ABSTRACT
The complementarity and relationship of science and technology have deepened in recent years and science and technology has definitely formed our social infrastructure. Under these circumstances “science” and “technology” have been taught as independent subjects in Japanese school education. The implementation of education, which combine and integrate science and technology, might make it possible to develop the ability to apply the laws of nature to solve specific problems and to design and manufacture on the basis of scientific laws. In this study, we made an attempt to construct teacher training curriculum for students, which develop opportunities to integrate science and technology education, and to set up the curriculum to the teacher training curriculums. In the curriculum, the contents, which science and technology were combined and integrated, and the subjects, of which the contents and the teaching methods were integrally managed, were systematically configured. On the basis of the curriculum, we have developed teaching materials and considered the specific curriculums and some practical lessons, which were applied and continuously demonstrated. As a result, the applicability of the present curriculum and the usefulness for developing science and technology education in the future were suggested.

Key words: combining science and technology, literacy of science and technology, science and technology education, teacher training curriculum, development of teaching materials
I. はじめに

科学と技術の発展が著しい進歩で進行する今日、両者の関連性・相補的関係は深まる一方である。技術の進歩は、計測器、実験機器の開発・高性能化を促し、科学における新たな手段及び研究分野の開拓を可能にした。一方、科学の技術への導入により、技術の技術化や機械化が進展し、物質・エネルギーの高度な生産技術の確立及び高度情報通信技術の普及が実現している。

元来、哲学の一言であるが科学と職人の技芸とされた技術は、独自の発展を遂げてきた。しかしながら、産業革命を契機に両者の関係は相補的・一体的となり、相乗効果により著しい発展を遂げた。① 純学、大学の職人・職人の会社が、職人の技術的及技術に基づく技術イノベーションの発明は、熱及びエネルギーやに関する研究の進展を促し、熱力学という新たな科学の分野を確立をさった。② 温度計、空気ボンプ、蒸気機関等の実験機器の発明・改良は、化学の進展、生物学という新たな分野を確立をさった。また、20世紀初頭に生まれた量子力学・固体物理学者は、半導体工学・電子回路技術の基盤となり、コンピューターやそのネットワークに代表される電子情報通信技術の発展の進歩を実現している。現代社会を支えている諸技術の多くは、科学を基盤として成り立っている。

以上のように科学と技術が一体化し、科学技術として社会の基盤を形成している現代に対し、科学教育の場では、両者は理系、技術系（中学校技術・家庭技術分野を含む）以下、技術科と表現）をそれぞれ独立した教科、分野として存在している。科学と技術を融合・一体化した教育を実施することにより、自然の規則性を具体的な問題解決に応用する力、単なるものづくりではなく科学的な方法に基づいて設計・製作を行う力等の育成が可能になり、学習者の興味・関心、思考及び問題解決能力等の高揚が図られるものと考えられる。学校教育における科学と技術の融合した教育カリキュラムが、学習者の知的好奇心、高揚、学習を通して習得した知識・技術の有用性の実感を図り、理論離れ、科学技術離れの一因となっていると考えられる。

そこで我々は、教員養成教育における科学と技術の融合・一体化を通して、上記課題への対応を図るべきである。すなわち、両科の授業・一体化を目的とする科学技術教育科とし、科学技術教育コースとして、新たな大学教育における教員養成コースへの位置づけを実現した。本論文では、構築したカリキュラムについて詳細するとともに、カリキュラムに新設した科学と技術を融合・一体化的に扱う授業科目について、検討・改善を継続的に実施している授業内容、授業実施のための教材・教具、及び実践的活動とその結果を示すことを通じて、科学教育、技術教育が抱える今日の課題に対し、新たな視点からのアプローチを示唆することを目的とする。

本研究に関連した先行研究として、東京大学附属中高等学校における「科学・技術科の」の設置がある。ここで、科学と技術の枠組みを維持しながらも両者の連携を図る教育が展開されている。また大谷は、1989年代における技術教育からの系統的な科学技術教育課程編成の動きについて、考察をしている。さらに朝井は、技術教育と理科教育との間に密接な関連があることを指摘している。

