  After 48 h, the culture medium

was changed to DMEM containing 1% FBS and 3 mM glucose, and then the cells were

cultured with different concentrations of glucose (3 to 24 mM) according to the experimental

protocol until the end of each experiment.  The culture medium was also supplied with

human insulin (1 nM; Sigma, St. Louis, MO) except one experiment (see the legend of Fig. 2).

In some experiments (Figs. 6 and 8), the cells were simultaneously incubated with human

interleukin-1  (IL-1 PeproTech, Rocky Hill, NJ) or tumor necrosis factor-  (TNF- ;

PeproTech) for the defined time interval.  

2.3. Assays  

   Luciferase assay was performed as previously described (Aoki et al., 1997), and light output

was measured for 20 sec at room temperature using a luminometer (Berthold Lumat LB9501,

Bad Wildbad, Germany).  Protein assay was performed using a commercially available kit

(BCA Protein Assay Kit, Pierce, , Rockford, IL).
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2.4. RT-PCR

   Endogenous expression of the two major components of NF- B (p65, p50), fibrinogen,

PAI-1, and insulin receptor were examined by RT-PCR using Superscript II (Invitrogen) and

Taq DNA polymerase (Takara, Kyoto, Japan).  The primer sets used were as follows: sense,

5’-TCAATGGCTACACAGGACCA-3’ and antisense, 5’-CACTGTCACCTGGAAGCAGA-3’ for p65;

sense, 5’-CACCTAGCTGCCAAAGAAGG-3’ and antisense, 5’-AGGCTCAAAGTTCTCCACCA-3’ for

p50; sense 5’-GACAACTGCTGCATCTTAGATG-3’ and antisense, 5’-

TCATGTGTTAAAATCGATGCTTC-3’ for fibrinogen; sense, 5’-CTTGTCTTTGGTGAAGGGTCT-3’

and antisense, 5’-TGTGTCTTCACCCAGTCATTG-3’ for PAI-1, and sense, 5’-

CCTTCAAGAGATGATTCAGATG-3’ and antisense, 5’-TGTTCATTAGACAGGCCTTGGT-3’ for

insulin receptor.  

  

2.5. Electromobility shift assay (EMSA)

   EMSA was carried out using a commercially available non-RI EMSA kit (LightShift

Chemiluminescent EMSA kit; Pierce).  Briefly, cells were incubated with DMEM containing

3 mM glucose for 22 h, and then treated for 2 h with DMEM containing either 3 or 24 mM

glucose for 2 h.  Nuclear extract was prepared using NE-PER nuclear and cytoplasmic

extraction kit (Pierce, Rockford, IL).  The extract was then incubated for 6 h with the

double-stranded, 3'-end-biotinylated oligonucleotide probe (50 fmol) encompassing the

consensus NF- B binding sequence (sense, 5’-AGTTGAGGGGACTTTCCCAGGC-3’ biotin;

antisense, 5’-GCCTGGGAAAGTCCCCTCAACT-3’ biotin), and the mixture was subjected to 4%

nondenaturing polyacrylamide gel (160V for 4 h).  Finally, the biotinylated DNA was

transferred to a nylon membrane, cross-linked, and then the biotin-labeled DNA was detected

with digital imaging apparatus (LightCapture, ATTO, Japan).

2.6. Statistical analysis

   Results are expressed as mean±SEM of triplicate or quadruplicate dishes in each group.

The significance of difference between mean values was evaluated by one-way ANOVA
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followed by Fisher’s PLSD test.

3. Results

3.1. Expression of NF- B subunits and inflammation/coagulation-related proteins in HuH7

human hepatoma cell line

   We first analyzed the presence of each component of NF- B as well as hepatic

inflammation-/coagulation-related proteins by RT-PCR.  As shown in Fig. 1, we found PCR

products with the appropriate band size in all cases, indicating the endogenous expression of

mRNAs for the proteins examined.

3.2. High glucose concentration stimulates NF- B-dependent transcription  

   We then examined the dose-response and time-course effects of the increase in the glucose

concentration of the culture medium on NF- B-dependent transcription using HuH7NF cells.

