The forest vegetation in southwestern Shikoku*

Tsugiwo YAMANAKA

Although secondary communities occupy extensive areas in southwestern Shikoku, climax forests remain undisturbed here and there. In this district, warm temperate forests have wider altitudinal ranges, extending to an altitude of 1000 m, and an evergreen oak, *Quercus (Cyclobalanopsis) acuta* is in contact with *Fagus crenata* forming the climax forest in the cool temperate region.

The *Quercus phillyraeoides* community along the coast is an edaphic climax which is included in the *Pittosporo-Quercetum phillyraeoidis*, though the floristic composition of the secondary coppice of this evergreen oak often resemble that of the *Gleichenio-Quercetum phillyraeoidis*.

The climatic climax forests include the *Machilus-, the Castanopsis (Shiia)-*, and the evergreen *Quercus (Cyclobalanopsis)-type community*. Among these, the *Machilus-type community* treated as the *Runohro-Machiletum thunbergii* occupies rather narrow areas near the sea. As seen on the Cape of Ashizuri, typical stands of this community are dominated by *Machilus thunbergii*, but *Elaeocarpus sylvestris* var. *ellipticus* is predominant in the western coast area of this district where the annual precipitation is comparatively small.

The climax area of the *Castanopsis-type community* is most extensive in the warm temperate region. The *Rapanaceo-Shiitetum sieboldii* dominated by *C. cuspidata* var. *sieboldii* (*Shiia sieboldii*) and the *Symploco-Shiitetum cuspidatae* consisting mainly of *C. cuspidata* var. *cuspidata* (*S. cuspidata*) are reported from this district, and these two associations resemble each other in floristic compositions. Besides, *C. cuspidata* var. *sieboldii* is often accompanied by *Machilus thunbergii* near the coast and is mixed with *Quercus acuta* on hills.

The evergreen *Quercus-type community* above the upper limit of the *Castanopsis cuspidata* community is regarded as the *Distylia-Cyclobalanopsietum stenophyllica*. *Quercus acuta* predominates on slopes and ridges, while *Q. salicina* (*Cyclobalanops stenophylla*) tends to occur along streams. *Abies firna* or *Tsuga sieboldii* is often abundant in this association.

The communities mentioned above are united into the *Camellietea japonicae* characterized by such evergreen trees and shrubs as *Camellia japonica*, *Eurya japonica*, *Cinnamomum japonicum*, *Ligustrum japonicum*, and *Ardisia japonica*. It is possible that this class in this district may be divided into two alliances, the *Shiion sieboldii* and the *Sakakio-Cyclobalanopsion*. The former includes the *Quercus phillyraeoides* community as well as

* The present work was carried out as a part of JIBP project. Contribution from JIBP-CT No. 99.
Fig. 1. Map showing the localities investigated.

the Machilus- and the Castanopsis-type community, and the latter is represented by the evergreen Quercus community.

In mountain districts, the Chamaecyparis obtusa community is found as an edaphic climax which is treated as the Rhododendro-Chamaecyparidetum obtusae. This association occurs locally on rocky ridges where soils are often podosolized. It is noticeable that the Picea polita-Rhododendron pentaphyllum community appears near the summit of Mt. Sasayama.

In the cool temperate region, the Fagus-Sasa-type community occurs in the Nametoko national forest, but the Fagus-Rhododendron-type community is found on Mt. Takatsuki where the forest in transition from the Camellietea japonicae to the Querco-Fagetea crenatae can be observed.

In lowlands, secondary forests are represented by the Pinus densiflora community and coppices of Castanopsis cuspidata and Quercus glauca. The Firmiana plataniifolia community on the Island of Kashima is also noted as a secondary forest.

The climax forests in this district include various communities representative of the forest vegetation in southern Shikoku and should be preserved by protecting them from the human impacts.

1. はじめに

四国西南部として調査の対象としたところは、高知県幡多郡、中村市、土佐清水市、宿毛市と愛媛県宇和郡の沿岸地域に源流、黒等および滑床山地を加えた範囲である。これは高知県では幡多地方、愛媛県では南予地方というわれる地域の南部であり、足摺国立公園が含まれている。
この研究はもともに国際生物学事業計画（IBP）の一部として、1966年以降ことに1969年から1970年にかけておこなったものであるが、この報文ではそれ以前の資料も加えて、四国西南地域の森林とくに樫相林について再検討をここでみた。したがって、二次林そのほかについては詳細にふれず、これらはあらたに論じたいと考えている。

調査に際してはいろいろと困難な状況にあったが、さいわい多くの方から厚意ある御援助を得て、現在までいちおう予定した成果を得ることができた。とくに中村、清水および宿毛営林署をはじめ愛媛県営林庁および西予海の当事者からは多くの便宜をはかっていただいた。また、愛媛県明徳短期大学教授山本四郎、高知学芸高等学校教諭羽方雅彦、高知若草養護学校教諭森野高明、大方中学校教諭上甲秋月各氏には、ひとたびお世話になった、ことであつくお礼申し上げるだいいです。

2. 現在までの研究

この地域の森林植生については、古く高知営林局の調査（1939）があり、また植物相を主にした報告（山脇 1950）はあるが、植物群落学的にも最新のもった最初の研究は野本（1953）によっておこなわれ、この地域の暖帯林にダブーアマカナワラビ、スタジー・べきんち・バナ、コジーケクロバイおよびウラジロガシーナカシの各群集が認められ、コジーケクロバイ群集は観察しやすく記載された。この野本の資料はのに高杉（1958）によって、植生の連続性の立場からも検討されている。したがって山中の（1953，1954）は、足摺岬を中心に偏る地域の植生をしらべ、また清床山地、沖の鳥などの森林についても研究した。その後、鈴木・辻井・梅沢（1959）の南部沿岸地域の森林の調査、羽方・山中（1967）の佐賀町鹿島の研究などがあり、またタブ林、シイ林およびカシンに関しては山中（1961，1962）、ウバメガシ林については山中（1958）および今井（1965）の報告がある地域のものについてふれている。

これらの研究は、清床山地を除き多くは高知県側でおこなわれており、愛媛県南部の植生については、一般ふるさの植物学的な記録のほかは、ほとんどまとまったものが見られない。したがって、私は1969年には愛媛県西海地方を主とした調査をおこない、その結果をまとめた（山中 1970）、詳細についてはこの報文で述べることにする。

3. 調査地と方法

この報告ではじめてとりあげられた調査地と群落の概要をまとめた第1表に示し、その組成の詳細は第2－18表のとおりである。

このほか総合表には、今までの報告（山中 1953－1962，羽方・山中 1967）から佐賀町鹿島、中村市八束、足摺岬、白亜山、土佐清水市鹿島および加久見、大堂山、柏島、沖の島、大月町弘見、浦浦および玄塩島のものを加えた。

1966年以後の調査は JIBP－CT（P）のまとめた方法にしたがい、組成表には優占度または優占度と群落を併記した。

4. 森林植生の現状

四国の地域開発がおくれている地域といわれながら、森林は広範囲にわたって人為的影響がうけ、二次林または造林の占める面積がひろく、したがって樫相またはそれに近い林は、特定の場所を除いてあまり残っていない。このような点を考慮しつつ、初めにそれぞれの地区の現状についてふれておく。
Table 1. Data for the localities and communities