一方近年アメリカ合衆国において、理数科学教育の重要性及びコーディネーションの創出を掲げ、科学技術を構成する教科の連携を通じて科学技術人材の育成を図るSTEM教育が注目される。欧米諸国における科学教育改革に影響を与えている。熊野らは、このSTEM教育が科学技術がパラメータ形成のための教育としてわが国の科学教育に導入し実践を試みている。しかしながら、上記の研究は、科学教育の視点から技術との連携を示すようなものとするとSTEM教育が対象となっている。大谷は技術に関する重点をおくSTEM教育の教材開発を行っているが、中学校・高等学校の科学教育を対象としている。さらに大谷らは、科学技術リテラシー育成のための課題について、科学と技術の指導内容の関連性を踏まえること、科学技術の側面からの課題を指摘している。

平成29年3月に告示された学習指導要領、資質・能力を育むために子供の学びの経験を、どのようにデザイニングし、実施して、評価・改善を行うかを示すカリキュラム・マネジメントが中心的課題に位置づけられており。そのなかで、教育の目的や目標の実現に必要な教育内容等を教科横断的な視点で組み立てていくことが指摘されている。

本研究は、これらの研究及び学習指導要領を踏まえ、科学技術という新たな枠組みのもとで、両者を一体化に捉えた教員養成教育を実施するものであり、科学と技術を融合・一体化した教育の、学校教育における普通教育段階への導入を視野に入れて展開するものである。

II. 科学と技術の関連性と両者を融合・一体化した教員養成の意義

1. 科学と技術の関連性

科学と技術の関連性・相補的関係を、中学校理科の単元及び技術科の内容に基づいて、その基礎となる学問領域と同様に整理したものを表に示す。

- 技術教育は、現代社会で活用されている多様な技術を「A材料と加工の技術」、「B 生物育成の技術」、「C エネルギー変換技術」、「D 情報の技術」に整理し、内容を構成されている。各内容の学習は、生活や社会を支える技術についての学習、技術による問題の解決（設計・制作・制作・育成）社会の発展と技術についての学習で構成される。
科学技術を融合・一体化した教員養成カリキュラムの構築

表1 科学と技術の関連性と相補的関係

<table>
<thead>
<tr>
<th>中学校理科</th>
<th>科学</th>
<th>技術</th>
<th>中学校技術科</th>
</tr>
</thead>
<tbody>
<tr>
<td>物の名の和名と科学</td>
<td>物の名の和名と科学</td>
<td>物の名の和名と科学</td>
<td>物の名の和名と科学</td>
</tr>
<tr>
<td>物の名の和名と科学</td>
<td>物の名の和名と科学</td>
<td>物の名の和名と科学</td>
<td>物の名の和名と科学</td>
</tr>
</tbody>
</table>

表2 科学と技術の関連性と相補的関係

<table>
<thead>
<tr>
<th>中学校理科</th>
<th>科学</th>
<th>技術</th>
<th>中学校技術科</th>
</tr>
</thead>
<tbody>
<tr>
<td>物の名の和名と科学</td>
<td>物の名の和名と科学</td>
<td>物の名の和名と科学</td>
<td>物の名の和名と科学</td>
</tr>
<tr>
<td>物の名の和名と科学</td>
<td>物の名の和名と科学</td>
<td>物の名の和名と科学</td>
<td>物の名の和名と科学</td>
</tr>
</tbody>
</table>

科学技術教育教員養成カリキュラム

前章での考察に基づき、科学と技術の関連性と相補的関係を整理し統合化し、科学と技術の関連性の教育実践リーダーを養成するためのカリキュラム開発を行った。カリキュラムは、中学校理科と技術科の両教員共通カリキュラムの取得を義務付け（いずれかの免許状は1種であること）。表1に掲げるような構成になっている。

カリキュラムは、科学と技術の関連性と相補的関係の教科に関する科目、教科に関する教科、教育実践リーダー等教員共通カリキュラムの取得が必要である。科学と技術の関連性の教育実践リーダーを養成するためのカリキュラム開発を行った。カリキュラムは、中学校理科と技術科の両教員共通カリキュラムの取得を義務付け（いずれかの免許状は1種であること）。表1に掲げるような構成になっている。

カリキュラムは、科学と技術の関連性と相補的関係の教科に関する科目、教科に関する教科、教育実践リーダー等教員共通カリキュラムの取得が必要である。科学と技術の関連性の教育実践リーダーを養成するためのカリキュラム開発を行った。カリキュラムは、中学校理科と技術科の両教員共通カリキュラムの取得を義務付け（いずれかの免許状は1種であること）。表1に掲げるような構成になっている。

