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Abstract 

Objective: We have demonstrated that pitavastatin, 3-hydroxy-3-methylglutaryl 

coenzyme A reductase inhibitor, enhanced human serum paraoxonase (PON1) 

gene promoter activity and that protein kinase C (PKC) activated PON1 

expression through Sp1, in cultured HepG2 cells. We investigated whether PKC 

was involved in pitavastatin-induced PON1 expression. Methods: PON1 gene 

promoter activity was assessed by a reporter gene assay using cultured Huh7 

cells. PON1 protein expression and PKC activation were measured by Western 

blotting. The binding activity of Sp1 to the PON1 gene upstream was analyzed 

by electrophoretic mobility shift assay (EMSA). Results: Both PON1 gene 

promoter activity and PON1 protein expression were elevated by pitavastatin 

stimulation. The effects of pitavastatin on PON1 promoter activity and PON1 

protein expression were attenuated by both bisindolylmaleimide IX 

(Ro-31-8220) and bisindolylmaleimide I. EMSA showed that pitavastatin 

increased the Sp1-PON1 DNA binding and this effect was attenuated by 

Ro-31-8220. Pitavastatin activated atypical PKC, but never conventional or 



  

novel PKC. Myristoylated pseudosubstrate peptide inhibitor of PKCζ abolished 

the pitavastatin-increased PON1 promoter activity, however calphostin C and 

Gö6976 (PKC inhibitors except for PKCζ) did not influence on the promoter 

activity. Additionally an overexpression of dominant negative form of PKCζ 

expression vector obviously decreased pitavastatin-induced PON1 promoter 

activation. Conclusions: These observations suggest that pitavastatin activates 

PKC, especially PKCζ isoform, which increases the binding intensity of Sp1 to 

PON1 DNA promoter responsible for enhanced the transcription of PON1 gene 

and increased PON1 protein expression in Huh7 cells.  



  

Introduction 

 Human serum paraoxonase (PON1) is an esterase, and associated with 

apolipoprotein A-I and J in high-density lipoprotein (HDL) [1, 2]. Previous data 

suggest that PON1 is a primary determinant of the antioxidant of HDL [3-5]. In 

PON1 knockout mice [6], atherosclerotic lesion formation was increased by 

feeding on a high fat and high cholesterol diet, meanwhile in PON1 transgenic 

mice [7], it was decreased. Mackness B et al reported that low paraoxonase 

activity is an independent risk factor for coronary events in male population [8]. 

In addition, we recent reported that PON1 concentration was related to 

cardiovascular mortality in patients on chronic hemodialysis [9]. These 

accumulating reports demonstrate that PON1 has effects against oxidative 

disorders and it plays an important role in the suppression of the development 

and progression of atherosclerosis.   

 The 3-hydroxyl-3-methylglutaryl co-enzyme A (HMG-CoA) reductase 

inhibitors (statins) are widely prescribed to lower cholesterol levels in patients at 

risk of cardiovascular diseases. Recent studies show that statins have many 



  

additional cardiovascular protective effects beyond the ability to lower serum 

cholesterol levels [10]. Anti-oxidant action is one of the pleiotropic effects of 

statins [11, 12]. We and other previously reported that statins enhanced the 

PON1 gene promoter activity in a human hepatocellular carcinoma cell line, 

HepG2 cells [13], or increased the serum PON1 concentrations and activities in 

patients with hypercholesterolemia [14].  