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>T1</th>
<th>T2</th>
<th>S</th>
<th>H</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inomisaki</td>
<td>5 S55E</td>
<td>40</td>
<td>5 × 5</td>
<td>—</td>
<td>—</td>
<td>1-3/100</td>
<td><0.5/30</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Ibid.</td>
<td>5 S60E</td>
<td>40</td>
<td>5 × 5</td>
<td>—</td>
<td>—</td>
<td>1-3/100</td>
<td><0.3/10</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Ibid.</td>
<td>5 S70E</td>
<td>40</td>
<td>5 × 5</td>
<td>—</td>
<td>—</td>
<td>1-2/100</td>
<td><0.5/10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Ibid.</td>
<td>5 S75E</td>
<td>40</td>
<td>5 × 5</td>
<td>—</td>
<td>—</td>
<td>1-3/100</td>
<td><0.3/30</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Ibid.</td>
<td>5 S80E</td>
<td>40</td>
<td>5 × 5</td>
<td>—</td>
<td>—</td>
<td>1-3/100</td>
<td><0.3/5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Kamikawaguchi</td>
<td>10 S40E</td>
<td>10</td>
<td>5 × 5</td>
<td>—</td>
<td>5-6/90</td>
<td>0.5-2/30</td>
<td><0.3/5</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Ibid.</td>
<td>30 S40E</td>
<td>30</td>
<td>5 × 5</td>
<td>—</td>
<td>3-6/100</td>
<td>0.5-2/30</td>
<td><0.3/5</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Ibid.</td>
<td>30 S50E</td>
<td>30</td>
<td>5 × 5</td>
<td>—</td>
<td>6-8/20</td>
<td>0.5-3/90</td>
<td><0.5/30</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Ibid.</td>
<td>40 S40E</td>
<td>40</td>
<td>5 × 5</td>
<td>—</td>
<td>4-6/90</td>
<td>0.5-2/30</td>
<td><0.3/5</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Ibid.</td>
<td>40 S40E</td>
<td>40</td>
<td>5 × 5</td>
<td>—</td>
<td>7-8/90</td>
<td>0.5-2/30</td>
<td><0.5/40</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Ibid.</td>
<td>20 S40W</td>
<td>10</td>
<td>5 × 20</td>
<td>18-22/90</td>
<td>3-8/70</td>
<td>0.5-2/50</td>
<td><0.5/20</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Ibid.</td>
<td>20 S25E</td>
<td>35</td>
<td>10 × 15</td>
<td>12-15/80</td>
<td>3-8/70</td>
<td>0.5-3/40</td>
<td><0.5/20</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Shimonokae</td>
<td>20 S50W</td>
<td>20</td>
<td>10 × 10</td>
<td>10-18/70</td>
<td>4-8/40</td>
<td>1-3/60</td>
<td><0.8/30</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Ibid.</td>
<td>30 S50W</td>
<td>30</td>
<td>10 × 10</td>
<td>10-15/80</td>
<td>6-8/40</td>
<td>1-3/50</td>
<td><0.8/30</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Kumomo</td>
<td>20 N10W</td>
<td>20</td>
<td>15 × 10</td>
<td>15-20/100</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Ooki</td>
<td>40 N25E</td>
<td>30-40</td>
<td>10 × 10</td>
<td>10-15/100</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Yokomichi</td>
<td>40 N10W</td>
<td>20</td>
<td>10 × 10</td>
<td>>15/100</td>
<td>/50</td>
<td>/30</td>
<td>/70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Shimanokawayama</td>
<td>240 N05E</td>
<td>45</td>
<td>20 × 20</td>
<td>15-25/80</td>
<td>7-15/50</td>
<td>0.3-4/20</td>
<td><0.3/10</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Imanoyma</td>
<td>730 E</td>
<td>30</td>
<td>15 × 15</td>
<td>15/70</td>
<td>3-10/90</td>
<td>0.3-2/40</td>
<td><0.3/40</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Ibid.</td>
<td>820 N60E</td>
<td>20</td>
<td>10 × 10</td>
<td>15-20/70</td>
<td>3-8/80</td>
<td>0.3-3/70</td>
<td><0.3/20</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Ibid.</td>
<td>860 N45E</td>
<td>50</td>
<td>10 × 10</td>
<td>10-12/60</td>
<td>3-10/90</td>
<td>0.3-3/25</td>
<td><0.3/30</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Yotateyama</td>
<td>30 S10E</td>
<td>30</td>
<td>10 × 10</td>
<td>—</td>
<td>4-6/90</td>
<td>0.3-2/20</td>
<td><0.3/90</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Ibid.</td>
<td>40 S10E</td>
<td>40</td>
<td>10 × 10</td>
<td>—</td>
<td>5-8/90</td>
<td>0.3-2/30</td>
<td><0.3/40</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Ibid.</td>
<td>50 S30E</td>
<td>40</td>
<td>10 × 10</td>
<td>—</td>
<td>4-7/90</td>
<td>0.3-2/30</td>
<td><0.3/80</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Ibid.</td>
<td>50 S40E</td>
<td>40</td>
<td>10 × 10</td>
<td>—</td>
<td>4-7/90</td>
<td>0.3-2/20</td>
<td><0.3/90</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Ibid.</td>
<td>60 S70E</td>
<td>20</td>
<td>10 × 10</td>
<td>—</td>
<td>4-10/90</td>
<td>0.3-2/20</td>
<td><0.3/5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Ibid.</td>
<td>20 N70E</td>
<td>30</td>
<td>10 × 10</td>
<td>—</td>
<td>5-8/90</td>
<td>0.5-2/20</td>
<td><0.5/90</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Ibid.</td>
<td>50 N70E</td>
<td>20</td>
<td>10 × 10</td>
<td>10/20</td>
<td>5-8/100</td>
<td>0.3-2/20</td>
<td><0.3/10</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Kosaitsuno</td>
<td>20 S20W</td>
<td>50</td>
<td>5 × 5</td>
<td>—</td>
<td>—</td>
<td>0.8-3/10</td>
<td><0.3/80</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Ibid.</td>
<td>20 S20W</td>
<td>40</td>
<td>5 × 5</td>
<td>—</td>
<td>—</td>
<td>0.8-3/90</td>
<td><0.3/80</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Oura</td>
<td>30 S45E</td>
<td>20</td>
<td>15 × 15</td>
<td>15-20/80</td>
<td>4-12/80</td>
<td>0.5-2/30</td>
<td><0.5/80</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Oodó</td>
<td>150 S30E</td>
<td>10</td>
<td>15 × 15</td>
<td>12-20/90</td>
<td>3-10/80</td>
<td>0.5-3/30</td>
<td><0.5/50</td>
<td><10</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Ibid.</td>
<td>170 S10E</td>
<td>20</td>
<td>15 × 15</td>
<td>18-20/80</td>
<td>3-10/90</td>
<td>0.5-3/30</td>
<td><0.5/30</td>
<td><10</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Ibid.</td>
<td>170 S10E</td>
<td>20</td>
<td>15 × 15</td>
<td>10-20/80</td>
<td>3-8/90</td>
<td>0.5-3/30</td>
<td><0.5/30</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Ibid.</td>
<td>160 S70E</td>
<td>20</td>
<td>15 × 15</td>
<td>20/80</td>
<td>3-10/90</td>
<td>0.5-3/30</td>
<td><0.5/30</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Ibid.</td>
<td>160 S70E</td>
<td>20</td>
<td>15 × 15</td>
<td>12-20/80</td>
<td>3-10/80</td>
<td>0.5-3/30</td>
<td><0.5/30</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Ibid.</td>
<td>50 N80E</td>
<td>5</td>
<td>5 × 5</td>
<td>—</td>
<td>—</td>
<td>1-3/100</td>
<td><0.5/30</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Ibid.</td>
<td>50 N</td>
<td>10</td>
<td>5 × 5</td>
<td>—</td>
<td>—</td>
<td>1-3/100</td>
<td><0.5/40</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Ibid.</td>
<td>60 N</td>
<td>20</td>
<td>5 × 5</td>
<td>—</td>
<td>—</td>
<td>1-5/100</td>
<td><0.3/5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Ibid.</td>
<td>60 S</td>
<td>20</td>
<td>5 × 5</td>
<td>—</td>
<td>—</td>
<td>1-5/100</td>
<td><0.5/5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Ibid.</td>
<td>70 N</td>
<td>20</td>
<td>5 × 5</td>
<td>—</td>
<td>5-7/60</td>
<td>1-2/100</td>
<td><0.5/20</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Iwanizu</td>
<td>20 S40W</td>
<td>35</td>
<td>10 × 10</td>
<td>12/</td>
<td>8/90</td>
<td>0.5-1/20</td>
<td><0.5/100</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Ibid.</td>
<td>20 S60W</td>
<td>30</td>
<td>10 × 10</td>
<td>15/40</td>
<td>5-9/80</td>
<td>0.5-2/10</td>
<td><0.5/90</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Ibid.</td>
<td>20 N50E</td>
<td>40</td>
<td>15 × 15</td>
<td>10-15/60</td>
<td>5-9/80</td>
<td>0.5-2/20</td>
<td><0.5/80</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Ibid.</td>
<td>20 N40E</td>
<td>35</td>
<td>10 × 10</td>
<td>10-15/60</td>
<td>6-8/90</td>
<td>0.5-1/10</td>
<td><0.5/90</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Jöhen</td>
<td>50 S45E</td>
<td>20</td>
<td>5 × 20</td>
<td>15-20/70</td>
<td>8-12/60</td>
<td>0.5-3/70</td>
<td><0.5/70</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Ibid.</td>
<td>50 S45E</td>
<td>30</td>
<td>10 × 10</td>
<td>15-25/80</td>
<td>3-7/60</td>
<td>0.5-2/40</td>
<td><0.5/40</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Ibid.</td>
<td>50</td>
<td>N10W</td>
<td>40</td>
<td>7 × 7</td>
<td>20–25/90</td>
<td>3–7/20</td>
<td>0.5–2/60</td>
<td><0.5/40</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>Hirajō</td>
<td>20</td>
<td>L</td>
<td>0</td>
<td>10 × 10</td>
<td>15–18/80</td>
<td>3–8/40</td>
<td>0.5–2/70</td>
<td><0.5/60 +</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Ooshima</td>
<td>20</td>
<td>N10E</td>
<td>5</td>
<td>15 × 15</td>
<td>10–15/90</td>
<td>4–8/60</td>
<td>0.5–3/40</td>
<td><0.5/90 +</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Ibid.</td>
<td>20</td>
<td>L</td>
<td>0</td>
<td>15 × 15</td>
<td>15–25/80</td>
<td>3–8/50</td>
<td>0.5–2/30</td>
<td><0.5/90 +</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>Gongenyama</td>
<td>480</td>
<td>S50E</td>
<td>30</td>
<td>10 × 10</td>
<td>8–15/90</td>
<td>2–6/50</td>
<td>0.3–2/40</td>
<td><0.3/20 10</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>Ibid.</td>
<td>480</td>
<td>S50E</td>
<td>40</td>
<td>10 × 10</td>
<td>8–15/80</td>
<td>2–7/60</td>
<td>0.3–2/40</td>
<td><0.3/20 10</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>Ibid.</td>
<td>490</td>
<td>L</td>
<td>0</td>
<td>5 × 10</td>
<td>–</td>
<td>5–6/100</td>
<td>0.3–2/20</td>
<td><0.1/5 +</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>Sotodomari</td>
<td>40</td>
<td>N80E</td>
<td>40</td>
<td>5 × 5</td>
<td>–</td>
<td>–</td>
<td>2–4/90</td>
<td><0.3/10 +</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>Ibid.</td>
<td>40</td>
<td>N80E</td>
<td>45</td>
<td>5 × 5</td>
<td>–</td>
<td>–</td>
<td>2–4/90</td>
<td><0.3/20 10</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>Ibid.</td>
<td>40</td>
<td>N80E</td>
<td>30</td>
<td>5 × 5</td>
<td>–</td>
<td>2–5/60</td>
<td>0.3–1/90</td>
<td><0.2/ +</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>Ibid.</td>
<td>80</td>
<td>S50W</td>
<td>20</td>
<td>5 × 5</td>
<td>–</td>
<td>3–4/90</td>
<td>0.3–2/30</td>
<td><0.3/30 –</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>Ibid.</td>
<td>90</td>
<td>S50W</td>
<td>40</td>
<td>5 × 5</td>
<td>–</td>
<td>3–4/70</td>
<td>0.2–1/30</td>
<td><0.2/10 10</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Ibid.</td>
<td>100</td>
<td>S40E</td>
<td>20</td>
<td>5 × 5</td>
<td>–</td>
<td>3–5/90</td>
<td>0.2–2/10</td>
<td><0.1/5 +</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>Ibid.</td>
<td>40</td>
<td>E</td>
<td>15</td>
<td>10 × 10</td>
<td>–</td>
<td>6–8/90</td>
<td>0.3–2/20</td>
<td><0.3/40 –</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>Kashima</td>
<td>100</td>
<td>N40W</td>
<td>30</td>
<td>10 × 10</td>
<td>–</td>
<td>6–8/100</td>
<td>–</td>
<td><0.3/ + –</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>Ibid.</td>
<td>100</td>
<td>N40W</td>
<td>30</td>
<td>10 × 10</td>
<td>–</td>
<td>6–8/90</td>
<td>–</td>
<td><0.3/ + –</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>Ibid.</td>
<td>100</td>
<td>N40W</td>
<td>30</td>
<td>10 × 10</td>
<td>–</td>
<td>6–8/100</td>
<td>–</td>
<td><0.2/ –</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>Ibid.</td>
<td>100</td>
<td>N40W</td>
<td>30</td>
<td>10 × 10</td>
<td>–</td>
<td>6–8/100</td>
<td>–</td>
<td><0.2/ + –</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>Ibid.</td>
<td>100</td>
<td>N40W</td>
<td>30</td>
<td>10 × 10</td>
<td>–</td>
<td>6–10/100</td>
<td>–</td>
<td><0.2/ + –</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>Ibid.</td>
<td>80</td>
<td>E</td>
<td>30</td>
<td>15 × 15</td>
<td>15–20/100</td>
<td>4–10/60</td>
<td>0.5–1/5</td>
<td><0.5/40 –</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>Ibid.</td>
<td>80</td>
<td>N35E</td>
<td>30</td>
<td>15 × 15</td>
<td>15–20/90</td>
<td>3–8/40</td>
<td>0.5–1/5</td>
<td><0.5/40 –</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>Ibid.</td>
<td>200</td>
<td>S20E</td>
<td>30</td>
<td>15 × 15</td>
<td>8–15/60</td>
<td>3–8/80</td>
<td>0.5–1/10</td>
<td><0.5/60 10</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>Ibid.</td>
<td>170</td>
<td>N20W</td>
<td>5</td>
<td>10 × 10</td>
<td>10–12/80</td>
<td>4–8/40</td>
<td>0.5–1/30</td>
<td><0.5/80 –</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>Ibid.</td>
<td>190</td>
<td>N60W</td>
<td>5</td>
<td>10 × 10</td>
<td>8–10/10</td>
<td>3–8/90</td>
<td>0.4–2/30</td>
<td><0.3/100 –</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>Ibid.</td>
<td>190</td>
<td>N60W</td>
<td>10</td>
<td>10 × 10</td>
<td>10/10</td>
<td>3–8/90</td>
<td>0.4–2/40</td>
<td><0.4/100 –</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>Ibid.</td>
<td>130</td>
<td>E</td>
<td>25</td>
<td>10 × 10</td>
<td>10–15/90</td>
<td>4–7/10</td>
<td>–</td>
<td><0.5/90 5</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>Ibid.</td>
<td>130</td>
<td>E</td>
<td>25</td>
<td>10 × 10</td>
<td>12–18/100</td>
<td>3–7/20</td>
<td>–</td>
<td><0.5/100 +</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>Ibid.</td>
<td>30</td>
<td>E</td>
<td>15</td>
<td>10 × 10</td>
<td>8–12/50</td>
<td>–</td>
<td>2/+</td>
<td><0.5/30 10</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>Ibid.</td>
<td>20</td>
<td>E</td>
<td><5</td>
<td>10 × 10</td>
<td>8–12/90</td>
<td>3–7/90</td>
<td>0.5–2/30</td>
<td><0.5/10 –</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>Iekushi</td>
<td>20</td>
<td>N15W</td>
<td>30</td>
<td>10 × 15</td>
<td>9–15/90</td>
<td>2–6/40</td>
<td>0.5–2/60</td>
<td><0.5/60 5</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>Ibid.</td>
<td>35</td>
<td>S40E</td>
<td>30</td>
<td>10 × 5</td>
<td>–</td>
<td>3–6/100</td>
<td>1/+</td>
<td><0.3/5</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>Ibid.</td>
<td>30</td>
<td>S40E</td>
<td>20</td>
<td>5 × 5</td>
<td>–</td>
<td>3–6/100</td>
<td>1/+</td>
<td><0.3/5</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>Ibid.</td>
<td>20</td>
<td>S10W</td>
<td>30</td>
<td>5 × 5</td>
<td>–</td>
<td>4/10</td>
<td>1–2/80</td>
<td><0.3/30</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>Ibid.</td>
<td>20</td>
<td>S10W</td>
<td>30</td>
<td>5 × 5</td>
<td>–</td>
<td>4/10</td>
<td>1–3/90</td>
<td><0.3/10</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>Ajiro</td>
<td>50</td>
<td>S40W</td>
<td>25</td>
<td>5 × 5</td>
<td>–</td>
<td>2–5/100</td>
<td>0.5–1/5</td>
<td><0.5/15</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>Ibid.</td>
<td>50</td>
<td>S40W</td>
<td>20</td>
<td>5 × 5</td>
<td>–</td>
<td>5/20</td>
<td>0.5–1/100</td>
<td><0.5/40</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>Sasahira</td>
<td>120</td>
<td>N65W</td>
<td>40</td>
<td>15 × 15</td>
<td>20–25/90</td>
<td>4–10/60</td>
<td>0.5–2/30</td>
<td><0.5/30 10</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>Sasayama</td>
<td>805</td>
<td>S30W</td>
<td>20</td>
<td>10 × 10</td>
<td>12–15/90</td>
<td>4–10/70</td>
<td>0.3–2/30</td>
<td><0.3/20 10</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>Ibid.</td>
<td>830</td>
<td>N60E</td>
<td>30</td>
<td>10 × 10</td>
<td>8–10/80</td>
<td>3–7/70</td>
<td>1–2/60</td>
<td><0.3/30 5</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>Ibid.</td>
<td>800</td>
<td>S30E</td>
<td>40</td>
<td>10 × 10</td>
<td>12–20/90</td>
<td>3–8/30</td>
<td>0.3–2/50</td>
<td><0.3/60 20</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>Ibid.</td>
<td>810</td>
<td>S50E</td>
<td>30</td>
<td>10 × 10</td>
<td>20–25/90</td>
<td>4–8/60</td>
<td>0.3–2/50</td>
<td><0.3/30 30</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>Ibid.</td>
<td>1020</td>
<td>N70W</td>
<td>30</td>
<td>15 × 15</td>
<td>20–25/50</td>
<td>4–8/60</td>
<td>1–2/20</td>
<td><0.3/90 30</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>Ibid.</td>
<td>1030</td>
<td>N50W</td>
<td>30</td>
<td>15 × 15</td>
<td>12–25/80</td>
<td>4–8/60</td>
<td>1–2/30</td>
<td><0.3/90 20</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>Ibid.</td>
<td>1050</td>
<td>N70W</td>
<td>20</td>
<td>10 × 10</td>
<td>8–10/40</td>
<td>4–6/80</td>
<td>1–2/10</td>
<td><0.7/90 10</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>Ibid.</td>
<td>1060</td>
<td>N80W</td>
<td>20</td>
<td>10 × 10</td>
<td>–</td>
<td>4–5/80</td>
<td>1–2/30</td>
<td><0.7/90 10</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>Kuroson</td>
<td>350</td>
<td>N35E</td>
<td>15</td>
<td>10 × 10</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>Ibid.</td>
<td>370</td>
<td>N50E</td>
<td>10</td>
<td>10 × 10</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>Ibid.</td>
<td>540</td>
<td>N20E</td>
<td>20</td>
<td>10×10</td>
<td>10-30/</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>Ibid.</td>
<td>580</td>
<td>N20E</td>
<td>20</td>
<td>10×10</td>
<td>10-30/</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>Ibid.</td>
<td>580</td>
<td>N75W</td>
<td>35</td>
<td>10×10</td>
<td>20-25/</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>Ibid.</td>
<td>580</td>
<td>S75W</td>
<td>30</td>
<td>10×10</td>
<td>20-25/</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>Namekoko</td>
<td>400</td>
<td>N55W</td>
<td>30</td>
<td>10×10</td>
<td>12-20/90 3-8/80 0.3-2/20 <0.3/10 <5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>Ibid.</td>
<td>380</td>
<td>N40E</td>
<td>5-10</td>
<td>10×10</td>
<td>10-15/90 3-8/20 0.3-2/10 <0.3/5 <5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>Ibid.</td>
<td>660</td>
<td>S15W</td>
<td>25</td>
<td>15×15</td>
<td>15-25/80 3-10/60 0.3-2/20 <0.3/10 20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>Ibid.</td>
<td>810</td>
<td>S80W</td>
<td>20</td>
<td>10×10</td>
<td>12-30/90 3-9/40 0.5-2/60 <0.5/50 30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>Sambongui</td>
<td>1080</td>
<td>N30W</td>
<td>25</td>
<td>10×10</td>
<td>12-20/80 3-7/50 0.8-2/95 <0.5/30 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>Takatsuki</td>
<td>1090</td>
<td>S50W</td>
<td>20</td>
<td>10×10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>Ibid.</td>
<td>1090</td>
<td>S80W</td>
<td>25</td>
<td>10×10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>Ibid.</td>
<td>1160</td>
<td>S40W</td>
<td>20</td>
<td>10×10</td>
<td>15-20/90 3-8/60 0.5-2/60 <0.5/50 20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>Ibid.</td>
<td>1180</td>
<td>S10W</td>
<td>0-5</td>
<td>10×10</td>
<td>10-20/90 3-8/80 0.5-2/60 <0.5/60 20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Quadrat number. 2 Locality (cf. Fig 1). 3 Altitude (m). 4 Exposure. 5 Grade. 6 Area (m). 7 Height (m)/Cover (%) in each layer.