科学技術教育教員養成カリキュラム

前章での考察に基づき、科学と技術の関連性と相補的関係を整理し統合化し、科学と技術の関連性の教育実践リーダーを養成するためのカリキュラム開発を行った。カリキュラムは、中学校理科と技術科の両教員共通カリキュラムの取得を義務付け（いずれかの免許状は1種であること）。表1に掲げるような構成になっている。

カリキュラムは、科学と技術の関連性と相補的関係の教科に関する科目、教科に関する教科、教育実践リーダー等教員共通カリキュラムの取得が必要である。科学と技術の関連性の教育実践リーダーを養成するためのカリキュラム開発を行った。カリキュラムは、中学校理科と技術科の両教員共通カリキュラムの取得を義務付け（いずれかの免許状は1種であること）。表1に掲げるような構成になっている。

科学技術教育教員養成カリキュラム

前章での考察に基づき、科学と技術の関連性と相補的関係を整理し統合化し、科学と技術の関連性の教育実践リーダーを養成するためのカリキュラム開発を行った。カリキュラムは、中学校理科と技術科の両教員共通カリキュラムの取得を義務付け（いずれかの免許状は1種であること）。表1に掲げるような構成になっている。

科学技術教育教員養成カリキュラム

前章での考察に基づき、科学と技術の関連性と相補的関係を整理し統合化し、科学と技術の関連性の教育実践リーダーを養成するためのカリキュラム開発を行った。カリキュラムは、中学校理科と技術科の両教員共通カリキュラムの取得を義務付け（いずれかの免許状は1種であること）。表1に掲げるような構成になっている。

科学技術教育教員養成カリキュラム

前章での考察に基づき、科学と技術の関連性と相補的関係を整理し統合化し、科学と技術の関連性の教育実践リーダーを養成するためのカリキュラム開発を行った。カリキュラムは、中学校理科と技術科の両教員共通カリキュラムの取得を義務付け（いずれかの免許状は1種であること）。表1に掲げるような構成になっている。

科学技術教育教員養成カリキュラム

前章での考察に基づき、科学と技術の関連性と相補的関係を整理し統合化し、科学と技術の関連性の教育実践リーダーを養成するためのカリキュラム開発を行った。カリキュラムは、中学校理科と技術科の両教員共通カリキュラムの取得を義務付け（いずれかの免許状は1種であること）。表1に掲げるような構成になっている。

科学技術教育教員養成カリキュラム

前章での考察に基づき、科学と技術の関連性と相補的関係を整理し統合化し、科学と技術の関連性の教育実践リーダーを養成するためのカリキュラム開発を行った。カリキュラムは、中学校理科と技術科の両教員共通カリキュラムの取得を義務付け（いずれかの免許状は1種であること）。表1に掲げるような構成になっている。

科学技術教育教員養成カリキュラム

前章での考察に基づき、科学と技術の関連性と相補的関係を整理し統合化し、科学と技術の関連性の教育実践リーダーを養成するためのカリキュラム開発を行った。カリキュラムは、中学校理科と技術科の両教員共通カリキュラムの取得を義務付け（いずれかの免許状は1種であること）。表1に掲げるような構成になっている。

科学技術教育教員養成カリキュラム

前章での考察に基づき、科学と技術の関連性と相補的関係を整理し統合化し、科学と技術の関連性の教育実践リーダーを養成するためのカリキュラム開発を行った。カリキュラムは、中学校理科と技術科の両教員共通カリキュラムの取得を義務付け（いずれかの免許状は1種であること）。表1に掲げるような構成になっている。
表2 科学技術教育教員養成カリキュラム