 We showed previously that PON1 gene promoter activity in HepG2 cells 

was modulated by an interaction between Sp1 and PKC [15]. Sp1 is an 

ubiquitous transcription factor and is well known to bind to GC-rich nucleotide 

sequences (GC boxes). Sp1 reportedly activates PON1 gene transcriptions [13, 

16]. PKC family is a serine/threonine kinase, and divides into three classes 

(which consist of at least 12 isoforms); conventional PKC (PKCα, βI, βII and γ), 

novel PKC (PKCδ, ε, η, θ and μ) and atypical PKC (PKCζ, and τ/λ). PKC play 

important roles in intracellular signal transduction mechanisms for hormones 

and growth factors, and individual isoforms have their distinct functional roles in 

the cells [17, 18]. Also, several investigators have reported interactions between 



  

Sp1 and PKC, especially PKCζ isoform, in the regulation of several gene 

expressions such as vascular endothelial growth factor gene, platelet-derived 

growth factor B-chain gene or insulin-like growth factor-II gene [19-21]. 

 In the present study, we investigated whether the mechanism of PON1 

gene promoter activation by pitavastatin was associated with PKC in cultured 

human hepatoma Huh7 cells in vitro. Here we demonstrate that pitavastatin 

increases PON1 gene promoter activity and PON1 protein expression and that 

these effects are regulated by PKC activation.



  

Materials and Methods 

Cell culture 

 Huh7 cells were cultured and maintained in Dulbecco's modified Eagle's 

medium (DMEM) (Sigma, St. Louis, MO) supplemented with 10% 

heat-inactivated fetal calf serum  (Life Technologies, Rockville, MD), 100 U/ml 

penicillin (Life Technologies) and 20 μg/ml streptomycin (Life Technologies) in 

90-mm plastic plates (Nunc, Roskilde, Denmark), and incubated at 37°C in 5% 

CO2. The cells were seeded into 90-mm plastic plates and routinely passaged 

every 3-4 days. These cells were seeded into 24-well plastic plates (Corning, 

Corning, NY) for luciferase assays and 6-well plastic plates (Nunc) for Western 

blotting. 

 

Reagents and Treatment 

 Pitavastatin was gifted from Kowa Company, Ltd (Tokyo, Japan). 

bisindolylmaleimide IX (Ro-31-8220), bisindolylmaleimide I (BIM), 

calphostin C and Gö6976 were all purchased from Calbiochem (La Jolla, 



  

CA). Myristoylated pseudosubstrate peptide inhibitor of PKCζ (MyrPKCζ) 

was purchased from Biomol (Plymouth, PA). All of the above reagents were 

dissolved in dimethylsulfoxide (DMSO) (Nakarai Tesque, Kyoto, Japan) 

adjusted with DMEM to a final concentration of 0.1%. The medium of 

control wells was adjusted to 0.1% DMSO. Before treatment with each 

reagent, the wells were washed twice with phosphate buffer saline, pH7.4 

and then the medium was changed to fresh DMEM without fetal calf serum. 

Each reagent treatment was started at 120 min after transfection, and 

cultured cells were harvested at 24h for luciferase assay, Western blotting 

or electrophoretic mobility shift assay (EMSA). Pitavastatin was added at 

120 min after pretreatment with each inhibitor. 

 

Plasmid constructs and transfection 

 We used plasmid constructs with PON1 gene 5’-flanking regions for 

luciferase assay, as reported previously [22]. pGL3 luciferase reporter vectors 

(Promega, Madison, WI) introduced DNA fragments of PON1 genes (-1230/-6) 



  

[pGL3-PON1 (-1230/-6)] were used in the present study. The number of DNA 

fragments is shown from the ATG start codon because of multi-transcription 

sites of the PON1 genes. We constructed an expression vector of PKCζ and 

mutated PKCζ (PKCζDN), which had mutated form of ATP binding site in kinase 

domain for mammalian cells, as reported previously [15].  

 Transient transfection into Huh7 cells was performed using a cationic lipid 

method employing Tfx-20 (Promega), as reported previously [13, 15]. PON1 

plasmid DNA was cotransfected with the pRL-TK vector (Promega), which 

expressed Renilla luciferase for an internal control. Cell extracts were prepared 

at 24h for the luciferase activity assay. Both firefly and Renilla luciferase 

activities in the cell lysates were measured using the Dual-Luciferase® Reporter 

Assay System (Promega). Promoter activities were expressed as firefly 

luciferase activity divided by Renilla luciferase activity. Six wells were used for 

each transfection condition. Each examination was repeated at least three times, 

and representative results are shown. 