（1）佐賀・大方

ここで最もよく自然状態が残されているのは鹿島である（羽方・山中 1967）。森林はスダジイを主としタブをまじえ、典型的なタブとシイの混生林である。この島以外では社諏の一部に二三の残存林があるだけで、しかもほとんどスダジイ林である。佐賀町ではスダジイとイヌノキの混生林があり、大方町上川口のスダジイ林はヤマモモ、イヌノキ、モッコク、コパンシナなどをまじえ、林内にはタイミンタチバナとミサオノキが多い（第9表）。このような林は本地区の海岸ぞいや丘陵地に多かったものと思われ、保存はよくないが大方町田の沢の社諏でもスダジイ、ナギ、ヤマモモ、カゴノキ、イヌノキなどが多く、胸高直径39cmに達するイヌノキの大木がある。タブまたはホルトノキを主とした残存林はまったく存在しないが、大方町伊田から上川口にかけて海岸にホルトノキが点在し、これがタブをまじえホルトノキ林のなどとみなされる。

ウバメガシ林は登堂の多い海岸ぞいにひろびろ見られるが、かなり人為的な影響をうけている。これに井の卯付近では風にあたりてのつよい斜面に生えるわずかの低木を形成し（第2表）、上川口付近ではおそらくシイ林に近い立地と思われるところに、ウバメガシの亜高木林が成立している（第2表）。なお、大方町入野の松原はクロマツを主とした防風林であるが、これはもとより自然林ではない。

（2）中村

四方十川口からやや内地に入っており、タブ林は存在しない。残存林はスダジイとコジイが主で、ときに丘陵地にはコジイが多い。しかし、極めてかたが残っているコジイ林は非常に少なく、社諏としてもクサマルハチおよびスジヒトツバの生育地として保存されている八束の曾我神社をあげ得るに至らすが、ここではコジイを主にしスダジイ、イヌノキ、ヤマモモ、コパンシナなどをまじえ、タイミンタチバナ、ルリミノキ、サツマルリノキなどが多い（山中 1953）。林は狭くやや荒れている。

（3）土佐清水

(a) 下の加江一以布利海岸の崖にウバメガシ林があり、丘陵地にスダジイ林が残っているが、タブ林はほとんど見られない。ただ、下の加江から大崎にいたる間、ここに直進付近にはホルトノ
Table 2. Quercus phillyraeoides community (Pittosporo-Quercetum phillyraeoidis)

<table>
<thead>
<tr>
<th>Quadrat number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of species</td>
<td>34</td>
<td>23</td>
<td>24</td>
<td>24</td>
<td>23</td>
<td>20</td>
<td>25</td>
<td>21</td>
<td>29</td>
<td>26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Characteristic and differential species of association</th>
<th>Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quercus phillyraeoides</td>
<td>T2 SH 4.4 3.4 2.3 4.4 5.5 4.4 3.4 4.4 5.4 4.4</td>
</tr>
<tr>
<td>Pittosporum tobira</td>
<td>T2 SH 2.2 3.3 3.3 3.2 1.2 2.2 + 2.2 1.2</td>
</tr>
<tr>
<td>Eurya emarginata</td>
<td>T2 SH +.2 1.2 2.2 1.2 + + 1.1 +</td>
</tr>
<tr>
<td>Eryngium japonicus</td>
<td>SH 1.2 + 1.2 + 1.2 + + + + +</td>
</tr>
<tr>
<td>Ophiopogon japonense</td>
<td>H 2.2 1.2 + 2.2 + + + + + +</td>
</tr>
<tr>
<td>Crepidiastrum keiskeanum</td>
<td>H +.2 + + + + + + +</td>
</tr>
<tr>
<td>Scutellaria indica v. parvifolia</td>
<td>H + + 1.2 + + + + +</td>
</tr>
<tr>
<td>Asparagus cochinchenensis</td>
<td>H + + + + + + + + +</td>
</tr>
<tr>
<td>Pertya scandens</td>
<td>H + + + + + + + + +</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Characteristic and differential species of alliance and class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ligustrum japonicum</td>
</tr>
<tr>
<td>Daphniphyllum teijsmanni</td>
</tr>
<tr>
<td>Camellia japonica</td>
</tr>
<tr>
<td>Illex integra</td>
</tr>
<tr>
<td>Cinnamomum japonicum</td>
</tr>
<tr>
<td>Vaccinium bracteatum</td>
</tr>
<tr>
<td>Myrica rubra</td>
</tr>
<tr>
<td>Ficus erecta</td>
</tr>
<tr>
<td>Gardenia jasminoides f. grandiflora</td>
</tr>
<tr>
<td>Eurya japonica</td>
</tr>
<tr>
<td>Illex rotunda</td>
</tr>
<tr>
<td>Kadsura japonica</td>
</tr>
<tr>
<td>Stauntonia hexaprylla</td>
</tr>
<tr>
<td>Dryopteris pacifica</td>
</tr>
<tr>
<td>Cymbidium goeringii</td>
</tr>
<tr>
<td>Ophiopogon japonicus</td>
</tr>
<tr>
<td>Ardisia crenata</td>
</tr>
<tr>
<td>Ficus nipponica</td>
</tr>
<tr>
<td>Trachelospermum asiaticum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Companions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhus succedanea</td>
</tr>
<tr>
<td>Glochidion obovatum</td>
</tr>
<tr>
<td>Celtis sinensis v. japonica</td>
</tr>
<tr>
<td>Elaeagnus pungens</td>
</tr>
<tr>
<td>Mallotus japonicus</td>
</tr>
<tr>
<td>Pinus thunbergii</td>
</tr>
<tr>
<td>Rosa wichuriana</td>
</tr>
<tr>
<td>Paederia scandens v. mairei</td>
</tr>
<tr>
<td>Smilax china</td>
</tr>
<tr>
<td>Milletia japonica</td>
</tr>
<tr>
<td>Rynchosia volubilis</td>
</tr>
<tr>
<td>Caena valia lineata</td>
</tr>
<tr>
<td>Micanthes sinensis(1)</td>
</tr>
<tr>
<td>(d)</td>
</tr>
<tr>
<td>Farfugium japonicum</td>
</tr>
<tr>
<td>Viola grypoceras</td>
</tr>
<tr>
<td>Pteris dispar</td>
</tr>
<tr>
<td>Cyrtomium falcatum</td>
</tr>
<tr>
<td>Opilionus undulatifolius v. japonicus</td>
</tr>
<tr>
<td>Solidago virgaurea sp. asiatica</td>
</tr>
<tr>
<td>Leptosorus thunbergianus</td>
</tr>
<tr>
<td>Youngia denticulata</td>
</tr>
</tbody>
</table>

No. 1 Rubus sieboldii SH 1.2, Elaeagnus macrophylla SH 1.2, Arundinaria simonii S + 2, Dioscorea quinqueloba S +, Tylophora japonica H +, Carex brunnea H + 2, Onychium japonicum H + 2, Lygodium japonicum H +
No. 2 Elaeagnus glabra S +, Dioscorea gracilipila S +, Stephania japonica H +
No. 4 Fagara mantchurica SH +, Carex breviculmis H + 2, Lespedeza pilosa H +, Polygala japonica H +, Cirsimaritimum H +
No. 5 Cocculus trilobus H +, Lonicera japonica H +
No. 6 Cryptinus hastatus H. + ．
No. 7 Cinnamomum camphora Tz. +，Liriope minor H. +，Dioscorea tenuipes H +
No. 9 Pseudozasa japonica S. 1. 2，Youngia japonica H. +，Commelina communis H +

キが多く多少のタブをまじえており，これがタブ＝ホルトノキ林のなどと思われるのは，下の加江の社猿でスダジイ林の下部にタブ，イヌノキ，ホルトノキなどの混生が見られることからも察せられる（第8表）。スダジイはときにコジイをまじえ，アラカン，イヌノキなどをともなうこともあり，タイミンタチバナ，ミサオノキなどが林内に多く，林床にはオオカズマの繁茂がみられ，大斜にはヨゴレイタチシダがある（第9表）。やや内陸の乾燥地にはしばしばコジイも多いが，組成的にはスダジイ林とおなしである。

（b）足摺岬 四国の西南部で最もよく森林の残っているのが足摺岬である。もっとも岬の国有林と白亜山以外ではやや二次林が多く，そのため残された林も全般からみれば一部にすぎない（山中1953）。

足摺岬で最も自然なのはタブ，ホルトノキ，ナギ，ヤブニッケイ，パリバリノキ，イヌノキなどを主とし，イヌピオ，ヤブツバキ，イズセンリョウ，フウツウカズラ，ホソカナラビ，カツモウイノデなどのよく茂った谷ぞいの森林である。なお貯蔵の林でも海岸よりではやや樹高が低くなっている，金剛福寺前に見られるようにオオワハナやクワズイモが繁茂しているところがある。また，ところによってはタブを欠いて，足摺の象徴のようにいわれるヤブツバキまたはトベラとマサキが優占する。

スダジイはタブ林に混生することが少なく，丘陵地で優位にたつが，スダジイータイミンタチバナ群落のよい残存林はほとんど見られない。しかし，白亜山の頂上近くではアカガシとイヌノキをともなったシーカー林のみかたちをつくっているのは注目すべきものである，この林はあきらかに海岸ぞいのスダジイ林とは組成的に異っている。

ウノメガシ林はしばしばクロマツをともない，とくに足摺岬西方の山壁付近を中心によい林を見られる。

足摺岬にはビロウそのほかの南方系植物が生育しているが，ビロウの生育範囲はどこ一部に限られ，森林のおもな組成要素とはなっていない。

（c）潮水 潮水の周辺で代表的な森林の見られるのは鹿島で，かつては非常によく保存されていながらに新は谷によって市街地とむすされたこともあって，かなり荒廃している。この林は佐賀町鹿島とおなじくスダジイとタブの混生林であり，イヌノキが多くそれほかヤマモモ，ヤマモガシ，ツゲモチ，コンバンモチなどに大木があり，林床にはコンバナカナラビが多い（山中1953，館脳，辻井，沢沼1959）。

加久見の社猿はヤッコソウの発見地として知られているが，これはスダジイを優占種としてタブ，ヤマモガシ，イヌノキなどをまじえた林であり（山中1962），やはりスダジイとタブの混生林とみなすべきである。加久見から北の低山地も，国有林の伐採でとの自然林はほとんど残っていないが，スダジイ林であったことはたしかで，その北側が横道の社猿に見られ，スダジイとイヌノキの混生林下にオオカズマが多い（第9表）。

（d）三崎＝かずき 三崎＝かずきをを中心とした風景と海岸公園で眺光をあびているところであるが，陸上植生は海岸のウノメガシ林とトベラ，マサキなどをとめないうクロマツ林のほかに，タブ林およびシイ林には原生状態がほとんど残っていない。

ウノメガシ林がよくみられるのは下川口以西で，片片と鵡浦津の間の余立山国有林はその代表的なものである（館脳，辻井，沢沼1959）。南東に急斜面では樹高4－10mのウノメガシが外観ほとんどで林ないしの鵡浦津に近い状態をなし，林床にはヒトツバが多く，北面よりではウノメガシに代ってヤブツバキが優占し，林床もホソカナラバピまたはコンバナカナラビになる（第3表）。多少の人為によ
Table 3. Quercus philyraeoides community (Pittosporo-Quercetum philyraeoidis)