<table>
<thead>
<tr>
<th>年</th>
<th>教科・教職科目</th>
<th>科学と技術を融合した授業科目</th>
<th>実践系科目</th>
</tr>
</thead>
<tbody>
<tr>
<td>1年</td>
<td>教科専門科目</td>
<td>身近な自然の観察Ⅰ・Ⅱ</td>
<td>観察実習</td>
</tr>
<tr>
<td>2年</td>
<td>教科専門科目</td>
<td>実験とものづくりI・Ⅱ</td>
<td>支援実習</td>
</tr>
<tr>
<td>3年</td>
<td>教科専門科目</td>
<td>科学技術教育総合演習Ⅰ～Ⅳ</td>
<td>教育実習</td>
</tr>
<tr>
<td></td>
<td>専門科目</td>
<td>(科学と技術の相補性の追求と教材化)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ⅰ 生物・飼育・栽培（生命と環境、光合成と環境、環境調和、植物の栽培）</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ⅱ 化学・材料加工学・電気工学（材料の性質、材料の性質、材料加工）</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ⅲ 物理・電子工学・機械工学（回路素子の特性、PC構築、電子回路の設計・製作）</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ⅳ 地学・化学・物理・情報工学（計算科学、地質、地球観測衛星技術）</td>
<td></td>
</tr>
<tr>
<td>4年</td>
<td>卒業研究</td>
<td>ものづくりインターンシップ (土佐のものづくり企業での科学技術研修)</td>
<td>応用実習</td>
</tr>
</tbody>
</table>

た科学技術教育総合演習はⅠからⅣすべて必修である。ものづくりインターンシップは選択科目である。これらの新設科目に加え、教員免許状取得に必要な科目。共通教育科目及び学部共通科目等合計140単位の取得によりカリキュラムを修了するようになっている。

以上のようなカリキュラムを通して、大学4年間を通じて学生に対しこ育成する資質・能力として、「自然科学に対する深い認識と探究力」を応用科学とものづくり指導力、科学と技術の相補性の追求と教材化のためのものづくり指導力と実践実践力の5項目を掲げ、科学と技術を一体的に指導できる教員を、系統的に養成するカリキュラム構成になっている。これからの5項目と、カリキュラムを構成している授業科目との関係を図1に掲げる。

Ⅳ 科学技術教育教員養成カリキュラムに新設した科学と技術を融合・一体化した授業科目

本章では、開発した科学技術教育教員養成カリキュラムに新設した「科学と技術を融合・一体化した授業科目」における、2年次授業科目「実験とものづくり」と3・4年次授業科目「科学技術教育総合演習」をとりあげ、検討・改善を行っている授業内容、授業での適用を視野に入れて開発した教材、教具、試行の実践事例について詳細する。

1. 2年次授業科目「実験とものづくり」

ものづくり技術を適用した教材・教具開発力の育成は、本カリキュラムの特徴の一つであり、理科・技術科教科の諸単元・内容を対象として、教材・教具の開発（設計・製作）及びそれを活用した授業研究を課すカリキュラム構成になっている。授業科目「実験とものづくりI・Ⅱ」は、ものづくりを学ぶ新たなステップに位置づけており、表3に示すような、授業科目の主題と到達目標を掲げている。

表3に掲げるように、「実験とものづくりI」では、木材、金属及びプラスチック等の構造材料を取り上げ、のこぎり、プラスチックカッターによる切断、こんなを用いた切削、塑型加工等、材料の特性に応じた手加工及び手工夫、製作を可能にする基礎的な技術を、簡易な理科教材・教具の設計・製作を通じて習得する。
表3 操業科目「実験ものづくり」の主題と到達目標

<table>
<thead>
<tr>
<th>科目</th>
<th>操業科目の主題</th>
<th>到達目標</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>実験・実習を通して、木材、金属及びプラスチック等構造材料の基礎的な手加工・機械加工技術を習得するとともに、習得した技術を用いて理科教材・教具の開発を行う。</td>
<td>1. 手工具を用いて、木材、金属及びプラスチックの切断、切削、塑性加工等の基礎的な加工を行うことができる。 2. 木工機械、工作機械を通じて扱い、木材、金属及びプラスチックの切断、切削等の加工を行うことができる。 3. 木材、金属及びプラスチック等を、使用目的や条件を考慮して適切に加工し、簡単な理科教材・教具の設計・製作を行うことができる。</td>
</tr>
<tr>
<td>II</td>
<td>実験・実習を通して、電気計測及び電気・電子回路の設計・製作に関する基礎的技術を習得するとともに、習得した技術を用いて理科教材・教具の開発を行う。</td>
<td>1. テスター、オシロスコープ等の電気計器を適切に使用し、基礎的な電気・電子回路の実験を行うことができる。 2. 簡単な電気・電子回路を、回路理論に基づいて設計し、基板の作成及びはんだづけを通じて製作を行うことができる。 3. 電気・電子回路の設計・製作技術を活用して、簡単な理科教材・教具の設計・製作を行うことができる。</td>
</tr>
</tbody>
</table>