As shown in Fig. 2A, the increment in the glucose concentration for 6 h significantly

stimulated the NF- B-luciferase activity in a dose-dependent manner.  This was more

obvious when the cells were simultaneously treated with insulin (1 nM), and an

approximately 40% increase was observed with the increase in the glucose concentration from

3 to 24 mM.  The effect seems not to be due to a difference in the cellular growth rate,

because cellular protein level was not influenced by the glucose concentration, insulin, or

IGF-I (used as a control) during the incubation period (Fig. 2B).  A time-course experiment

showed that a significant rise was obtained as early as 3 h, and reached the maximal effect at

and after 6 h (Fig. 3).  These results suggest that high glucose concentration per se is an

independent stimulus for NF- B-dependent transcription, and the effect is more obvious with

the presence of insulin.  

3.3. Specificity of high glucose on NF- B-dependent transcription  

   To confirm the specificity of the above findings, we examined the effect of L-glucose on

NF- B-dependent transcription, and also the effect of D-glucose on RSV-LTR promoter.  As
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shown in Fig. 4, the effect of glucose (D-glucose) was not mimicked by equimolar

concentration of metabolically inactive L-glucose.  Furthermore, high concentration of

glucose (D-glucose) did not influence the RSV-luciferase activity.  These results suggest that

the positive effect of high glucose is not a non-specific nutritional or osmogenic effect, but is

rather a promoter- and glucose-specific event.

3.4. High glucose enhances DNA binding of NF- B  

   To see if high glucose enhances the DNA binding of NF- B, EMSA analysis was carried out

using canonical NF- B binding sequences as probes.  As shown in Fig. 5, high glucose

treatment (24 mM for 2 h) clearly enhanced the protein binding to the probe, compared with the

control (3 mM for 2 h).

 

3.5. High glucose and proinflammatory cytokines have a combined effect on NF- B-

dependent transcription

   It is well known that proinflammatory cytokines stimulate the transcription of acute phase

protein and other hepatic inflammation-related proteins through NF- B activation.  We

therefore studied the effect of representative cytokines such as IL-1  or TNF-  alone or in

combination with high glucose.  As shown in Fig. 6, both IL-1  (100 pM, 12 h) and TNF-

(100 nM, 12 h) potently stimulated NF- B-luciferase activity.  Again, high glucose (24 mM)

with insulin (1 nM) alone caused a 40% increase, and additive effects were observed when

high glucose and either cytokine were simultaneously used.  These results suggest that a

combination of the stimulants (cytokines, high glucose, high insulin) exerts cumulative effects

on the NF- B-dependent transcription.

3.6. High glucose also stimulates the transcription of the genes encoding coagulation-related

proteins

   The expression of fibrinogen and PAI-1, major regulatory proteins for coagulation, are

enhanced by inflammatory stimuli.  We thus examined the effect of high glucose on the 5’-

promoter activity of the genes.  As shown in Fig. 7, the transcriptional activity of both PAI-1
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and fibrinogen genes was invariably stimulated by 24 mM glucose.  These data suggest that

high glucose concentration enhances the expression of hepatic proteins involved in

coagulation/fibrinolysis.  Since NF- B is shown to play a major role in the transcriptional

regulation of these genes, we assume that the positive effects are, at least partly, mediated

through the activation of NF- B.  

3.7. The effect of high glucose is eliminated by an antioxidant PDTC

   Finally, to see the possible involvement of free radical generation in high glucose-induced

NF- B activation, we carried out a similar experiment in the presence of an antioxidant PDTC.

As shown in Fig. 8, the positive effect of high glucose was completely abolished, and that of

TNF-  was markedly impaired under the treatment with 100 M of PDTC.  Since high

glucose is known to cause enhanced mitochondrial oxidation with radical generation

(Nishikawa et al., 2000), and NF- B is a radical-sensitive transcriptional factor (van den Berg et

al., 2001), we assume that elevated glucose concentration stimulates NF- B-dependent

transcription through increased oxidative stress.  Our data also suggest that a similar

mechanism is, at least partly, involved in the TNF- -mediated NF- B activation in hepatocytes.  