<table>
<thead>
<tr>
<th>Quadrat number</th>
<th>29</th>
<th>30</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of species</td>
<td>5</td>
<td>6</td>
<td>25</td>
<td>23</td>
<td>19</td>
<td>18</td>
<td>19</td>
<td>28</td>
<td>26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Characteristic and differential species of association</th>
<th>Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quercus philyraeoides</td>
<td>T<sub>2</sub>S<sub>H</sub></td>
</tr>
<tr>
<td>Pittosporum tobira</td>
<td>T<sub>2</sub>S<sub>H</sub></td>
</tr>
<tr>
<td>Eurya emarginata</td>
<td>SH</td>
</tr>
<tr>
<td>Pterostis lingua</td>
<td>H</td>
</tr>
<tr>
<td>Scutellaria indica var. parvifolia</td>
<td>H</td>
</tr>
<tr>
<td>Chrysanthemum japonense</td>
<td>H</td>
</tr>
<tr>
<td>Rhaphiolepis umbellata v. integerrima</td>
<td>H</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Characteristic and differential species of alliance and class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machilus thunbergii</td>
</tr>
<tr>
<td>Ropanacea nerifolia</td>
</tr>
<tr>
<td>Ligustrum japonicum</td>
</tr>
<tr>
<td>Camellia japonica</td>
</tr>
<tr>
<td>Myrica rubra</td>
</tr>
<tr>
<td>Eurya japonica</td>
</tr>
<tr>
<td>Vaccinium bracteatum</td>
</tr>
<tr>
<td>Daphniphyllum teijsmanni</td>
</tr>
<tr>
<td>Ficus erecta</td>
</tr>
<tr>
<td>Gardenia jasminoides f. grandiflora</td>
</tr>
<tr>
<td>Piotinia glabra</td>
</tr>
<tr>
<td>Arundinaria affine</td>
</tr>
<tr>
<td>Cinnamomum japonicum</td>
</tr>
<tr>
<td>Ardisia crenata</td>
</tr>
<tr>
<td>Castanospermum cuspidatum var. sieboldii</td>
</tr>
<tr>
<td>Elaeocarpus sylvestris var. ellipticus</td>
</tr>
<tr>
<td>Neolitsea sericea</td>
</tr>
<tr>
<td>Kadsura japonica</td>
</tr>
<tr>
<td>Dryopteris pacifica</td>
</tr>
<tr>
<td>Cymbidium goeringii</td>
</tr>
<tr>
<td>Arachniodes pseudoaristata</td>
</tr>
<tr>
<td>Arachniodes aristata</td>
</tr>
<tr>
<td>Stantonia hexaphylla</td>
</tr>
<tr>
<td>Lemmaphyllum microphyllum</td>
</tr>
<tr>
<td>Dryopteris erythrosora</td>
</tr>
<tr>
<td>Stephanotis luteaeflora v. japonica</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Companions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glochidion obovatum</td>
</tr>
<tr>
<td>Callicarpa japonica v. luxurians</td>
</tr>
<tr>
<td>Deutzia scabra</td>
</tr>
<tr>
<td>Rhododendron weynichii</td>
</tr>
<tr>
<td>Rhus succedanea</td>
</tr>
<tr>
<td>Millettia japonica</td>
</tr>
<tr>
<td>Smilax chinensis</td>
</tr>
<tr>
<td>Paederia scandens var. mairei</td>
</tr>
<tr>
<td>Farfugium japonicum</td>
</tr>
<tr>
<td>Miscanthus sinensis</td>
</tr>
<tr>
<td>Lepisorus thunbergianus</td>
</tr>
<tr>
<td>Cryptinus hastatus</td>
</tr>
<tr>
<td>Nephruphus auriculata</td>
</tr>
</tbody>
</table>

No. 22 Aristolochia kaempferi H +, Lonicera japonica H +
No. 23 Mallotus japonicus H +, Onychium japonicum H +
No. 25 Lespedeza pilosa H +
No. 27 Xylosma congestum T₂H +, Premna japonica T₂ +, Pteris dispar H +, Microlepia marginata H +, Aquilegia adoxaoides H +, Carex lenta H +, Pinellia tripartita H +
No. 28 Actinidia rubra T₂ 1.1, Fagara alicantoides T₂ +, Carex brevicolmis H +
る被害のあともあるが、ウバメガシとヤブツバキの林としては、この地域で最もよくまとまってい
るところといえる。

片磐の社叢にはタブが多く、イスノキとホルトノキをまじえ、林床にはホソバカナワラビのほか
ヤマアイ、ノシランなどがある。林は荒れているが、タブーホルトノキ林のもとのすがたがいくらか
残っている。

スダジイ林では益野川中流域の川山有林のまったく二次林化したなかにとり残されている林
が、ひとつの例としてあげられる（表 9 表）。これはスダジイとコジーのほかイスノキ、ヒメユズ
リハ、モチノキなどの混生林でヤブツバキ、サカキ、タイミンタチバナなどが多く、林床にオオカ
ゲマが生じ組成からはスダジイタイミンタチバナ群落である。

（e） 今の山 土佐浦市と三原村の境にある海拔 865 m の山で、幅広地方南部のいわゆる伊予南部
地方で最も高いところである。天然林はこの山地でもほとんど伐採されずして、700 m 以上の頂上近
くにわずかに残っているにすぎない。この林はアカシギが主であるが、ところによってモミをまじ
え、林内にはシキミ、サカキおよびハイノキが多く（第12表）。この地域における暖温帯林の最上
部を代表するモミーカシ型の林である。

（4） 大 月

（a） 小才角一古万目 この海岸地域にはウバメガシ林、タブーホルトノキ林およびスダジイ林
があるが、保存のよい残存林はきわめて少ない。ウバメガシ林はウバメガシシートレバー群落であり
（第 3 表）。尾瀬の海岸にはウバメガシとタブが混生して林床にノシランの多いところがある。こ
の尾瀬に於ける社叢はスダジイ、タブ、イスノキ、ホルトノキなどの混生林で（第 8 表）。よく乾
燥したところに斯ダジイが多く、イスノキの優占するところもある。かつてタブのみとなつた林が
あった古万目では（山中 1954）。その後すっかり伐られて、あとかたを憶ふこともできない。

（b） 大堂一栄島 古万目以西の四国本土の西南端は、大堂海岸の名で足摺固定公園でも最も豪
壮な景観として知られている。大堂山有林は断崖にそんだ急斜面で、林は比較的よく残っている
が、以前伐られたあとがはっきりとわからない。しかし、一部にはもとの状態を保っているところ
もあり、優占種はタブを欠いてホルトノキである。ホルトノキは高さ 20 m に達し、ほかに高木
樹種としてヤマモモ、ヤブツバキ、ヒメユズリハなどをまじえ、林内にイスビワ、タイミンタチバ
ナ、クロキなどが多、林床にはホソバカナワラビとイズゼリョウが最も普通である（第 6
表）。

大堂海岸の西部に於いて観音岩付近には、クロマツをも含んだウバメガシの群落がよく発達して
いる（山中 1954）（第 4 表）。林の疎開したところにはピロウドカジチゴ、ナガバキイチゴ、オ
オバライチゴ、クサイチゴなどが多、崖にはノジギクが群落をつくっている。

栄島は金岩がよくひらけ、極集のもかげはごく一部にしか見られない。タブを主としアコウを
まじえ、モクタチバナが多く、林下にフウウガラサ、ツルソバ、ツナレアマツル、キシュウ
スケ、ムサシアブミなどが繁茂する。

（c） 弘見一泊浦 弘見付近は海岸からややはなれた丘陵地で、わずかに残る社叢の状態から気
候的極種はコジーとスダジイの混生林と思われる。イスノキ、モチノキ、ヤマビワ、コパンモチ、
ヤブツバキ、ヒサカキ、タイミンタチバナ、クロバイ、ミミズバイ、クロキなどがおもな組成要素
となっている（山中 1962）。海岸よりの沿岸では亜優種はスダジイとしてコジーを欠きタブを
まじえタイミンタチバナが多くなるが（山中 1953），かつてよく残っていた社叢も現在ではいち
じるしく荒れている。こうしたスダジイ林に接して乾燥した土壌の多いところでは、林の組成はよ
く似ているが優占種はウバメガシに代っている。ときに、弦場鼻の鰻林には組成の簡単なウバメ
ガシシートタイミンタチバナ群落がみごとな林をつくっており（山中 1953，1958）。これは現在も保
Table 4. *Quercus philllyraeoides* community (*Pittosporo-Quercetum philllyraeoidis*)

<table>
<thead>
<tr>
<th>Quadrat number</th>
<th>37</th>
<th>38</th>
<th>39</th>
<th>40</th>
<th>41</th>
<th>78</th>
<th>79</th>
<th>80</th>
<th>81</th>
<th>82</th>
<th>83</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of species</td>
<td>15</td>
<td>12</td>
<td>8</td>
<td>7</td>
<td>12</td>
<td>7</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Characteristic and differential species of association</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Quercus philllyraeoides</td>
<td>TSH 4.5 5.5 3.3 4.4 4.4 5.5 5.4 5.5 4.4 5.5</td>
</tr>
<tr>
<td>Pittosporum tobira</td>
<td>TSH 2.3 1.2 + 1.2 1.2 2.2 1.2 + 1.2 + 1.2</td>
</tr>
<tr>
<td>Eurya emarginata</td>
<td>SH 2.2 2.2 1.2 1.2 1.2 + + 1.2</td>
</tr>
<tr>
<td>Rhaphiolepis umbellata v. integerrima</td>
<td>SH + + + + + +</td>
</tr>
<tr>
<td>Euonymus japonicus</td>
<td>S + + + + + + + +</td>
</tr>
<tr>
<td>Chrysanthemum japonense</td>
<td>H + 2 + + + + +</td>
</tr>
<tr>
<td>Scutellaria indica v. parvifolia</td>
<td>H + + + + + +</td>
</tr>
<tr>
<td>Pertya scandens</td>
<td>H + + + + + +</td>
</tr>
<tr>
<td>Pyrrhosia lingua</td>
<td>H + + + + + + + +</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Characteristic and differential species of alliance and class</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ligustrum japonicum</td>
<td>TSH 1.2 + 2.2 2.2 1.2 + + + + +</td>
</tr>
<tr>
<td>Myrica rubra</td>
<td>TSH 2.2 + + + + + + + +</td>
</tr>
<tr>
<td>Vaccinium bracteatum</td>
<td>TSH + + + + + + + + +</td>
</tr>
<tr>
<td>Cinnamomum japonicum</td>
<td>TSH + + + + + + + + +</td>
</tr>
<tr>
<td>Gardenia jasminoides f. grandiflora</td>
<td>TSH 1.2 + + + + + + + + +</td>
</tr>
<tr>
<td>Daphniphyllum tesiemanni</td>
<td>SH + + + + + + + + +</td>
</tr>
<tr>
<td>Rapanaea nertifolia</td>
<td>SH 1.2 + + + + + + + +</td>
</tr>
<tr>
<td>Cymbidium goeringii</td>
<td>H + + + + + + + +</td>
</tr>
<tr>
<td>Trachelospermum asiaticum</td>
<td>H + + + + + + + + +</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Companions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinus thunbergii</td>
<td>TSH + 2.2 3.3 3.4 4 + + 1.1 1.1 3.3 2.2</td>
</tr>
<tr>
<td>Smilax china</td>
<td>S + + + + + + + + + +</td>
</tr>
<tr>
<td>Miscanthus sinensis</td>
<td>H 2.2 2.3 + 2.2 + + + + + + +</td>
</tr>
<tr>
<td>Fargugium japonicum</td>
<td>H 1.2 1.2 + 2 + + + + + + + +</td>
</tr>
<tr>
<td>Liriope minor</td>
<td>H 2.3 + 2 + + + + + + + +</td>
</tr>
<tr>
<td>Hemerocallis littorea</td>
<td>H 1.2 + + + + + + + +</td>
</tr>
<tr>
<td>Lepisorus thamergrianus</td>
<td>H + + + + + + + + + +</td>
</tr>
<tr>
<td>Heteropappus hispidus</td>
<td>H + + + + + + + + + +</td>
</tr>
</tbody>
</table>

No. 37 *Elaeagnus umbellata* S + 2, *Brachypodium sylvaticum* H + 2, *Viola grypoceras* H +
No. 78 *Deutzia scabra* S +
No. 80 *Sedum makinai* H +
No. 82 *Rhus succedanea* T 1.1
No. 83 *Rhododendron weyrichii* S + 2

護されている。

（5）沖の島

行政上は宿毛市に入るが、沖の島は四国西南端の離島で、この付近にはほかにも鵺来島、姫島、びろう島などの小さな島があり、姫島や二並島には現在もビロウが多い。極相林はやはりほとんど社叢のみで、タブおよびホルトノキを主とし、とくによりスダジイを多く見あえる（山中 1954）。ウバメガ林にはウバメガシーコング群落が見られるが、これは二次のものとみなされる。

（6）宿毛

ウバメガ林は海岸ぞいにひろしく見られるが、タブ林およびシイ林にはまとまった残存林がほとんどない。宿毛市の大島や片島にはタブのほかアコウ、ホルトノキなどがあるが、調査の対象となる林分がなく、また海岸よりのスダジイ林や内陸のコジイ林も荒れがいちじるしく、近年になって
Table 5. *Quercus phillyraeoides* community (*Pittosporo-Quercetum phillyraeoidis*)

<table>
<thead>
<tr>
<th>Quadrat number</th>
<th>42</th>
<th>43</th>
<th>55</th>
<th>56</th>
<th>57</th>
<th>58</th>
<th>59</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of species</td>
<td>11</td>
<td>14</td>
<td>25</td>
<td>15</td>
<td>8</td>
<td>14</td>
<td>16</td>
<td>19</td>
</tr>
</tbody>
</table>