「実験ものづくりII」では、電気計測及び電気・電子回路の設計・製作を取り上げ、電気回路・電子回路に関する基礎的な実験を通じて、テスター、オシロスコープ等の計測機の基礎的な使用法を身に付けたのち、プリント基板の設計・製作と、はんだづけ等の電気・電子回路の設計・製作技術を理科教材・教具の設計・製作を通じて習得する。

図2から図4に、本授業での適用を視野に入れて試作した教材・教具の例として、試験管立て、モノコードとスピーカユニット、整流子モーターを掲げる。図2に掲げる試験管立ては、木材加工に関する基礎的技術（機械加工を含む）の習得を目標として開発した教具であり、設計、木工機械を用いた材料を、さしあがり、のこぎり、かんな及びひねのう等の手工具を用いた切断、切削、組み立ての工事を含んでいる。図に示す試験管立てはプロトタイプであり、受講生にはこれを参考に使用目的・使用条件、構造、デザイン等の検討に基づいて設計を行わせ、製作後、「マイラーティップ」として、専門授業科目での実験実習及び理科の授業に活用させる。

図3に掲げるモノコードとスピーカユニットは、中学校理科の単元「音の性質」において活用する教材・教具として開発した。教材・教具の製作工程では、木材、金属、プラスチック各材料の切断、切削（かんなかげ、旋削等）、穴打、金属へのねじ切り、プラスチックの折り曲げ及びはんだづけ等の加工工程が含まれており、設計・製作を通じて、材料加工、電気・電子回路製作に関する基礎的技術に加えて、卓上ホルダ盤、丸のご盤等の使用方法及びねじ切り加工等応用的な加工技術の習得が可能である。図4にモノコードの製作に使用する工具・機器を掲げる。

図4に掲げる整流子モーターは、プラスチック及び金属加工技術の習得とともに、設計を通して受講生に、電磁気現象に関する多様な科学探究活動の設定が可能な教材である。電池の持つ化学エネルギーを効率よく電気エネルギーに変換するために、回転子の形状・巻き方、整流子の形状等を検討し、その結果を製作に反映させることが可能である。また、固定子である磁石の配置や数、電池の配置方法（直列・並列）を工夫することを通じて、回転子に加わるトルクを決定する磁束密度・電流の設定を問題解決的に展開し、高性能なモーターを開発するた
表4 モノコードの製作に使用する工具・機器

<table>
<thead>
<tr>
<th>製作部分</th>
<th>使用工具・機器</th>
</tr>
</thead>
<tbody>
<tr>
<td>土台</td>
<td>自動かんな盤、手押かんな盤、丸のこ盤、さらね、両刃のこぎり、かんな、卓上ボール盤</td>
</tr>
<tr>
<td>弦固定部</td>
<td>細尺、けがき針、弓のこ、ツップ、万力、金工やすり、ドライバー、卓上ボール盤</td>
</tr>
<tr>
<td>ことじ</td>
<td>さらね、黒尺、両刃のこぎり、弓のこ、かんな</td>
</tr>
</tbody>
</table>

めの創意工夫を含めて、結果の改善を図ることも可能である。（図に掲げるモータは、ワニリナップを通じて直接電池を接続しているが、はんだ付けによりスイッチを接続し、モータのON/OFFを可能にした。）電池の接続方法を切り替える回路を付加したりすることができ、電気回路の設計・製作技術の基礎を図ることも可能である。

2.1 物理学と電気工学を融合・一体化した授業科目

科学技術教育総合演習における具体的な授業内容として、「マクロ・ミクロ双方の視点からの導電特性の考察」と「LED及びトランジスタを用いた電子回路の製作・製作」の融合・一体化を構想・検討した。授業の流れを、図5に掲げる。

授業では、まずPCを活用した自動計測装置（次節で詳述）を製作させる。次に、それを活用して抵抗、LED及びトランジスタ各要素の特性を定量的に計測し、その結果に基づいて、導電・非導電の導電特性と電圧-電流特性との関係、オームの法則、及び抵抗の直列接続・並列接続と合成抵抗との関係についての考察を、量子論に基づくミクロ視点で行わせる。

