トピックス

IV．非アルコール性脂肪肝炎（NASH） 2．インスリン抵抗性とNASH
 西原 利治 小野 正文 大西 三朗

要 旨
NASHはしばしばメタボリックシンドロームの肝臓における表現型といわれる。これは本症の 96% が内臓脂肪型肥満を有し， 48% がHOMA－IR 2.5 以上のインスリン抵抗性， 66% が耐糖能異常を示し， 73% が収縮期血圧 130 mmHg 以上あるいは拡張期血圧 85 mmHg 以上， 40% が中性脂肪 150 mg 以上， 28% が HDL－コレステロール $40 \mathrm{mg} / \mathrm{dl}$ 未満， 27% が空腹時高血糖を示すことによる。

〔日内会誌 95：46～50，2006〕
Key words ：メタボリックシンドローム，内臓脂肪型肥満，脂肪肝，HOMA－IR， 75 g o－GTT

はじめに

NASH（nonalcoholic steatohepatitis）は’80年にLudwigらにより提唱され，ようやく＇98年に新しい疾患概念として認証された，原因不明の慢性肝障害である ${ }^{11}$ 。診断にはウイルス性肝疾患，自己免疫性肝疾患，既知の先天性代謝性肝疾患の除外が重要であり，飲酒歴に乏しいに もかかわらずその肝組織像では肝細胞の風船様腫大やMallory小体などのアルコール性肝炎に特徴的とされてきた所見を有する。本症の 96% が内臓脂肪型肥満を有し， 48% でhomeostasis model of insulin resistance（HOMA－IR） 2.5 以上 のインスリン抵抗性を示すことから，本症はし ばしばメタボリックシンドロームの肝臓におけ る表現型とみなされ，第五の生活習慣病とも呼 ばれる ${ }^{2,3)}$ 。

[^0]
1．かつて，人類の悲願は肥満であった

脳はブドウ糖を主なエネルギー源とするため，常に血糖値を監視し，低血糖に陥らないように する装置が生体の恒常性維持には必要である。生体で唯一そのような要請に応えることができ るのは，グリコーゲンやアミノ酸から糖を新生 して放出できる臓器，肝臓である。肝臓は1，300～ $1,500 \mathrm{~g}$ という大きい臓器であるが，蛋白合成や解毒など多用な機能を持つことから，血糖の調節 に割ける容量は必ずしも充分でない。実際，肝臓に貯蔵されたグリコーゲンは夜間には容易に枯渴するため，深夜から早朝にかけての糖の需要を満たすためには，血糖値を抑制する作用を有するインスリンの分泌を抑制すると同時にグ ルカゴンなどの刺激を得てアミノ酸から糖を新生して，血液に放出する必要が生じる。

人類の歴史は飢餓との戦いであり，毎夜，蛋白質の原料となるべきアミノ酸を大量に消費す ることは生存競争には不利な状況である。もし，余剰に摂取したエネルギーを脂肪として蓄積す

図 1．腹部CTによる内臓脂肪型肥満の検出䀮部のCT 検査における内臓脂肪面積が $100 \mathrm{~cm}{ }^{2}$以上の場合，内臓脂肪型盵満と診断される．男性腹囲 85 cm 以上，女性腹囲 90 cm 以上に相当する。本症例では内臓脂肪面積 $192 \mathrm{~cm}^{2}$ ，皮下脂肪面積 $83 \mathrm{~cm}{ }^{2}$ である。

る機構を身につけ，毎夜，大量に消費されるア ミノ酸の代替エネルギー源として脂肪酸を利用 する技術を身につければ，生存競争には有利と なることは間違いない。夜間における末梢組織 からの脂肪酸分泌を可能にするインスリン抵抗性の獲得と肥満とはアミノ酸節約を実現するた めに長い年月をかけて人類が達成した絶妙の調節機構である。

2．代替エネルギー源としての脂肪

エストロゲンはエストロゲン受容体と結合し て核内の転写を調節するのみではなく，細胞質 では第三の受容体と結合して脂肪酸代謝を多様 な機序により調節し，皮下脂肪型肥満の達成に貢献する。 しかし，男性にはそのような便利な機能がなく，脂肪の貯蔵では内臓脂肪蓄積をめ ざすことになった（図1）。