Characteristic and differential species of association

<table>
<thead>
<tr>
<th>Quercus phillyraeoides</th>
<th>Ts</th>
<th>SH</th>
<th>5.5</th>
<th>3.3</th>
<th>4.4</th>
<th>5.5</th>
<th>3.3</th>
<th>5.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pittosporum tobra</td>
<td>Ts</td>
<td>SH</td>
<td>*</td>
<td>1.2</td>
<td>+</td>
<td>*</td>
<td>+</td>
<td>1.2</td>
</tr>
<tr>
<td>Euonymus japonicus</td>
<td>SH</td>
<td>*</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Scutellaria indica v. parvifolia</td>
<td>H</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Pyrrhosia lingua</td>
<td>Ts</td>
<td>SH</td>
<td>5.5</td>
<td>3.4</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

Characteristic and differential species of alliance and class

<table>
<thead>
<tr>
<th>Ternstroemia gymnanthera</th>
<th>Ts</th>
<th>S</th>
<th>+</th>
<th>*</th>
<th>*</th>
<th>*</th>
<th>*</th>
<th>*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elaeocarpus japonicus</td>
<td>Ts</td>
<td>SH</td>
<td>2.2</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Dendropanax trifidus</td>
<td>Ts</td>
<td>H</td>
<td>+</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Anodendron affine</td>
<td>SH</td>
<td>*</td>
<td>+</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Ilex integra</td>
<td>S</td>
<td>*</td>
<td>+</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Rapanaea neriifolia</td>
<td>Ts</td>
<td>SH</td>
<td>3.3</td>
<td>4.4</td>
<td>3.3</td>
<td>2.2</td>
<td>1.1</td>
<td>+</td>
</tr>
<tr>
<td>Camelilla japonica</td>
<td>Ts</td>
<td>SH</td>
<td>1.2</td>
<td>*</td>
<td>2.2</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Myrica rubra</td>
<td>Ts</td>
<td>SH</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Ficus vittata</td>
<td>SH</td>
<td>*</td>
<td>2.2</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Ligustrum japonicum</td>
<td>S</td>
<td>*</td>
<td>1.2</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Eurya japonica</td>
<td>S</td>
<td>*</td>
<td>1.2</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Vaccinium bracteatum</td>
<td>S</td>
<td>*</td>
<td>+</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Ficus erecta</td>
<td>SH</td>
<td>*</td>
<td>+</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Arachniodes aristata</td>
<td>H</td>
<td>*</td>
<td>1.2</td>
<td>*</td>
<td>2.2</td>
<td>1.2</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Cymbidium goeringii</td>
<td>H</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Stephanotis lutchuensis v. japonica</td>
<td>H</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Dryopteris pacifica</td>
<td>H</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

Companions

<table>
<thead>
<tr>
<th>Pinus thunbergii</th>
<th>T1</th>
<th>1.1</th>
<th>3.3</th>
<th>*</th>
<th>*</th>
<th>*</th>
<th>*</th>
<th>*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Callicarpa japonica v. luxurians</td>
<td>T1</td>
<td>SH</td>
<td>*</td>
<td>+</td>
<td>*</td>
<td>+</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Deutzia scabra</td>
<td>SH</td>
<td>*</td>
<td>+</td>
<td>2.2</td>
<td>*</td>
<td>2.2</td>
<td>+</td>
<td>*</td>
</tr>
<tr>
<td>Rhus succedanea</td>
<td>SH</td>
<td>*</td>
<td>+</td>
<td>2.2</td>
<td>*</td>
<td>1.2</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Smilax china</td>
<td>SH</td>
<td>*</td>
<td>2.2</td>
<td>1.2</td>
<td>+</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Cocculus trilobus</td>
<td>SH</td>
<td>*</td>
<td>+</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Dicranopteris linearis</td>
<td>SH</td>
<td>*</td>
<td>3.3</td>
<td>5.5</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Paederia scandens v. mairei</td>
<td>SH</td>
<td>*</td>
<td>*</td>
<td>+</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Loniceria japonica</td>
<td>SH</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Carex brevicolmis</td>
<td>H</td>
<td>*</td>
<td>+</td>
<td>2.2</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Nephelepis auriculata</td>
<td>H</td>
<td>*</td>
<td>+</td>
<td>2.2</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Rosa xochitlana</td>
<td>H</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Miscanthus sinensis</td>
<td>H</td>
<td>*</td>
<td>3.3</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Sedum makinori</td>
<td>H</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Lirioper minor</td>
<td>H</td>
<td>*</td>
<td>*</td>
<td>2.2</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Lepisorus thibergianus</td>
<td>H</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

No. 42 *Pinus densiflora T1 1.1, Rhus trichocarpa S +*
No. 55 *Fraxinus sieboldiana S 1.2, Glochidion obovatum S +, Mallotus japonicus S +, Lygodium japonicum S +, Gleichenia japonica H 1.2*
No. 56 *Prenna japonica S +, Onychium japonicum H + 2, Carex lenta H + 2*
No. 58 *Rhus japonica T1 +, Clematis ternifolia S H +, Farfugium japonicum H +*
No. 59 *Lespedeza buergeri SH 1.2, Arundinella hirta H + 2, Lepisorus uchiyamae H +, Dianthus japonicus H +*
No. 60 *Rhododendron weyrichii T1 S 1.2, Ampelopsis brevipedunculata H +, Polygala japonica H +, Dioscorea tokoro H +, Liliium leichtlinii v. tigrinum H +*

伐られたところも少なくない。

(7) 城辺・御荘

タブがほとんど優占種とならず、気候的極相として残っているのはおもにシイ林である。スザイ林のよい例が御荘町大島にて見られ、タブ、モチノキなどをまじえ、林床にはホソバカナワラビが
<table>
<thead>
<tr>
<th>Quadrat number</th>
<th>32</th>
<th>33</th>
<th>34</th>
<th>35</th>
<th>36</th>
<th>67</th>
<th>68</th>
<th>69</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of species</td>
<td>37</td>
<td>30</td>
<td>29</td>
<td>27</td>
<td>26</td>
<td>24</td>
<td>23</td>
<td>39</td>
<td>16</td>
</tr>
</tbody>
</table>

Characteristic and differential species of association

<table>
<thead>
<tr>
<th>Species</th>
<th>T1</th>
<th>T1T2</th>
<th>T1T2S</th>
<th>T2S</th>
<th>T2S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elaeocarpus syzygii v. ellipticus</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Machilus thunbergii</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Anodendron affine</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cyandra cochinchenis s. gerontagea</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Ardisia steiboldii</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Viburnum awabuki</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Ficus punica</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Piper kaderka</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Stephanotis lutea v. japonica</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Arachnoidea aristata</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Elements of Castanopsis cuspidata communities

<table>
<thead>
<tr>
<th>Species</th>
<th>T1</th>
<th>T1T2</th>
<th>T1T2S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ternstroemia gymnanthera</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Myrica rubra</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Carya argentea</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Characteristic and differential species of alliance

<table>
<thead>
<tr>
<th>Species</th>
<th>T1</th>
<th>T1T2</th>
<th>T1T2S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daphne bulbous</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Symlocos lucida</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Michelia compressa</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Steaoniuus hexaphylla</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Raphanae stelarifolia</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Ficus erecta</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Ficus nippica</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Magnolia japonica</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Ardisia crenata</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Daphne kiusiana</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Dryopteris pacifica</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Dryopteris erythrosora</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Kalmia japonica</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Lysimachia sibikaiana</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Characteristic and differential species of class

<table>
<thead>
<tr>
<th>Species</th>
<th>T1</th>
<th>T1T2</th>
<th>T1T2S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cinnamomum japonicum</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Eurya japonica</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Nelitseia sericea</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Lourutruus japonicum</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Camellia japonica</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Lemmaphyllum microphyllum</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Companions

<table>
<thead>
<tr>
<th>Species</th>
<th>T1</th>
<th>T1T2</th>
<th>T1T2S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rubus succedanea</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Celtis sinensis v. japonica</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cinnamomum camphora</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Quercus phillyreaeoides</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Pterocarya stenoptera</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Eucalyptus japnaica</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Alnus japonica</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Lonicera affinis</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Callicarpa japonica</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Prunus japonica</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Gladiolus oblactum</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Malus japonica</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Pittosporum toba</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Rubus steiboldii</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Euonymus japonicus</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Eucalypia japonica</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Desietia scabra</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Parvifolium japonicum</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Carex lenta</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Rubus buergi</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Arisaema limbatum</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Smilax china</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Microlepis strigosa</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cyrtium falcatus</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Notes:

- No. 32 Prunus jamasakura T1 +, Elaeagnus pungens S +, Sceptridium japonicum H +, Calanthe dissecta H +
- No. 33 Elaeagnus umbellata H +, Callicarpa hokokiana H +, Parthenocissus tricuspidata H +
- No. 34 Stachyurus praecox v. matsuzii T1 +
- No. 35 Ficus stipulata T1T2 +
- No. 68 Litsea japonica T1 +, Arisaema thunbergii H +
- No. 69 Eurya enarginata T1SH +, Lepisorus thunbergianus SH +, Nephelepsis uriculata H +, Phosphoris chinensis H +, Scutelaria indica v. parvifolia H +, Galium pogonanthum H +, Youngia japonica H +, Carex breviculmis H +
多い（第8表）。御荘町平城の植生はイチイガシが多いが優占種はスダジイである。また、ここにはハナガシがあるのが注目される（第9表）。亜圏南部の岩水にある小さな島にもツイイがあるが、島の東面にはコジイとコパンモチが多く（第10表）。西むきではウメガシが林に代り（第5表）、ともに林内は乾燥してヒトツバが茂っている。コジイ林はほかに亜圏町の訪問神社にもその片鱗が見られるが、この植生にはイヌマキ、カゴノキ、イヌノキなどの多い林分があり、また二次林と思われるアラカンの優占するところもある（第17表）。これらの植生は全体としてあまり保存がよくなく、大島を除いて直掛けているところが多い。

(8) 海

風景に恵まれ、ことに宇和海の海中公園は多くの観光客を集めており、陸地は人為による影響がいちじるしく、松原山や鹿島などに天然林がよく残っているほどである。そのほか、西海岸の西端には海岸にウメガシ林が茂って自然状態のままのところもあるが、かなり次第に光って林床にコング、ウラジオ、ススキなどの多分範囲がない（第5表）。

松原山は海拔491mの頂上近くに、スダジイをしたシカとイヌノキの混生林があり、足摺の白昼山とおなじように、この地方でのシーカロシ林の組成をうかがうことができる（第11表）。また、この山では頂上までウメガシが生している。

鹿島は伊達港特殊地として伐採をまねかれ、現在も人ねれしたニホンサルとキュウシュウサザが繁殖している。島はクロマツを主とした林がかなり広い面積を占めるが、常緑広葉樹林も残り、ホルトノキ群落がその代表的なものである（第6表）。一部にはタブの優占的なもののあるが、ホルトノキにくらべるとなるかに少ない。いずれの場合も林内にはタイミンタチバナとホソバカナラビが多い。また、北西に面した急斜面には、タブ、ヤブニッケイ、ヒメウスリハ、ヒカキおよびタイミンタチバナを主とした密な低木林があり、林床はいちじるしくまばらである（第7表）。なお、注目されるのはかなり広い範囲にアオギリの林があること、一部ではクロマツをまじえ、林床にはホソバカナラビの優占するところが多い（第18表）。これは、あきらかにホルトノキまたはタブ林に代わる二次林である。

この鹿島にはウメガシ林があるが、イケ林が発達せず、またカシ類を欠き、イヌノキ、コパンモチ、イヌピタ、ツラブキなどが林内にほとんどまったくまったく見られないが、代ってカンノキやマムシグサ類が多いことは、ひとつにはサルとシカの影響があるものと思われる。このことから、海沿にハマゴウ、イワタイゲキなどがよく茂り、ヨウシュチョウセンアサガオが群生していることからもうかがえる。

(9) 内海

傾向としては亜圏、御荘および西海岸と大きくちがいない。海岸ぞいにウメガシ群落があり、またクロマツ林が見られるほか、常緑広葉樹林が自然状態で残っているところはきわめて少ない。林の付近の社叢にはタブ、ホルトノキ、ヤブニッケイ、ウメガシ、アコウなどが生じ、またスダジイの多いところもある。由良半島にいたっては植生の荒れはとくにくいちじるしく、古くからよく耕作され、もとの林はまったく伐られ、ウメガシ林のほかは社叢としても残っているものが多い。ウメガシ林はウメガシシートベラ群落で、林床にはコヤマオウまたはヒトツバの生ずることが多いが、ときにコングが見られる（第4表）。この地方の気候的極相がうかがえる家畜の森林はスダジイ、ヒメウスリハ、ホルトノキなどの混生群落で、アラカンをまじえた林床にはホソバカナラビが優勢である（第8表）。おそらく多少のタブをもなったスダジイホルトノキ林が、本来のすがたと思われる。
Table 7. *Daphniphyllum teijismanii* community (*Rumohro-Machiletem thunbergii*)

<table>
<thead>
<tr>
<th>Quadrat number</th>
<th>Number of species</th>
<th>Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>61</td>
<td>62</td>
<td>63</td>
</tr>
</tbody>
</table>

Characteristic and differential species of association:

- **Machilus thunbergii**
 - T2 S H 2.1 3.2 2.2 1.1

- **Anodendron affine**
 - T2 H 3.3 + + + +

- **Arachnoidea aristata**
 - H (+) + + + +

- **Arisaema ringens**

Elements of *Quercus phillyraeoides* community:

- **Pittosporum tobira**
 - T2 S 1.2 + + + +

- **Eurya emarginata**
 - T2 S + + + +

- **Quercus phillyraeoides**
 - T2 S + + 2.2 + +

- **Litsea japonica**
 - SH + + + +

Elements of *Castanopsis cuspidata* communities:

- **Myrica rubra**
 - T2 S H + 3.2 + + +

- **Ternstroemia gymnanthera**
 - T3 + + + +

Characteristic and differential species of alliance:

- **Daphniphyllum teijismanii**
 - T2 S H 4.4 3.3 2.2 1.1 2.3 3.3

- **Rapanaea nerifolia**
 - T2 S H 1.2 2.2 3.3 2.2 2.2 2.2

- **Kadura japonica**
 - T2 S + + + +

- **Ficus erecta**
 - S H + + + +

- **Artisia crenata**
 - H + + + +

- **Dryopteris pacifica**
 - H + + + +

Characteristic and differential species of class:

- **Cinnamomum japonicum**
 - T2 S H 1.2 1.2 2.2 2.2 3.3 2.3

- **Eurya japonica**
 - T2 S H 1.2 3.3 3.3 3.3 2.2

- **Ligustrum japonicum**
 - T2 S H + + + 1.2 + +

- **Neolitsea sericea**
 - T2 S H + + + + + +

- **Camellia japonica**
 - T2 S + + + + +

Companions:

- **Glechidion obovatum**
 - T2 S H 1.2 + + + 1.2 +

- **Malotus japonicus**
 - T2 S H 1.2 + + + + +

- **Prunus jamasakura**
 - T2 S H + + + + + +

No. 63 *Euonymus fortunei* v. *radicans* H +

No. 64 *Celtis sinensis* v. *japanica* T2 +, *Firmiana platanifolia* T2 +

No. 65 *Cornus brachypoda* T2 +, *Dioscorea tokoro* H +

No. 66 *Rhus succedanea* T2 1.1, *Arisaema thunbergii* H +

(10) 筑 山

宿毛市と愛岐の間にある海抜1065 m，1000 m をこす山としては四国で最も南に位置し，高知および愛岐の県立公園となっている。この山はかつてシイ林とカシ林を主とした常緑広葉樹林におわれていたが，現在では広範囲に伐採されたあとに造林がおこなわれており，海抜约800 m 以上に自然林が残っているにすぎない。
Table 8. Castanopsis cuspidata v. sieboldii community (Rapanaeo-Shiitetum sieboldii)

<table>
<thead>
<tr>
<th>Quadrat number</th>
<th>13</th>
<th>31</th>
<th>50</th>
<th>51</th>
<th>77</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of species</td>
<td>36</td>
<td>36</td>
<td>23</td>
<td>28</td>
<td>26</td>
</tr>
</tbody>
</table>

Elements of Castanopsis cuspidata communities

<table>
<thead>
<tr>
<th>Species</th>
<th>Number</th>
<th>Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Castanopsis cuspidata v. sieboldii</td>
<td>1.2</td>
<td>T1T2SH</td>
</tr>
<tr>
<td>Quercus glauca</td>
<td>3.3</td>
<td>T1T2SH</td>
</tr>
<tr>
<td>Helicia cochinchinensis</td>
<td>3.3</td>
<td>T1T2SH</td>
</tr>
<tr>
<td>Gardenia jasminoides f. grandiflora</td>
<td>3.3</td>
<td>T1T2SH</td>
</tr>
<tr>
<td>Podocarpus macrophyllus</td>
<td>3.3</td>
<td>T1T2SH</td>
</tr>
<tr>
<td>Ternstroemia gymnanthera</td>
<td>1.2</td>
<td>T2SH</td>
</tr>
<tr>
<td>Dendronanthus trifidus</td>
<td>1.2</td>
<td>T2SH</td>
</tr>
<tr>
<td>Symphocalyx glauca</td>
<td>+</td>
<td>S</td>
</tr>
<tr>
<td>Ardisia pusilla</td>
<td>+</td>
<td>H</td>
</tr>
<tr>
<td>Melosoma rigidula</td>
<td>+</td>
<td>H</td>
</tr>
</tbody>
</table>

Elements of Machilus thunbergii community

<table>
<thead>
<tr>
<th>Species</th>
<th>Number</th>
<th>Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elaeocarpus syzygium</td>
<td>2.3</td>
<td>T1T2SH</td>
</tr>
<tr>
<td>Machilus thunbergii</td>
<td>1.1</td>
<td>T1T2SH</td>
</tr>
<tr>
<td>Andradendron affine</td>
<td>1.2</td>
<td>T1T2SH</td>
</tr>
<tr>
<td>Piper kadsura</td>
<td>1.2</td>
<td>T1T2SH</td>
</tr>
<tr>
<td>Actinodaphne longifolia</td>
<td>1.2</td>
<td>T1T2SH</td>
</tr>
<tr>
<td>Ficus pomila</td>
<td>+</td>
<td>S</td>
</tr>
<tr>
<td>Cudrania cochinchinensis v. gerontagea</td>
<td>+</td>
<td>H</td>
</tr>
<tr>
<td>Arachniodes aristata</td>
<td>+</td>
<td>H</td>
</tr>
<tr>
<td>Ophiogogon japonicus</td>
<td>+</td>
<td>H</td>
</tr>
<tr>
<td>Stephanotis lutchuensis v. japonica</td>
<td>+</td>
<td>H</td>
</tr>
<tr>
<td>Ardisia sieboldii</td>
<td>+</td>
<td>H</td>
</tr>
</tbody>
</table>

Characteristic and differential species of alliance

<table>
<thead>
<tr>
<th>Species</th>
<th>Number</th>
<th>Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michelia compressa</td>
<td>2.1</td>
<td>T1T2SH</td>
</tr>
<tr>
<td>Daphniphyllum teijsmannii</td>
<td>1.1</td>
<td>T1T2SH</td>
</tr>
<tr>
<td>Ficus nipponica</td>
<td>+</td>
<td>S</td>
</tr>
<tr>
<td>Rapanaea neriifolia</td>
<td>+</td>
<td>H</td>
</tr>
<tr>
<td>Ficus erecta</td>
<td>1.2</td>
<td>T1T2SH</td>
</tr>
<tr>
<td>Hex rostrata</td>
<td>1.2</td>
<td>T1T2SH</td>
</tr>
<tr>
<td>Trachelospermum asiaticum</td>
<td>1.2</td>
<td>T1T2SH</td>
</tr>
<tr>
<td>Melea japonica</td>
<td>1.2</td>
<td>T1T2SH</td>
</tr>
<tr>
<td>Chloranthus glaber</td>
<td>+</td>
<td>S</td>
</tr>
<tr>
<td>Kadsura japonica</td>
<td>2.1</td>
<td>T1T2SH</td>
</tr>
<tr>
<td>Stauntonia hexaphylla</td>
<td>1.2</td>
<td>T1T2SH</td>
</tr>
<tr>
<td>Damnacanthus indicus (syn. v. microphyllus)</td>
<td>1.2</td>
<td>T1T2SH</td>
</tr>
<tr>
<td>Hedera rhombea</td>
<td>1.2</td>
<td>T1T2SH</td>
</tr>
<tr>
<td>Ardisia crenata</td>
<td>1.2</td>
<td>T1T2SH</td>
</tr>
<tr>
<td>Dryopteris pacifica</td>
<td>1.2</td>
<td>T1T2SH</td>
</tr>
<tr>
<td>Dryopteris erythrosora</td>
<td>1.2</td>
<td>T1T2SH</td>
</tr>
</tbody>
</table>

Characteristic and differential species of class

<table>
<thead>
<tr>
<th>Species</th>
<th>Number</th>
<th>Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cinnamomum japonicum</td>
<td>2.1</td>
<td>T1T2SH</td>
</tr>
<tr>
<td>Distylium racemosum</td>
<td>1.1</td>
<td>T1T2SH</td>
</tr>
<tr>
<td>Hex integra</td>
<td>2.2</td>
<td>T1T2SH</td>
</tr>
<tr>
<td>Cornelia japonica</td>
<td>3.3</td>
<td>T1T2SH</td>
</tr>
<tr>
<td>Neolitsea sericea</td>
<td>1.1</td>
<td>T1T2SH</td>
</tr>
<tr>
<td>Cleyera japonica</td>
<td>2.2</td>
<td>T1T2SH</td>
</tr>
<tr>
<td>Ligustrum japonicum</td>
<td>1.1</td>
<td>T1T2SH</td>
</tr>
<tr>
<td>Parva japonica</td>
<td>+</td>
<td>S</td>
</tr>
<tr>
<td>Lemmaphyllum microphyllum</td>
<td>+</td>
<td>H</td>
</tr>
</tbody>
</table>

Companions

<table>
<thead>
<tr>
<th>Species</th>
<th>Number</th>
<th>Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhus succedanea</td>
<td>1.2</td>
<td>T1</td>
</tr>
<tr>
<td>Cinnamomum camphora</td>
<td>2.1</td>
<td>T1</td>
</tr>
<tr>
<td>Pittosporum tobira</td>
<td>2.2</td>
<td>T1</td>
</tr>
<tr>
<td>Pseudosasa japonica</td>
<td>1.2</td>
<td>T1</td>
</tr>
<tr>
<td>Euonymus japonicus</td>
<td>1.2</td>
<td>T1</td>
</tr>
<tr>
<td>Smilax china</td>
<td>+</td>
<td>S</td>
</tr>
<tr>
<td>Farfugium japonicum</td>
<td>+</td>
<td>H</td>
</tr>
</tbody>
</table>

No. 13 Lepisorus thunbergianus T + 2. Elaeagnus multifidus S 1.1, Microlepia strigosa H 1.2, Ampelopsis brevipedunculata H +, Paederia scandens v. macr e H +, Pieris disparr H +, Desmodium oxyphyllum H +

No. 31 Stachyum praeconum S + 2, Cephalotaxus harringtonia S +, Carex lenta H + 2, Cyclotis acuminata S +, Gyrostemma pentaphyllum H +, Arisema limbatum H +

No. 51 Calliandra japonica S +

No. 77 Lonicera affinis T + 2, Prunus jamasakura T +, Rhododendron weyerichii S +
四国西南部の森林植生
（山中）

高知県側の山麓海抜100-150mには局地的ながらシイ林が残されているが、これはスダジイを優占種としてイスノキをまじえ、ヤブツバキ、サカキ、タイミンタチバナなどをともない、林床にはコバノカワラツキが多い（第9表）。シイ林は現在は残っていない中腹を含んでブナガシが多くまえ、上部では今も見られるブナガシを主体とする林になり、シキミおよびハイノキが林内に多くなる。

このブナガシ林はところによりモミをまじえて頂上近くにまでおよび、上部でもブナ林は出現せず、ヒノキ、コウヤマキなどがあらわれる。また、ハリモミがかなり広い範囲に生じ、とくに愛媛県側の斜面に多く高さ20-25m、幅高直径45-60cm、カマツカ、アケボノツツジ、セビ、タンナサワタキ、コグツツギなどの亜高木や低木をともない、林床にはミヤコザサが生じヒメスゲが多い。頂上近くではスギモミを欠き、アケボノツツジやシロ（ベニ）ドウダンを主とした低い落葉樹林になっている（第15表）。

ヒノキおよびコウヤマキはツガをまじえて尾根筋や露岩地に多く見られ、ホンシャクナゲをもなう土壌の極相となっている（第14表）。

（11）黒 崎

四万十川の支流黒崎川の上流地域で、愛媛県津島町および宇和島市の滑床山地と接する高知県側が黒崎山地である。海抜200m前後から最高点で1200mに達し、森林がよく発達していたが、現在では国営林の施業がすすみ、天然林がほとんど姿を消したのが惜まれる。海抜400m以下ではスダジイが多く、タブ、イスノキなどをまじえるが、500m以上ではモミまたはツガが多くなり、とに地形のわるいところではツガが優占する（第13表）。林内の常緑樹はサカキとハイノキを主とし、上部ではアカガシとシキミが多くなり、最高部ではブナが出現してアカガシと混生する。こうした傾向は、県境を挟む滑床山地においてもよく観察される。

（12）滑 床

目黒川上流の滑床渓谷を中心に最高点高月山（1229m）、鬼が城山、八面山、三本杭などにかこまれた範囲で、足摺国立公園の一部となっている。スギおよびヒノキの造林が多く、ことにスギには美林があるが、天然林もなお残存し、シイ林からブナ林までが見られ、宇和島市周辺の森林とあわせて、四国南部の森林の垂直分布を見るには適当なところである（山中1953）。

宇和島市街付近のシイ林はコジイを主としているが、滑床渓谷でも海抜500m以下にコジイまたはスダジイの林が残っている。ときにイスノキをまじえ、まれにタブがあり、ヤブツバキ、サカキ、ヒサカキ、シキミなどが生じ、林床にはキシノオが散生している（第10表）。また、渓谷上流にはアオガシがしばしば優占している。

500m以上ではモミまたはツガとアカガシの混生林となるが、谷底ではケヤキの多いところがある。1000m以上ではブナがあらわれ、八面山から三本杭にいたる境界いはブナースタケ（第16表）またはブナミヤツツザ群落（山中1953）が見られ、ところどころでアカガシが混生する。鬼が城山から高月山にかけては、稜線にそってホンジャクナゲの繁茂がみられ、ササ類を欠き、高月山ではブナとアカガシの混生林下にシキミ、ハイノキ、ホンジャクナゲのほか多くの多年草をともなう群落が出現している（第16表）。

5． 森林の環境と組成

（1）ウバメガシ林（第2－5表）

足摺、大堂、沖の島および滑床山地に花こう岩の露出があるが、そのほかは中生層の四万十川層群を占める範囲がひろく、砂岩および泥岩を主とした堆積岩が多い。この地域に関しては、地質お
よび母岩との特別な関係は認められない。