続いてLED及びトランジスタの電圧-電流特性の計測結果を直接用いてLED点灯回路及びトランジスタ増幅回路の設計とそれに基づく製作を行う。

以上のようにして、定量的実験データに基づく物理現象の考察を通じて、科学と技術の関連性・相補的関係についての専門的知識・技術の深さを図った後、中学校理科の「電流のはたらき」、「オームの法則」についての学習、及び技術科の電気回路の設計・製作学習等、科学教育、技術教育に違って科学技術教育への教材化についての検討を、授業研究を通じて展開する。

図5 物理学と電気工学を融合・一体化したカリキュラムの展開
2.2 コンピュータを用いた自動計測装置の製作と活用
実験及び設計・製作学習にコンピュータによる計測・制御を導入すると、従来の学習環境では実現不可能であった詳細かつ高精度な定量的計測実験、それに基づく設計・シミュレーション学習及び多量かつ多様な実験データの収集による「データをして語らしめる」実験・探究学習が展開可能になる。すなわち、コンピュータによる計測・制御技術は、科学と技術の関連性・相補的関係を扱う上において有効な教材である。そこで、コンピュータを活用した電圧、電流、温度等の自動計測装置の製作とその活用の「科学技術教育統合演習」への導入を検討した。

図6に、自動計測装置を掲げる。自動計測装置は先行研究において、トランジスタ、LED等の電圧・電流特性の計測を目的として開発したものであり100, PCによる3チャンネルのアナログ電圧自動計測機能を有している。この機能を活用して、抵抗、LED等の各種電気・電子回路素子の電圧・電流特性を計測することが可能である。図7に、自動計測装置を用いて抵抗、LED及びトランジスタの電圧・電流特性を計測した結果を掲げる。2つのチャンネルを用いて、素子に加わる電圧と流れる電流を計測し（計測回路に直列に接続した高精度抵抗に加わる電圧を計測しそれを電流に換算）、XY表示を通じて電圧・電流特性曲線を描画している。それぞれ1本の電圧・電流特性ごとに、100Ωの電圧と電流を計測しており、計測に要する時間は30秒程度である。図8は、100Ωの固定抵抗を直列・並列に接続し、その電圧・電流特性を計測した結果である。図9は、計測したLEDの電圧・電流特性曲線上にLED点灯回路の負荷直列を描画し、保護抵抗の値を算出する過程。すなわちLED点灯回路の設計過程を表示している。前節で述べた物理学と電気・電子工学を融合・一体化した科学技術教育総合演習では、図7、図8及び図9に掲げるようなデータの取得、計測結果の分析、計測結果の利用を通じて授業を展開する。

また、各チャンネル及び複数のチャンネルを通じて入力される電圧の時系列変化（電圧・時間特性）の計測が可能である。さらに、温度、光、圧力、pH等のセンサーを接続することにより多様な物理量の計測が可能である。図10に、開発した計測装置に温度センサを取りつけ、水とアルコールの混合液を加熱したときの温度の時系列変化を自動計測している状況を、図11に計測結果を掲げる。混合液の温度を1秒間隔で計測し、グラフ表示した結果である。液体から気体への状態変化に伴う温度変化をリアルタイムで観測可能である。

計測したデータはテキストファイル形式で保存され、表
図10 温度の時系列変化の自動計測

図11 水とアルコールの混合物を加熱したときの温度変化

計算ソフト等で読み込み、データ処理が可能である。本装置で計測したデータをデータベース化し、それを活用して多様な視点からの考察を行うことにより、膨大な定量的実験結果に基づく探究学習、設計・製作学習等の展開が可能である。上記は物理計測と化学計測の例であるが、目的や計測対象に対応したセンサを接続することにより、生物学、地学における実験への適用も容易に可能であり、コンピュータを用いた計測の特徴である膨大なデータの効率的取得機能を生かした実験、及びその結果を用いた設計・製作等、科学と技術双方向の学習の効果的展開が期待される。