 



  

Cell lysis and Western blotting 

 Huh7 cells were grown to confluence, and subsequently harvested and 

lysed as described previously [15]. The protein concentration was adjusted 

(Bio-Rad Protein Assay, Bio-Rad, Hercules, CA). Western blotting was 

performed as described previously [15]. First-antibodies for PON1 [23], 

α-tubulin (Sigma), PKCζ (Santa Cruz Biotechnology, Santa Cruz, CA), 

phospho-PKCα/βI/βII/δ/ε/η/θ (Cell Signaling, Beverly, MA) and phospho-PKCζ/λ 

(Cell Signaling) were used for blotting. Immunoreactive proteins were made 

visible using horseradish-peroxidase coupled secondary antibodies and ECL 

Plus Western Blotting Detection System (Amersham Pharmacia Biotech, 

Arlington Heights, IL). Each experiment was repeated at least three times, and 

representative results are shown. 

 

Preparation of nuclear extracts and EMSA 

 Huh7 cells were grown to confluence and harvested, and the nuclear 

fraction was isolated and extracted as described previously [13, 15]. EMSA was 



  

performed as described previously [13, 15]. The synthetic sense and antisense 

strands of oligonucleotides (-187/-159) were 

5’-GGTGGGGGCTGACCGCAAGCCGCGC-3’ and 

5’-GGCGCGGCTTGCGGTCAGCCCCCAC-3’, respectively. For a supershift 

study, Sp1-specific polyclonal antibody (PEP2) (Santa Cruz Biotechnology, 

Santa Cruz, CA) was used. The dried gel was analyzed by a computerized 

system for radioluminography (BAS2500, Fuji Photo Film, Kanagawa, Japan) 

and for analyzing software (MacBAS version 2.3, Fuji Photo Film). The 

intensities of bands were compared by using the software. Each experiment 

was repeated at least three times, and representative results are shown. 

 

Statistical analysis 

 Statistical differences among three groups or more were determined by 

analysis of variance (ANOVA).  Comparisons for two groups were performed 

using the Fisher’s test.  P values less than 0.05 were considered statistically 

significant. 



  

Results 

Effects of PKC inhibitors on pitavastatin-enhanced PON1 promoter 

activity and PON1 protein expression 

 Pitavastatin 50µM significantly enhanced the promoter activity of PON1 

gene in Huh7 cells (Fig 1). This result was consistent with our previous report in 

HepG2 cells [13]. Then we examined whether PKC pathway was involved in 

pitavastatin-induced PON1 promoter activation. Both 1µM Ro-31-8220 (a 

pan-PKC inhibitor) and 1µM BIM (a pan-PKC inhibitor) abolished 

pitavastatin-induced promoter activation (Fig 1A).  

 Next, we studied the effects of these PKC inhibitors on the PON1 protein 

expression in Huh7 cells. The PON1 protein expression in Huh7 cells was 

significantly increased by 10μM pitavastatin (p<0.01), and both 1µM 

Ro-31-8220 and 1µM BIM attenuated this effect after 24h (Fig 1B).  

 

Effect of PKC inhibitor on Sp1 binding to PON1 DNA 

 Since pitavastatin enhanced PON1 promoter activity through transcription 



  

factor Sp1 [13, 15, 16], and PKC inhibitors declined pitavastatin-enhanced 

PON1 promoter activity and protein expression, we investigated the effect of 

PKC inhibitor on the binding of Sp1 to DNA fragments of the PON1 gene 

promoter (-187/-159). Treatment with 50µM pitavastatin increased the band 

intensity of Sp1-DNA complex (p <0.05), however, pretreatment with 1µM 

Ro-31-8220 abolished the pitavastatin-increased band intensity (Fig. 2A, B). 