4. Discussion

   In this study, we showed the stimulatory effect of high glucose on NF- B-dependent

transcription in hepatic cells in vitro, suggesting that glucose by itself is responsible for the

activation of inflammation/coagulation-related protein expression, at least partly via increased

oxidative stress.  These data are in accordance with the recent clinical notion that

postprandial hyperglycemia is a possible risk factor for macrovascular disorders frequently

seen in patients with mild diabetes mellitus (Hanefeld et al., 1996; Tominaga et al., 1999; The

DECODE study group, 1999; Hanefeld et al., 2000).  Furthermore, the effect was more

pronounced in the presence of insulin, and was additive with the effects of proinflammatory

cytokines which are additional risk factors associated with visceral obesity (Hotamisligil,

2000; Matsuzawa, Funahashi, & Nakamura, 1999).  This may explain the molecular
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mechanism of the integration of multiple risk factors (hyperglycemia, hyperinsulinemia, and

high plasma cytokine levels) in the metabolic syndrome in terms of enhanced expression of

procoagulant/proinflammatory proteins.  

   The transcription factor NF- B is expressed ubiquitously including the liver, and plays a

central role in the transcriptional regulation of inflammation-related genes (Barnes & Karin,

1997).  During the inflammation/infection, proinflammatory cytokines activate NF- B in

hepatocytes, causing the immediate expression of acute phase proteins such as CRP and SAA,

procoagulants such as fibrinogen and factor VIII, and fibrinolysis inhibitor PAI-1 (Cha-

Molstad et al., 2000; Bing, Huang, & Liao, 2000; Fuller & Zhang, 2000; Begbie et al., 2000;

Ruan et al., 2001).  These proteins may play a beneficial role in the acute phase of

inflammation (Gabay & Kushner, 1999), but chronic overproduction is known to cause

hypercoagulability with resultant thrombotic disorders and/or atherosclerosis.  Furthermore,

recent studies suggest that adipose tissue produces TNF-  and other cytokines (Matsuzawa,

Funahashi, & Nakamura, 1999), which also stimulate the NF- B-dependent transcription.

Our present data extend the lines of evidence, suggesting that high glucose is also responsible

for the activation of the NF- B-mediated inflammatory process in the liver.  The effect

seems to be promoter-specific and not caused by hyperosmolality (Loitsch et al., 2000;

Takeda et al., 2001), because no increase was observed in RSV promoter-mediated

transcription, and the effect was not caused by metabolically inactive L-glucose.  

   The effect of high glucose alone on NF- B-dependent transcription was relatively weak in

the absence of insulin.  On the other hand, significant augmentation was observed with

insulin, mimicking the condition in which the combination of high glucose (hyperglycemia)

and high insulin concentration (hyperinsulinemia) causes a higher risk in obese patients with

diabetes mellitus.  Moreover, further activation of NF- B-dependent transcription was

observed with proinflammatory cytokines (IL-1 , TNF- ), raising the possibility that NF- B

may play a pivotal role in the integration of multiple risk factors seen in the metabolic

syndrome.  Recent clinical data clearly show that the constellation of risk factors such as

hyperglycemia, hyperinsulinemia, and high plasma cytokine levels produces an increase in

plasma PAI-1 and fibrinogen, causing enhanced coagulability and impaired fibrinolysis, with
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resultant increase in the risk of cardiovascular events (Schneider, Nordt, & Sobel, 1993;

Pandolfi et al., 2001).  Our data also show the increased promoter activity of fibrinogen and

PAI-1 genes by glucose, in accordance with the increased plasma level of these proteins and

hypercoagulability in patients with uncontrolled diabetes (Bruno et al., 1996; Festa et al.,

1999).

   The precise mechanism whereby high glucose activates the NF- B pathway is not

completely understood.  Chronic hyperglycemia causes the production of advanced glycation

end product (AGE), which is known to generate ROS with subsequent activation of NF- B

(Mohamed et al., 1999; Bierhaus et al., 2001).  However, in this study, the effect of high

glucose was observed as early as 6 h, suggesting the involvement of AGE to be unlikely.

Previous studies suggest the involvement of protein kinase C (PKC) in high glucose-induced

NF- B activation in vascular endothelial or smooth muscle cells (Pieper & Riazul, 1997;

Yerneni et al., 1999).  In this study, we found that PDTC completely eliminated the effect of

glucose/insulin, and markedly attenuated the effect of TNF- .  PDTC is usually recognized

as an NF- B inhibitor, but is known to exert this effect via its antioxidant properties.  Since a

recent study suggests that hyperglycemia acutely produces oxidative stress (Nishikawa et al.,

2000), we hypothesize that high glucose enhances the production of ROS in hepatocytes,

which in turn activates NF- B-dependent transcription possibly through PKC.  The

suppressive effect of PDTC on TNF- -mediated NF- B activation is also explained by a

recent report that TNF-  generates ROS by activating NADPH oxidase (Li et al., 2002).  