３．開発した教材・教具を用い理工科授業研究の試行的実践

本科学技術教育教員養成カリキュラムの本格的実施に先立ち、試行的授業実践を行った。授業実践は、前章で示したモノコードを適用した理工科授業研究を、地域の中学校校の協力を得て、モノコードの開発、学習指導計画、指導案の作成等授業設計、模擬授業、研究授業の実施という流れで実施した。中学校理科1年生の単元「音の性質」において、音の大き・高低と声源の振動する大きさとの関係を理解することを目的とした授業を、モノコードを用いた実験、結果の整理と考察を通じた一般化という流れで実施した。教材の開発にあたっては、弦をはくことで音がしっかり発生し、弦の振動を可視化しやすいものになるように工夫を行った。このことにより、学びでの学習は中学校技術科以来である理科教員をめざす6人の学生を対象とし、機械加工を含む材料加工の基礎技術を習得させ、4.5時間程度（3コマ）の授業時間で6器のモノコードを製作することができた。

中学校で実施した研究授業の様子を、図12及び図13に掲げる。生徒は、生徒が授業での活用を目的として製作した教材に、市販の教材とは異なる興味・関心を示し、弦をはくほど音が大きくなり、弦の長さを変更したり、音の大き・高低と弦の振動との関係を計測し、結果をワークシートに記入していた。

本授業研究を受講した学生からは、「ものづくりの知識や技術が身につくとともに、理科の授業にも役立てられ、一層教科間のつながりが見えてきた」「学習者が授業中に実験装置を自作するといった、ものづくりの実験活動を取り入れた理科授業を組み立てられる」「教師が自作した教材を授業で活用すると、学習者の意欲が高まりやすい」のは、
ではない。「ものづくり学習を通して、ひとつひとつの作業を丁寧に行い大切さを学び、それは、日々の学習でも同じであるということに気付いた」等の感想が得られた。この結果は、試行的授業実践の本教員養成カリキュラムの一部であるという理由で、特に指導しているカリキュラムに対する一定の有用性を示唆するものであると考える。

V. おわりに

本研究では、現代社会における科学と技術の関連性・相補的関係を明確にすることとともに、両者の融合・一体化した教育の意義を提示し、それに基づく教員養成カリキュラム、すなわち科学技術リテラシーを有する教員養成カリキュラムを構築し、新たに教員養成教育への位置づけを実現した。構築したカリキュラムは、科学と技術の融合・一体化した科学技術の内容とその指導法を組み合わせた授業科目を、系統的に配列したカリキュラム構築になっている。

開発したカリキュラムに基づき、具体的な授業内容の検討及び教材・教具の開発を行うとともに、試行的に授業実践を行った。その結果、開発した教材・教具は、科学と技術の融合・一体化した授業科目の効果的な展開可能性を、具体的なカリキュラム案の提示を通じて示すことができた。また、本教員カリキュラムの試行的実践の結果から、検討しているカリキュラムに対する一定の有用性を示唆することができた。

科学と技術の融合・一体化した教科を普通教育に位置づけ、科学技術職業等の今日の課題に対応することを目指し、その最初のステップとして、指導者の科学技術リテラシーの向上、教育内容の充実を通じて教員養成段階における両者の融合を構想・実現した。現在本格的にスタートしているカリキュラムの評価・分析を継続的に実施し、その工夫・改善及び効果性の検証を行っていくたい。

謝辞

本研究遂行にあたり、高知県立岡崎中学校の校長・理科担当の先生方に、授業実践を行う機会を設定いただいた。記して感謝の意に代えたい。

また本研究は、平成 29 年度科学研究費補助金（基盤研究（B））研究番号 17H01981 の助成を受けて実施した。

文献

1) 佐々木力：科学論入門，岩波新書，pp.56-59 (2007).
2) 山口栄一：死ぬまでに学びたい五つの物理学，講談社，pp.56-63 (2014).
7) 大谷忠：技術・家庭科成立時における理科教育と技術教育の関連性と科学技術教育の試み，科学教育研究，Vol.26，No.2，pp.113-120 (2002).
9) 千田有一：米国における科学技術人材育成戦略－科学、技術、工学，数学（STEM）分野卒業生の 100 万人増加計画－，科学技術動向 2013，pp.133，17-26 (2013).
13) 熊野博介：科学技術グローバルの形成のための科学教育論の構築に関する基礎的考察，科学研究費補助金（基盤研究（B））最終報告書 (2014).
17) 松尾知明：未来を拓く質・能力と新しい教育課程－求められる学びのカリキュラム・マネジメント－，学事出版，pp.11-12 (2016).