Sp1-DNA complex bands (indicated by an asterisk) were also attenuated by 

competitor (unlabeled DNA fragments) and supershifted by the anti-Sp1 

antibodies (double asterisks) (Fig 2A). 

 

Effect of pitavastatin on the activation of PKC isoforms 

 We carried out immunoblotting in order to identify which PKC isoforms 

were possibly participated in the regulation of PON1 gene transcription and 

PON1 protein expression in Huh7 cells. Pitavastatin 50µM phosphorylated 

PKCζ/λ, meanwhile PKCα, βI, βII, δ, ε, η and θ were not phosphorylated by 

pitavastatin stimulation (Fig 3A and 3B). We calculated relative 



  

phospho-PKCζ/λ band intensities and demonstrated that pitavastatin 10μM 

significantly increased the band intensity after 60 min incubation (p<0.05) 

(Figure 3C). 

 MyrPKCζ, a specific inhibitor for PKCζ but not PKCλ, 30µM abolished the 

pitavastatin-induced promoter activation (Fig 4A). However 200nM calphostin C 

and 1µM Gö6976 that were inhibitors of PKC except for atypical PKCζ, did not 

influence on pitavastatin-induced PON1 promoter activation (Fig 4B and 4C).  

 

Effect of dominant negative form of PKCζ expression vector on 

pitavastatin-induced PON1 promoter activation 

 Finally, we studied the effect of co-transfection with dominant negative 

form of PKCζ expression vector (PKCζDN) on pitavastatin-induced PON1 

promoter activation. An overexpression of wild type PKCζ did not influenced on 

pitavastatin-induced PON1 promoter activation in Huh7 cells (Fig 5A). However 

an overexpression of PKCζDN obviously decreased pitavastatin-induced PON1 

promoter activation (Fig 5B).  



  

Discussion 

 In the present study, pitavastatin enhanced PON1 gene promoter activity 

and PON1 protein expression through the activation of PKC in Huh7 cells. To 

the best of our knowledge, our result of PKC activation by pitavastatin is the first 

report. We also revealed that pitavastatin increased PON1 promoter activity 

through the activation of PKCζ isoform but not other PKC isoforms.  

 Protein kinase is an enzyme family that phosphorylates various protein 

molecules and as intracellular signal transduction and metabolic modulating 

factor. Recently, statins were reported to have various effects through PKA, 

PKB, PKC or PKG [24-27]. We previously reported that PON1 gene promoter 

activity in HepG2 cells was regulated by PKC activation [15], and was enhanced 

by pitavastatin stimulation [13]. However it remained unclear whether 

pitavastatin-induced PON1 promoter activation was associated with PKC. To 

investigate the signal transduction pathway(s) involved in regulating PON1 gene 

transactivation in response to pitavastatin stimulation, we firstly examined the 

effects of chemical inhibitors of signaling intermediates on PON1 gene promoter 



  

activity. We defined in this study that pitavastatin increased-PON1 gene 

promoter activity was associated with PKC activation (Fig 1). Moreover we 

demonstrated that PON1 protein expression in Huh7 cells was also increased 

by pitavastatin through PKC activation (Fig 1B).  

 Protein phosphorylation of transcription factor is one of the major 

mechanisms to regulate the binding activity of the factor to DNA either positively 

or negatively. It has been reported that Sp1 phosphorylation increases the 

capacity of Sp1 to bind DNA, and PKC, especially atypical PKCζ isoform, plays 

a crucial role in Sp1 phosphorylation [19-21]. Sp1 was previous reported to 

activate PON1 gene transcriptions [13, 15, 16]. In the result, our EMSA showed 

that the binding intensity of Sp1 to DNA fragments of PON1 promoter was 

increased by treatment with pitavastatin and that Ro-31-8220 attenuated 

pitavastatin-increased band intensity of the Sp1-DNA complex (Fig 2). These 

results suggest that pitavastatin increases Sp1-DNA binding through activation 

of PKC. 