深夜から早朝にかけて肝臓からの糖の放出が減少するため，インスリンの分泌も減少する。 インスリンは全身の脂肪組織からの遊離脂肪酸 の放出を抑制する作用も有するため，インスリ ンの分泌が減少して遊離脂肪酸の放出を充分に抑制することができなくなると，末梢の脂肪組

織から遊離脂肪酸の遊離が始まる。脂肪組織か ら放出された遊離脂肪酸は肝細胞のエネルギー源となるのみならず，心筋の重要なエネルギー源となるケトン体産生のための基質となり，心筋における糖の消費ひいては肝臓におけるアミ ノ酸消費を倹約する。成人に比べてグリコーゲ ンの貯蔵量が少ない小児で，しばしば起床時に尿中ケトン体が検出されるのは，上記の調節機構を反映したものである。このような精妙なエ ネルギー源の切り替え装置が，飢餓との戦いに明け暮れた人類の生存に長く貢献してきたこと は想像に難くない。

3．貯蔵脂肪の維持を目的とした高インス リン血症

テレビでは毎日のようにグルメ番組が放映さ れ，「飽食の時代」という言葉が現実のものとなっ たことが実感される。経済成長による食生活の変化により，わが国では 20 年ごとに肥満人口が倍増し，今日では350 万人の成人がbody mass index（BMI）$\geqq 30 \mathrm{~kg} / \mathrm{m}^{2}$ を呈する高度肥満者と なるに至った。本来，肥満は飢餓に明け暮れた人類が目指した理想の体型であるが，一旦，肥満を達成しても，生理的条件下で大量の内臓脂肪を維持し続けることは容易でない。脂肪細胞内におけるリパーゼの活性を抑制し，不必要な遊離脂肪酸の放出を抑える必要がある。そのよ うな作用を有する因子の代表がインスリンであ り，肥満を維持するためには少なくとも昼間，可能であれば夜間も，高インスリン血症を維持 することが大切である。実際，NASH症例の 47% は早朝空腹時でも $10 \mu \mathrm{IU} / \mathrm{ml}$ 以上のインスリン濃度を保っている（図2）。

4．高インスリン血症に伴う弊害

では，高濃度のインスリンの存在下で，どの ようにして血糖を維持しているのであろうか。

図 2．NASH における空腹時血糖と空腹時インス リン値
NASH では空腹時高インスリン血症が特徴であり，空腹時血糖が $126 \mathrm{mg} / \mathrm{dl}$ を超える頻度は高くない。

血糖を維持するためには，まず十二分に食事を摂取することが大切である。さらにレジスチン を始めとした高インスリン血症にもかかわらず低血糖を生じないように血糖を維持する装置を有効に作動させてインスリンによって惹起され る一連の糖処理機構が充分に働かない状態を維持しなければならない。

充分な食事を摂取することにより日本人の栄養状態は大きく改善し，初期効果として体格の改善に寄与した．とくに，学童の栄養状態や体格は大きく向上した。しかし，生活環境の変化 に伴い運動量が減少した結果，過食によりエネ ルギー摂取量が体格や筋力の向上に必要なレベ ルをしばしば大きく越えるようになり肥満をき たした結果，今度は運動能力低下が観察される ようになってきた。インスリン抵抗性を伴った肥満といえば，メタボリックシンドロームが当然のように想起される ${ }^{4)}$ 。学童における肥満の蔓延は糖尿病•高脂血症•高血圧などの生活習慣病・メタボリックシンドロームの裾野を広げる ことになるので，今日では一転して，肥満の抑制が社会的要請となっている。

表．本邦におけるメタボリックシンドロームの定義

図 3．NASHにおけるメタボリックシンドローム の合併率
メタボリックシンドロームは内臓脂肪型肥満に加え て，表に示す高血圧，高脂血症，空腹時高血糖の3項目のうち，2項目を満たすことが求められる。 NASH 症例が表に示す高血圧，高脂血症，空腹時高血糖の3項目のうち，項目を満たした数を表示した。

5．NASHとメタボリックシンドローム

本邦ではメタボリックシンドロームについて，内臓脂肪型肥満を有することを必須事項とし，

図 4．減量がもたらすNASHにおける耐糖能の改善
5\％程度の減量によりNASHにおけるインスリン抵抗性は改善を始め，糖負荷後の高血糖は改善 し，遷延していた高インスリン血症も短時問で終息する。