地形および土壌の影響が最もいちじるしいのが、低地ではウバメガシ林であって、調査地の全域にわたって、海岸ぞいの露岩地や急斜面に見られる。これはおよそ自然的な土壌の極相であるが、場合によっては二次的に生じたと考えられるものもあり、シイ林が伐採されるとの土地が荒廃してウバメガシ林に代ったとみなされる例や、ウバメガシそのものの萌芽林も少なくない。大方町上川口では多くのハゼが見られ、シイの萌芽林と組成的な類似を示し、井の上の海岸の二次林群にはアカメガシワなどが混生する。

ウバメガシ林は相対的にはギャリグ型とマッキー型があり、また上層にクロマツをともなう場合がある。マッキー型の群落ではタイミンタチバナの多いことがあり、弦場原、泊浦、城辺などにその例がある。このようなウバメガシタイミンタチバナ群落ではしばしばヤマモモ、モチノキなどをともなない、気候的極相としては立地がウバメガシ林よりも近いスダジイ林と、共通の組成要素の多いことがある。林床は一般にまばらなヒトツバの優占するところが普通であるが、ときにツワブキまたはタマシギが多い、二次林では往々にしてコンギまたはススキが繁茂している。

このような場所と環境により組成要素の量的なちがいはかなり大きいが、これらはウバメガシ、トベラ、マラバサリングバイ、マサキ、ハマヒサカサ、コノポタツナミ、ノジギク（アンサリノジギクを含む）、クロサギキザなどがよりまとまりをし、ウバメガシトベラ群落である。コンギを林床にもつものは、ウバメガシコーディ群集（今井 1965）として報告されたものによく似た組成であるが、コンギまたはウラジロの多いほかは、とくにしっかりした区分種をもたない四国西南部のものが、群集として区別できるかどうかは疑問である。

（2）タブ・ホルトノキ林（第6表）

この地域で最も暖かい足摺岬の平均気温は17.7℃、年間降水量は2571 mmで、暖かさの指数は152.8である。タブガヤの雨量係数は145.3である。したがって、海岸よりではタブ林の発達がどうせん考えられる。しかし、降水量は前後水準値では少なくなり、沖の島では雨量係数が98－108、さらに北上して宇多島でも98.5になる。瀬戸内地方でタブ林を近いところがある原因を降水量が少ないことと帰さなければならないと考え（山中 1962）、この地域の西側の海岸では、すでに南部でタブ林の成立の限界にきているところがあるとみななければならない。事実、沖の島にはタブ林が存在するが、むしろスダジイを多くまじえられた林もあり、大空海岸では優占種がホルトノキに代っている。愛媛県南部ではタブの生育はもちろん見られ、局的にやや優勢なところもあるが、タブ林としてもまとまった林ではないと存在せず、宇多島にあってタブ型の森林は、優占種をまったく別の樹種にゆずってしまっている。タブ林のこうした傾向を、降水量だけが支配するものとはいえない場合もあるが、環境要因として大きな影響があることはたしかである。

土地的にタブ林に適した立地は、海に近くるとに谷すいに沖縄の土壌の深い湿ったところで、シイ林とは対照的である。足摺岬に残っているタブ林は、環境からも組成からもこの地域のタブ林を代表しているが、そのほかのところでは、土壌的な環境のためたむきにしたかって、タブとシイの混生する林が少なくない。佐賀町鹿島、佐土佐市鹿島など狭くて乾きやすい小島では、タブ林とスダジイ林の中間的な森林となっている。沖の島のタブ林にもそのような例がある。大空または西海町鹿島でタブを欠いたホルトノキ林が見られるときは、構成的な植生のほか、乾燥しやすい地形と土壌および風の影響も無視できないと思わわれる。

このように環境によりタブを欠くかホルトノキが劣勢になるのかがいははあるが、足摺岬や沖の島で見られるように、もともとタブとホルトノキのつながりは密であり、したがってタブ林とホルトノキ林をとくに区別する組成的な特徴は乏しい。これからは、タブおよびホルトノキのほかフウトウカズラ、サカキカズラ、ホソバカナワリビなどによりタブホソバカナワリビ群集にまとまれ
<table>
<thead>
<tr>
<th>Layer</th>
<th>Colony</th>
<th>Community</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1S</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>T1H</td>
<td>0.1</td>
<td>+</td>
</tr>
</tbody>
</table>

Table 1. Castanopsis cupidata v. sieboldii community (Ruprecht-Shiitake's sieboldii)
<table>
<thead>
<tr>
<th>Quadrat number</th>
<th>44</th>
<th>45</th>
<th>48</th>
<th>99</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of species</td>
<td>22</td>
<td>19</td>
<td>38</td>
<td>37</td>
</tr>
</tbody>
</table>

Elements of *Castanopsis cuspidata* communities

<table>
<thead>
<tr>
<th>Species</th>
<th>Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Castanopsis cuspidata</td>
<td>T<sub>1</sub>T<sub>2</sub>S<sub>H</sub> 3.2 2.2 4.3 3.3</td>
</tr>
<tr>
<td>Elaeocarpus japonicus</td>
<td>T<sub>1</sub>T<sub>2</sub>S<sub>H</sub> 3.3 3.3 4.3 4.3</td>
</tr>
<tr>
<td>Podocarpus macrophyllus</td>
<td>T<sub>1</sub> H 2.1</td>
</tr>
<tr>
<td>Quercus glauca</td>
<td>T<sub>1</sub>S H + 2 2 2</td>
</tr>
<tr>
<td>Ternstroemia gymnanthera</td>
<td>T<sub>2</sub>S H 1.2 1.2 4.3 4.3</td>
</tr>
<tr>
<td>Phoeonia glabra</td>
<td>T<sub>1</sub>S H 2.1 2.1</td>
</tr>
<tr>
<td>Dendropanax trifidus</td>
<td>T<sub>1</sub>S H + +</td>
</tr>
<tr>
<td>Vaccinium bracteatum</td>
<td>T<sub>1</sub>S H + +</td>
</tr>
<tr>
<td>Randia cochinchinensis</td>
<td>T<sub>1</sub>S H 3.3</td>
</tr>
<tr>
<td>Gardenia jasminoides f. grandiflora</td>
<td>SH</td>
</tr>
<tr>
<td>Ilex goshtiensis</td>
<td>H 2.2</td>
</tr>
<tr>
<td>Ardisia pusilla</td>
<td>H +</td>
</tr>
<tr>
<td>Arachniodes pseudoaristata</td>
<td></td>
</tr>
</tbody>
</table>

Elements of evergreen *Quercus* communities

<table>
<thead>
<tr>
<th>Species</th>
<th>Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daphniphyllum macropodum</td>
<td>T<sub>1</sub> H</td>
</tr>
<tr>
<td>Illicium religiosum</td>
<td>T<sub>1</sub>S H</td>
</tr>
<tr>
<td>Neolitsea aciculata</td>
<td>T<sub>1</sub>S H</td>
</tr>
<tr>
<td>Quercus sessilifolia</td>
<td>T<sub>1</sub>S H 1.2</td>
</tr>
<tr>
<td>Machilus japonica</td>
<td>T<sub>1</sub>S H + 2</td>
</tr>
<tr>
<td>Plagiozymia japonica</td>
<td>H</td>
</tr>
<tr>
<td>Symplexos myrtalea</td>
<td>H +</td>
</tr>
</tbody>
</table>

Characteristic and differential species of alliance

<table>
<thead>
<tr>
<th>Species</th>
<th>Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machilus thunbergii</td>
<td>T<sub>1</sub> S + 2.2</td>
</tr>
<tr>
<td>Rapanea neriifolia</td>
<td>T<sub>1</sub>S H 3.3 4.4</td>
</tr>
<tr>
<td>Aneodon affinis</td>
<td>T<sub>1</sub>S H + 2 + + +</td>
</tr>
<tr>
<td>Ilex rotunda</td>
<td>SH +</td>
</tr>
<tr>
<td>Ardisia crenata</td>
<td>S + + +</td>
</tr>
<tr>
<td>Diospyros echinomorpha</td>
<td>S + + +</td>
</tr>
<tr>
<td>Daphniphyllum tejsmannii</td>
<td>SH + +</td>
</tr>
<tr>
<td>Elaeagnus reflexa</td>
<td>S + + +</td>
</tr>
<tr>
<td>Maesia japonica</td>
<td>SH + +</td>
</tr>
<tr>
<td>Trachelospermum asiaticum</td>
<td>SH + + +</td>
</tr>
<tr>
<td>Ficus pinnata</td>
<td>S +</td>
</tr>
<tr>
<td>Dryopteris erythroora</td>
<td>H 2.2 + 2</td>
</tr>
<tr>
<td>Hedera rhombea</td>
<td>H + +</td>
</tr>
<tr>
<td>Dryopteris pacifica</td>
<td>H + + +</td>
</tr>
<tr>
<td>Ophiogon japonicus</td>
<td>H + +</td>
</tr>
<tr>
<td>Chloranthus glaber</td>
<td>H + +</td>
</tr>
<tr>
<td>Dranacanthus indicus v. microphyllum</td>
<td>H + + +</td>
</tr>
<tr>
<td>Stauntonia hexaphylla</td>
<td></td>
</tr>
</tbody>
</table>

Characteristic and differential species of class

<table>
<thead>
<tr>
<th>Species</th>
<th>Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distylium racemosum</td>
<td>T<sub>1</sub>S H + 2.1</td>
</tr>
<tr>
<td>Camellia japonica</td>
<td>T<sub>1</sub>S H 1.1 2.2</td>
</tr>
<tr>
<td>Cleyera japonica</td>
<td>T<sub>1</sub>S H + + 2.2</td>
</tr>
<tr>
<td>Eurya japonica</td>
<td>T<sub>1</sub>S H + + + 1.2</td>
</tr>
<tr>
<td>Ligustrum japonicum</td>
<td>T<sub>1</sub>S H + + +</td>
</tr>
<tr>
<td>Ilex integra</td>
<td>SH + + +</td>
</tr>
<tr>
<td>Symphoricarpus prunifolius</td>
<td>SH + + +</td>
</tr>
<tr>
<td>Cinnamomum japonicum</td>
<td>SH + + +</td>
</tr>
<tr>
<td>Actinodaphne lanceolata</td>
<td>SH + + +</td>
</tr>
<tr>
<td>Lemnaphyllium microphyllum</td>
<td>SH + + +</td>
</tr>
<tr>
<td>Neolitsea sericea</td>
<td>H + + +</td>
</tr>
<tr>
<td>Ardisia japonica</td>
<td></td>
</tr>
</tbody>
</table>

Companions

<table>
<thead>
<tr>
<th>Species</th>
<th>Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhododendron weyrichii</td>
<td>S</td>
</tr>
<tr>
<td>Pseudasa japonica</td>
<td>T<sub>1</sub>S H +</td>
</tr>
<tr>
<td>Pyrostria lingua</td>
<td>SH + 2.3</td>
</tr>
<tr>
<td>Diceranthera linearis</td>
<td>H + 1.2</td>
</tr>
<tr>
<td>Millettia japonica</td>
<td>H + +</td>
</tr>
</tbody>
</table>

No. 44 *Rhododendron weyrichii* S +
No. 45 *Quercus phyllyraeoides* H +, *Leptisorus thunbergi anus* H +
る。この群集はかつて（山中1954）、ナギ亜群集とモクタチバナ亜群集に区分されたが、ホルトノキ林では前の区分種であるナギ、バリヘリノキ、カツモウイノキ、後者のノジラン、アオノクマタケランなどを欠き、またタブ林にむすびつきのつよいハドノキ、オオイワヒトデなどが見られ
ない。こうした点から、ホルトノキ林ではタブホソバカサワラヒ属群集の組成が単純になる傾向を示しているといってよい。

足摺岬に見られる樹高の低いタブ林は、地形と風による影響をうけていると考えられる。なお足摺岬や西海町鹿島にあるヒメウツリハ、ヤブツバキなどを主としたヤブ高木林（第7表）では、相
関が本来のタブ林とは異なっており、組成的にもウバメガシートベラ群集の要素を主に見られ、こ
れは地形的または二次的な要因によって生じた、タブホソバカサワラヒ属群集に近い組成の群落と
みなしてよい。しかし、風あたりのつよいところで、タブを欠いたヤブツバキ、トベラ、およびマ
サキの混生群落になると、タブホソバカサワラ属群集よりもウバメガシートベラ群集に近似の相
関と組成になってくる。スギダイ株の立地では風衝地でウバメガシートベラが多くなるところがあるが、タ
ブ林ではこの例からみても、ウバメガシートベラに直接移行することはあってはならない。余立山国有林のヤブ
ツバキの多い林分（第3表）は、タブホソバカサワラ属群集とウバメガシートベラ群集との中間
的なものといえる。

（3）シイ林（第8—11表）
タブ林とは異なって、シイ林は全県を通じてひろく見られるが、林としての上限は海抜500〜600
mと考えられる。最寒月の平均気温2℃をスダイの上限とみなすと、この地域では700m前後*を
なる。すなわち、スダイがこの高さでタブまたはスラカンとともに生息している例はあるが、
それは個体としての存在にすぎず、すでに優占種はカン類に代っている。したがって、西海町福現
山のスダイを主としたアカンとイスノキの混生林（第11表）は、スダイをおもむね群落要素とする
森系の上限にはほぼ近いものと考えることができる。

シイ林にはスダイシイ林とコジイ林があり、気候的にも地形的にも、コジイ林よりスダイシイ林の占
める範囲が広い。また、この二つのシイ林の土地的な環境の対照は、タブ林とシイ林のそれよりも
相対的であり、したがってこの地域でもスダイとコジイが混生し、中間形の生ずることもある。