 



  

 We demonstrated that pitavastatin activated PKCζ/λ isoforms, but not 

PKCα, βI, βII, δ, ε, η and θ isoforms. We previously reported that PON1 gene 

promoter activity in HepG2 cells was regulated by atypical PKCζ as well as 

conventional PKCα [15], however we can hardly say with any finality that 

pitavastatin increased PON1 promoter activity through atypical PKCζ. 

Consequentially, we next set out to dissect the role of PKCζ in 

pitavastatin-induced PON1 promoter activation. MyrPKCζ, a specific PKCζ 

inhibitor abolished the pitavastatin-induced PON1 promoter activation, but 

calphostin C and Gö6976, inhibitors of PKCs except for PKCζ inhibition did not 

influence on the promoter activation (Fig 4). Additionally, PKCζDN abolished the 

pitavastatin-enhanced promoter activity (Fig 5). These observations suggest 

that pitavastatin-induced transcription is regulated not by classical or novel PKC 

but by atypical PKCζ. 

 Some previous reports showed that statins influenced on the activity of 

various PKC isoforms. Atorvastatin inhibited PKC inhibitors-induced apoptosis 

of adult rat cardiac myocytes through PKCδ pathway [26]. On the other hand, 



  

some studies in different cell systems showed that stains inhibited the activation 

of PKC. Ceolotto C et al. reported that pravastatin inhibited radical oxygen 

species production by inhibiting PKCδ in human fibroblast [28]. Maeda K et al. 

reported that pitavastatin suppressed the expression of PKCα, βI in 

polymorphonuclear leukocytes from hyperlipidemic guinea pig [29]. Yasunari K 

et al. also reported that statins have direct antimigratory effects via suppression 

of PKCα in human vascular smooth muscle cell [30]. The differences of those 

cell types and stimulation conditions may determine the outcome of PKC 

activation and may be responsible for incompatible function on the stimulating 

cells. Zhang Y et al. reported that PKCζ was responsible for the marked Sp1 

phosphorylation induced by trichostatin A in JAR cells [31]. Pal S et al. revealed 

that PKCζ promoted the Sp1-mediated transcription of vascular permeability 

factor/vascular endothelial growth factor in human HT1080 and 786-0 cells [32]. 

Our observations were not inconsistent with these previous reports, 

consequently, we suppose that pitavastatin-activated PKCζ may be increased 

Sp1-PON1 DNA binding. 



  

 Many pleiotropic effects of statins have been reported to depend on 

stains-induced depletion of isoprenoids in the mevalonic acid cascade. We 

reported that depletion of farnesyl pyrophosphate by pitavastatin was 

associated with pitavastatin-increased PON1 promoter activity in HepG2 cell 

[13]; moreover, it was recently reported that pitavastatin also induced PON1 

expression through activation of the p44/42 mitogen-activated protein kinase 

signaling cascade in Huh7 cells [33]. To our best knowledge, it was only one 

report to refer the association with statins-influenced PKC activity and 

isoprenoids, which fluvastatin-decreased PKC activity was reversed by 

isoprenoids [30]. However, we determined that pitavastatin-activated PKCζ was 

not reversed by supplement of isoprenoids, such mevalonic acid, farnesyl 

pyrophosphate and geranylgeranyl pyrophosphate in this study (data not 

shown). Furthermore, we could also not clarify the relationship between the 

p44/42 MAP kinase signaling cascade and PKCζ in this study. That is to say, it 

may yet not be reasonable to presume that pitavastatin-activated PKCζ is 

associated with depletion of isoprenoids in the mevalonic acid cascade and 



  

more detailed studies are required to establish the relationship between 

pitavastatin-activated PKCζ and the p44/42 MAP kinase signaling cascade. On 

the other hand, in contrast to our results, some statins, such as pravastatin, 

simvastatin and fluvastatin, have been reported previously, to decrease PON-1 

expression [34]. We speculate that the differences in the type of statins and 

stimulation conditions may determine the outcome of the effect of statins on 

PON1 expression, and may explain their inconsistent actions on the Huh7 cells. 