高血圧（収縮期血圧 130 mmHg 以上または拡張期血圧 85 mmHg 以上），高中性脂肪血症（ 150 mg ／ dI以上）あるいは低HDLコレステロール血症（40 $\mathrm{mg} / \mathrm{dl}$ 未満），空腹時高血糖（ $110 \mathrm{mg} / \mathrm{dl以上)} \mathrm{の}$ 3 項目の内， 2 項目以上を満たす病態であると定義されている（表）${ }^{41}$ 。

実際，NASHの 96% は内臓脂肪型肥満を有し， 73% が高血圧， 40% が高中性脂肪血症， 28% が低HDL－コレステロール血症， 27% が空腹時高血糖を示すので，結果としてNASHの $2 / 3$ はメタボ リックシンドロームの診断基準を満たすことに なる（図3）。ことに中心静脈と門脈域を繋ぐよ うなbridging fibrosisか観察されるような病期の進行した症例では， 87% がメタボリックシンド ロームの診断基準を満たすことは留意しなけれ ばならない。

ここでは特に，高血圧の合併が 73% と群を抜 いて高率であること（表）を強調し，高血圧で

年余にわたって通院中の肥満症例中にNASH症例 が潜んでいる可能性につき指摘し，原因不明の慢性肝障害を伴う場合にはNASHの除外が不可欠 であることに言及しておきたい。

おわりに

NASHは肥満に伴う脂肪肝を背景として発症す る慢性肝疾患であり，肝硬変や肝細胞癌の発生母地となる病態である。このため，早期発見が望まれるが，日本人の $1 / 3$ は肥満であり，脂肪肝症例が成人の $1 / 3$ を占め，単純性脂肪肝でも しばしば肝機能異常が観察される状態では，確定診断に肝生検を必須とするNASHのスクリーニ ングは容易ではない ${ }^{5}$ 。

日本人は遺伝的にNASHに高感受性の人種であ ることが知られており，肥満に伴うこのような高度のインスリン抵抗性の獲得は本症発症にお

ける最大の危険因子と考えられる。実際，本症 では空腹時高インスリン血症が特徴であり，空腹時血糖はしばしば正常値を示すにもかかわら ず， 48% がHOMA－IR2．5 以上の高度のインスリ ン抵抗性を示し， 75 g 経口糖負荷試験を行うとそ の 66% で耐糖能異常が観察される。そこで，非飲酒者における原因不明の肝障害を認めたら，空腹時インスリン値の測定を行い，NASHのスク リーニングとすることを推奨してきた3）

今回，本邦におけるメタボリックシンドロー ムの診断基準が明碓化され，NASHの 96% で内臓脂肪型肥満が存在し，病期の進行したNASH症例では 87% がメタボリックシンドロームの診断基準を満たすことが明らかになった。これを契機に，今後は糖尿病や高脂血症，高血圧など メタボリックシンドロームの背景を有する症例 に原因不明の慢性肝障害が観察される際には NASHの存在を考慮して頂くべく啓発を行うと共

に，インスリン抵抗性のNASHの治療に直結する と観点から，減量によるインスリン抵抗性の改善（図4）を軸として治療に努めたいと考えてい る。

文 献

1）Ludwig J，et al：Nonalcoholic steatohepatitis：Mayo Clinic experiences with a hitherto unnamed disease．Mayo Clin Proc 55：434－438， 1980.
2）Neuschwander－Tetri BA，Caldwell SH：Nonalcoholic stea－ tohepatitis：Summary of an AASLD Single Topic Confer－ ence．Hepatology 37 ：1202－1219， 2003.
3）西原利治，他：非アルコール性脂肪肝炎（NASH）の最近の話題．日内会誌 $92: 174-1109,2003$.
4）メタボリックシンドローム診断基準検討委員会：メタボ リックシンドロームの定義と診断基準．日内会誌 94： 794－809， 2005.
5）Kojima S ，et al：Increase in the prevalence of fatty liver in Japan over the past 12 years ：analysis of clinical back－ ground．J Gastroenterol 38 ：954－961， 2003.

[^0]: さいばら としじ，おの まさふみ，おおにし さぶろう：高知大学消化器病態学