   In conclusion, our in vitro data strongly support the clinical hypothesis that, besides the

microvascular injury as a complication of chronic hyperglycemia, short-term high plasma

glucose, alone or in combination with other risk factors, causes the accumulated activation of

NF- B-mediated transcription with a subsequent increase in the risk of thrombotic vascular

events.
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Figure legends

Fig. 1.  Expression of PAI-1, fibrinogen (Fib), NF- B p50, p65, and insulin receptor (IR)

mRNAs analyzed by RT-PCR in HuH7NF cells.  The figure shows photographs of the

ethidium bromide-stained products using agarose gel electrophoresis.  cDNA produced from

an RT reaction using total RNA from HuH7NF cells was amplified by PCR with pairs of

oligonucleotide primers specific for each mRNA.  No band was amplified in the same

reaction without reverse transcriptase (not shown).  MW, molecular weight marker.

Fig. 2.  Effects of extracellular glucose concentration on the NF- B-dependent transcription in

HuH7NF cells.  A. Cells were treated with medium containing the indicated concentration of

glucose with or without insulin (1 nM) for 6 h, and the changes in the promoter activity were

determined by luciferase assay. *P<.05 vs. value at 3 mM.  B. Cell were treated with medium

containing 3 or 24 mM glucose with vehicle, insulin (1 nM), or IGF-I (100 nM, PeproTech) for

6 h, and the changes in the cellular protein content per well were determined by a protein assay.  

Fig. 3.  Time-course effect of high extracellular glucose concentration on the NF- B-

dependent transcription in HuH7NF cells.  Cells were treated with medium containing 24 mM

of glucose with insulin for 3 to 24 h, and the changes in the promoter activity were determined

by luciferase assay. *P<.05 vs. value at time zero.

Fig. 4.  The specificity of the effect of high glucose in HuH7 cells.  HuH7NF cells were

cultured with two different concentrations of D- or L-glucose (3 or 24 mM) for 6 h (left, and

middle).  Alternatively, HuH7 cells transfected transiently with RSV-luciferase reporter

plasmid were cultured with D-glucose (3 or 24 mM) for 6 h (right).  The changes in the

promoter activity were determined by luciferase assay.  *P<.05 vs. value at 3 mM.  N.S., not

significant.

Fig. 5.  Effect of high glucose on the DNA binding of NF- B.  HuH7NF cells were treated
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for 22 h with DMEM containing 3 mM glucose, and then incubated with DMEM containing

either 3 or 24 mM glucose for 2 h.  The cells were harvested and the extracted nuclear

protein was used for EMSA analysis.  LG, low glucose; HG, high glucose.

Fig. 6.  The combined effects of high extracellular glucose and proinflammatory cytokines on

the NF- B-dependent transcription in HuH7NF cells.  HuH7NF cells were treated with high

glucose (24 mM) for 6 h and/or with human IL-1  (100 pM; left) or human TNF-  (100 pM;

right) for 12 h, and the changes in the promoter activity were determined by luciferase assay.

*P<.05 vs. cytokine alone.

Fig. 7.  The effect of high extracellular glucose concentration on the promoter activities of the

coagulation/fibrinolysis-related proteins.  HuH7 cells were transiently transfected with each

promoter-luciferase construct, and then treated with high glucose (24 mM) for 6 h.  The

changes in each promoter activity were determined by luciferase assay.  *P<.05 vs. value at 3

mM.

Fig. 8.  The effect of antioxidant PDTC on the high glucose/TNF- -stimulated NF- B-

dependent transcription in HuH7NF cells.  Cells were cultured with high glucose (G; 24 mM)

for 6 h and/or human TNF-  (T; 100 pM) for 12h under the treatment with PDTC (100 M,

left) or vehicle (right).   The changes in the promoter activity were determined by luciferase

assay.  *P<.05 vs. control.

Fig. 9.  Schematic representation of the hypothesis based on the present data showing the

molecular background of the metabolic syndrome (multiple risk factor syndrome).