 In conclusion, pitavastatin may activate atypical PKCζ followed by increase 

in the binding of Sp1 to the PON1 gene promoter region, and pitavastatin 

enhances PON1 gene transactivation and PON1 protein expression.  
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Figure Legends 

Figure 1. Role of PKC in pitavastatin-enhanced PON1 promoter activity and 

PON1 protein expression in Huh7 cells. 

(A) pGL3-PON1 (-1230/-6) plasmid was transfected into Huh7 cells and treated 

with PKC inhibitors; 1µM Ro-31-8220 or 1µM BIM, and with 50µM pitavastatin. 

Each column represents mean ± S.E.M. of data from 6 wells. (B) Cultured cells 

treated with 1µM Ro-31-8220 or 1µM BIM were stimulated with 10µM 

pitavastatin. Aliquots of whole-cell lysate were obtained, and immunoblotting 

was performed with antibody to PON1 or α-tubulin. Internal control was 

evaluated by α-tubulin. Relative PON1 protein expressions (PON1/α-tubulin) 

were calculated. Each column represents mean ± S.E.M. of data from 3 wells. 

 

Figure 2. Role of PKC in the binding of Sp1 to the PON1 gene DNA fragment 

(-187/-159) in Huh7 cells.  

(A) Lane 1, no nuclear extracts; lane 2, DNA fragments and nuclear extracts 

from Huh7 cells; lane 3, DNA fragments and nuclear extracts treated with 50µM 



  

pitavastatin; lane 4, DNA fragments and nuclear extracts treated with 1µM 

Ro-31-8220; lane 5, DNA fragments and nuclear extracts treated with both 

pitavastatin and Ro-31-8220; lane 6, DNA fragments, nuclear extracts, and 

anti-Sp1 antibody; lane 7, DNA fragments, nuclear extracts, and competitor 

(unlabeled-DNA fragments). ∗, Sp1-DNA complex band; ∗∗, Sp1-DNA- Sp1 

antibody complex band. (B) Calculated relative intensities of the Sp1-DNA 

complex band. Each column represents mean ± S.E.M. of data from 3 wells. 

 

Figure 3. Effect of pitavastatin on the activation of PKC isoforms in Huh7 cells.  

Cultured cells were stimulated with 50µM pitavastatin. Aliquots of whole-cell 

lysate were obtained, and immunoblotting was performed with specific antibody 

for phospho-PKCζ/λ (A) or phospho-PKCα/βI/βII/δ/ε/η/θ (B). Antibodies for both 

α-tubulin and PKCζ were used for internal control. Calculated relative intensities 

of the phospho-PKCζ/λ band (phospho-PKCζ/λ / α-Tubulin) after 1h incubation. 

Each column represents mean ± S.E.M. of data from 3 wells (C). 

 



  

Figure 4. Role of PKCζ in pitavastatin-enhanced PON1 promoter activity in 

Huh7 cells. 

pGL3-PON1 (-1230/-6) plasmid was transfected into Huh7 cells and treated with 

30µM MyrPKCζ (A), 200nM calphostin C (B), 1µM Gö6976 (C), and with 50µM 

pitavastatin. Each column represents mean ± S.E.M. of data from 6 wells. 

 

Figure 5. Effect of dominant negative form of PKCζ on pitavastatin-induced 

PON1 promoter activation in Huh7 cells.   

pGL3-PON1 (-1230/-6) plasmid was transfected into Huh7 cells and the wild 

type PKCζ expression plasmid (PKCζ), dominant negative type PKCζ 

expression plasmid (PKCζDN) or an empty vector (PCLneo) was 

simultaneously cotransfected. The luciferase activity was measured 24hr after 

50µM pitavastatin stimulation. Each column represents mean ± S.E.M. of data 

from 6 wells. 
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