Hyperglycemia alone, or in combination with hyperinsulinemia and/or high proinflammatory

cytokines enhances NF- B-dependent transcription in the liver (and possibly in the arterial

wall), with the subsequent increase in the production of pro-coagulant/anti-fibrinolytic proteins

such as fibrinogen or PAI-1, both of which promote thrombosis and/or atherosclerosis.
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Fig. 1.  Expression of PAI-1, fibrinogen (Fib), NF- B p50, p65, and insulin receptor (IR) 

mRNAs analyzed by RT-PCR in HuH7NF cells.  The figure shows photographs of the 

ethidium bromide-stained products using agarose gel electrophoresis.  cDNA produced from an 

RT reaction using total RNA from HuH7NF cells was amplified by PCR with pairs of 

oligonucleotide primers specific for each mRNA.  No band was amplified in the same reaction 

without reverse transcriptase (not shown).  MW, molecular weight marker. 



Fig. 2.  Effects of extracellular glucose concentration on the NF- B-dependent transcription in 

HuH7NF cells.  A. Cells were treated with medium containing the indicated concentration of 

glucose with or without insulin (1 nM) for 6 h, and the changes in the promoter activity were 

determined by luciferase assay.  *P<.05 vs. value at 3 mM.  B. Cell were treated with medium 

containing 3 or 24 mM glucose with vehicle, insulin (1 nM), or IGF-I (100 nM, PeproTech) 

for 6 h, and the changes in the cellular protein content per well were determined by a protein 

assay.    

*

*

*



Fig. 3.  Time-course effect of high extracellular glucose concentration on the NF- B-

dependent transcription in HuH7NF cells.  Cells were treated with medium containing 24 mM 

of glucose with insulin for 3 to 24 h, and the changes in the promoter activity were determined 

by luciferase assay.  *P<.05 vs. value at time zero. 

*

***



*

Fig. 4.  The specificity of the effect of high glucose in HuH7 cells.  HuH7NF cells were 

cultured with two different concentrations of D- or L-glucose (3 or 24 mM) for 6 h (left, and 

middle).  Alternatively, HuH7 cells transfected transiently with RSV-luciferase reporter 

plasmid were cultured with D-glucose (3 or 24 mM) for 6 h (right).  The changes in the 

promoter activity were determined by luciferase assay.  *P<.05 vs. value at 3 mM.  N.S., not 

significant. 



Fig. 5.  Effect of high glucose on the DNA binding of NF- B.  HuH7NF cells were treated 

for 22 h with DMEM containing 3 mM glucose, and then incubated with DMEM containing 

either 3 or 24 mM glucose for 2 h.  The cells were harvested and the extracted nuclear 

protein was used for EMSA analysis.  LG, low glucose; HG, high glucose. 



Fig. 6.  The combined effects of high extracellular glucose and proinflammatory cytokines on 

the NF- B-dependent transcription in HuH7NF cells.  HuH7NF cells were treated with high 

glucose (24 mM) for 6 h and/or with human IL-1  (100 pM; left) or human TNF-  (100 pM; 

right) for 12 h, and the changes in the promoter activity were determined by luciferase assay.  

*P<.05 vs. control; #P<.05 vs. cytokine alone. 

*

*
*

**

*



Fig. 7.  The effect of high extracellular glucose concentration on the promoter activities of 

the coagulation/fibrinolysis-related proteins.  HuH7 cells were transiently transfected with 

each promoter-luciferase construct, and then treated with high glucose (24 mM) for 6 h.  

The changes in each promoter activity were determined by luciferase assay.  *P<.05 vs. 

value at 3 mM. 

*

*



Fig. 8.  The effect of antioxidant PDTC on the high glucose/TNF- -stimulated NF- B-

dependent transcription in HuH7NF cells.  Cells were cultured with high glucose (G; 24 mM) 

for 6 h and/or human TNF-  (T; 100 pM) for 12h under the treatment with PDTC (100 M, 

left) or vehicle (right).   The changes in the promoter activity were determined by luciferase 

assay.  *P<.05 vs. control. 

*

**

*

**

*



Fig. 9.  Schematic representation of the hypothesis based on the present data showing the 

molecular background of the metabolic syndrome (multiple risk factor syndrome).  

Hyperglycemia alone, or in combination with hyperinsulinemia and/or high proinflammatory 

cytokines enhances NF- B-dependent transcription in the liver (and possibly in the arterial 

wall), with the subsequent increase in the production of pro-coagulant/anti-fibrinolytic proteins 

such as fibrinogen or PAI-1, both of which promote thrombosis and/or atherosclerosis. 