スダイは海岸ぞいしばしばタブまたはホルトノキとともに生じ、このようなタブとスダイの
混生林では、ナギ、フウトウカズラ、ホソバカサワラなどの属よりもイスマキ、ヤマビク、コパン
モチ、サカツ、ミズバシなどのシイ林ともむすびつきのつよい傾向の植生が多く、中間的なながらタ
ブ林よりもスダイシイ林に近いものが多いと考えられる（第19表）。このスダイシイ林はスダイ－
タミンタチバナ群集であるが、沿岸地域のコジイ林との組成のちがいは少なく、コジイ－クロバ
イ群集との区別も明らかでない。

シイ林の上限に近いところに見られるスダイシイとアカンの混生林は、シキミ、イヌガシなどの
カシ林の要素を主に、スダイイ－タミンタチバナ群集とは異なったものになる。これはスダイ
イ－クロコウシ属群集に入れられているが（山中1962）、さらに検討の余地がある。また、コジイ
林も内陸ではカシ林の要素を主にすることが多い（第10表）。

要するに、シイ林は下部でタブ林からなり、上部でカシ林と接し、シイ林としてのまとまりは
もちつつも、そのなかでの群集の組成的な区分がきわめてむつかしいものといえる。

* 国口（1949）は減率を南土佐で0.73、南伊予で0.43としたが、このほかに平均の0.6を使って推定した。
Table 11. *Castanopsis cuspidata* v. *sieboldii* Quercus acuta community

<table>
<thead>
<tr>
<th>Quadrat number</th>
<th>52</th>
<th>53</th>
<th>54</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of species</td>
<td>45</td>
<td>40</td>
<td>25</td>
</tr>
</tbody>
</table>

Elements of *Castanopsis cuspidata* communities

<table>
<thead>
<tr>
<th>Elements</th>
<th>Quadrat number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Castanopsis cuspidata v. sieboldii</td>
<td>TiTzSH</td>
</tr>
<tr>
<td>Termstroemia gymnanthera</td>
<td>TiSH</td>
</tr>
<tr>
<td>Vaccinium bracteatum</td>
<td>TiSH</td>
</tr>
<tr>
<td>Dendrananx trifida</td>
<td>SH</td>
</tr>
<tr>
<td>Woodwardia japonica</td>
<td>H</td>
</tr>
<tr>
<td>Arachniodes pseudoaristata</td>
<td>H</td>
</tr>
</tbody>
</table>

Elements of evergreen *Quercus* communities

<table>
<thead>
<tr>
<th>Elements</th>
<th>Quadrat number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quercus</td>
<td>TiTzSH</td>
</tr>
<tr>
<td>Illicium religiosum</td>
<td>TiSH</td>
</tr>
<tr>
<td>Neolitsea aciculata</td>
<td>TSH</td>
</tr>
</tbody>
</table>

Characteristic and differential species of alliances

<table>
<thead>
<tr>
<th>Elements</th>
<th>Quadrat number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trachelospermum asiaticum</td>
<td>TiTzSH</td>
</tr>
<tr>
<td>Machilus thunbergii</td>
<td>TiSH</td>
</tr>
<tr>
<td>Dammacanthus indicus v. microphyllus</td>
<td>SH</td>
</tr>
<tr>
<td>Daphne kiusiana</td>
<td>SH</td>
</tr>
<tr>
<td>Rapeoanae nervifolia</td>
<td>SH</td>
</tr>
<tr>
<td>Daphniphyllum taeijsmanni</td>
<td>SH</td>
</tr>
<tr>
<td>Maesa japonica</td>
<td>S</td>
</tr>
<tr>
<td>Dryopteris erythrosora</td>
<td>H</td>
</tr>
<tr>
<td>Ardisia crenata</td>
<td>H</td>
</tr>
<tr>
<td>Stauntonia hexaphylla</td>
<td>H</td>
</tr>
<tr>
<td>Ficus erecta</td>
<td>H</td>
</tr>
<tr>
<td>Hedera rhombea</td>
<td>H</td>
</tr>
<tr>
<td>Dryopteris pacifica</td>
<td>H</td>
</tr>
</tbody>
</table>

Characteristic and differential species of class

<table>
<thead>
<tr>
<th>Elements</th>
<th>Quadrat number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distylgium racemosum</td>
<td>TiTzSH</td>
</tr>
<tr>
<td>Symplacox prunifolia</td>
<td>TiTzSH</td>
</tr>
<tr>
<td>Ilex integrata</td>
<td>TiTzSH</td>
</tr>
<tr>
<td>Enrya japonica</td>
<td>TzSH</td>
</tr>
<tr>
<td>Cleyera japonica</td>
<td>TzSH</td>
</tr>
<tr>
<td>Camellia japonica</td>
<td>TzSH</td>
</tr>
<tr>
<td>Cimamomum japonicum</td>
<td>TzSH</td>
</tr>
<tr>
<td>Ligustrum japonicum</td>
<td>TzSH</td>
</tr>
<tr>
<td>Lemmannysium microphyllum</td>
<td>TzSH</td>
</tr>
<tr>
<td>Neolitsea sericea</td>
<td>SH</td>
</tr>
<tr>
<td>Actinodaphne lancifolia</td>
<td>S</td>
</tr>
<tr>
<td>Cymbidium goeringii</td>
<td>H</td>
</tr>
<tr>
<td>Ardisia japonica</td>
<td>H</td>
</tr>
</tbody>
</table>

Companons

<table>
<thead>
<tr>
<th>Elements</th>
<th>Quadrat number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prunus jamasakura</td>
<td>Ti</td>
</tr>
<tr>
<td>Rhododendron wuyichii</td>
<td>Tz</td>
</tr>
<tr>
<td>Poutheria villosa v. laevis</td>
<td>Tz</td>
</tr>
<tr>
<td>Hydrangea luteovonosa</td>
<td>SH</td>
</tr>
<tr>
<td>Astarum perfectum</td>
<td>H</td>
</tr>
<tr>
<td>Anisstrea apiculata</td>
<td>H</td>
</tr>
<tr>
<td>Dryopteris decetapias</td>
<td>H</td>
</tr>
<tr>
<td>Parfugium japonicum</td>
<td>H</td>
</tr>
<tr>
<td>Goodyera schrechendaliana</td>
<td>H</td>
</tr>
</tbody>
</table>

No. 52 *Cudrania cochinchinensis* v. *gerontoglea* H +, *Paeria scandens* v. *mairei* H +,
No. 53 *Lepisorus thunbergianus* Tz +, *Bulbophyllum inconspicuum* Tz +, *Gardneria*
(4) カシ（第12-13表）

カシは足摺の白島山で見られるように、海抜300m前後からシイとともに極相林のおもな要素となることが多く、シイ林の上限をとすとの山、篠山などに残っている林のように、しばしばモミときにツガをまじえたカシ林になる。また、ウラジロガシは谷すじに、アカガシは比較的乾いた斜面や稜稜に多いが、両者が混生することもある。黒霧川ぞいの残存林にウラジロガシが多く、滑床山地の上部でアカガシが暖温帯林の上限に生じ、高山山の頂上近くまで達してプナと混生しているのは、こうした傾向のあらわれである。

ウラジロガシ林とアカガシ林は、このように環境を異にする傾向はあるが、組成的にみたって差は少なく、この地域のカシ林はウラジロガシ、アカガシ、アオガシ、モミ、シキ、イヌガシ、ハイノキ、キジノオなどによってまとめられ、ウラジロガシーサカキ群集（春沼1965）とみなされるものがあり、広葉のウラジロガシーサカキ群集に含まれる。また、モミをもなすところではしばしばソヨゴ、アセビなどが強く、地形のわるいことがあるが、ツガ林ではこの傾向が著しく stratégizeとして、ところによりホンシャクナゲをまじえ、ツガ変相集になり、ヒノキ型の土地的極相の組成に近づく。黒霧および鬼城山のツガ林でも、その状態がはっきりあらわれている。

滑床山地では、渓谷ぞいの一部にアオガシ林があるが、この林はシイ林に対するタブ林とおなじように、谷ぞいの湿った環境や肥沃な土壌を好む。ただし、滑床ではこの林の立地が造林によっているところが多いため、よく残っておらず、次のように組成の非常に簡単にところもある（No.100）。

アオガシ T1T2SH 5.5, オオツツラフジ T1 1.2, ハマニントウ T1 1.2, イスノキ T3SH 2.2, ヤブツバキ T3S 1.1, クマラビ H+, マメツタ H+
また、上流のモミとケヤキの混生林は、渓谷林型の組成を示している。

（5） ヒノキ林（第14表）

暖温帯上部から冷温帯にわたって見られるヒノキ林は、すっきりした土地的極相であり、篠山でも土壌が弱ポドソール化している。ヒノキ、コウヤマキ、ソヨゴ、アセビ、ホンシャクナゲ、キヨスミケシノブなどがこの林の標識種または識別種となり、ツガーアセビ群集（山中1961）または広葉のヒノキツツシシャクナゲ群集である。なお、篠山の上部は全体として土壌が浅く、篠岩が多いため、アカガシ林にもヒノキ林の要素がしばしば見られる。

（6） ハリモミーーケアポノツツジ林（第15表）

篠山のハリモミーーケアポノツツジ林は頂上近くの北西斜面にあり、土地的な要因によるほか気候的な影響をうけている。ハリモミの優占するところでは、コウヤマキなどヒノキ型の土地的極相の要素が混生し、アケポノツツジの多い篠林は冬の卓越風の影響によって上層木を欠いた風害地型の群落とみなされる。

この林は群集は明らかでないが、コハウチワカエデ、カマツカ、タツナサワフタギ、ツタウルシ、ミヤコザサなどプナ林と共通の植物があり、冷温帯的な植生である。また、アケポノツツジ、シロ（ペニ）ドウダン、キバナツクバネウツギ、ヒメスゲ、シハイスミレなどによる地域的な組成の特徴が見られる。林床にヒメスゲが多いのは、ミヤコザサが一度枯したあと、二次的に侵入したものと思われる。
Table 12. *Quercus acuta* community

<table>
<thead>
<tr>
<th>Quadrat number</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>85</th>
<th>86</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of species</td>
<td>36</td>
<td>30</td>
<td>30</td>
<td>23</td>
<td>21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Layer</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Quercus acuta</td>
<td>T₁T₂ H 2.2 2.2 4.4 5.5 4.4</td>
</tr>
<tr>
<td>Abies firma</td>
<td>T₁T₂ H 4.4 3.4 + + +</td>
</tr>
<tr>
<td>Symlocos myrtacea</td>
<td>T₂SH 3.4 4.4 3.4 2.2 3.3</td>
</tr>
<tr>
<td>Ilicium religiosum</td>
<td>T₂SH 3.3 3.3 2.2 2.2 2.2</td>
</tr>
<tr>
<td>Quercus salicina</td>
<td>T₂SH 2.2 + + + +</td>
</tr>
<tr>
<td>Machilus japonica</td>
<td>T₂SH 1.1 + 1.2 + 2.2 1.2</td>
</tr>
<tr>
<td>Osmanthus ilicifolius</td>
<td>SH + + + + +</td>
</tr>
<tr>
<td>Goodyera velutina</td>
<td>H + + 2 + +</td>
</tr>
<tr>
<td>Plagiorhiza japonica</td>
<td>H + + + + +</td>
</tr>
</tbody>
</table>

Elements of evergreen Quercus communities

<table>
<thead>
<tr>
<th>Element</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machilus thunbergii</td>
<td>T₁</td>
</tr>
<tr>
<td>Camellia japonica</td>
<td>T₂SH 2.2 2.2 2.2 2.2 2.2</td>
</tr>
<tr>
<td>Cleyera japonica</td>
<td>T₂SH 2.2 2.2 2.2 2.2 2.2</td>
</tr>
<tr>
<td>Eurya japonica</td>
<td>T₂SH + 1.2 2.2 2.2 +</td>
</tr>
<tr>
<td>Actinodaphne lanceifolia</td>
<td>T₁</td>
</tr>
<tr>
<td>Cinnamomum japonicum</td>
<td>T₂SH + + + + +</td>
</tr>
<tr>
<td>Camellia sasanqua</td>
<td>T₂SH + + + + +</td>
</tr>
<tr>
<td>Dendropanax trifidus</td>
<td>T₁</td>
</tr>
<tr>
<td>Ilex integra</td>
<td>T₂</td>
</tr>
<tr>
<td>Lemmaphyllyum microphyllum</td>
<td>T₂S 2.2 + + + +</td>
</tr>
<tr>
<td>Ligustrum japonicum</td>
<td>SH + + + + +</td>
</tr>
<tr>
<td>Neolitsea sericea</td>
<td>SH + + + + +</td>
</tr>
<tr>
<td>Ardisia japonica</td>
<td>H 2.2 1.2 + 2.2 +</td>
</tr>
</tbody>
</table>

Companions

<table>
<thead>
<tr>
<th>Species</th>
<th>T₁T₂</th>
<th>T₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stewartia manadapha</td>
<td>T₁T₂ 2.2 2.2 1.2 1.2 1.2</td>
<td></td>
</tr>
<tr>
<td>Pteris japonica</td>
<td>T₂SH + 2.2 1.2 1.2</td>
<td></td>
</tr>
<tr>
<td>Clethra barbinervis</td>
<td>T₂SH + + + +</td>
<td></td>
</tr>
<tr>
<td>Ilex pedunculosa</td>
<td>T₁</td>
<td></td>
</tr>
<tr>
<td>Tritomodon sikokianus</td>
<td>T₁ + + + +</td>
<td></td>
</tr>
<tr>
<td>Rhododendron weyrichii</td>
<td>T₁ H 1 + + +</td>
<td></td>
</tr>
<tr>
<td>Pouzinha villosa</td>
<td>T₂S + 1.1 +</td>
<td></td>
</tr>
<tr>
<td>Carpinus laxiflora</td>
<td>T₁</td>
<td></td>
</tr>
<tr>
<td>Acer sieboldianum</td>
<td>T₂</td>
<td></td>
</tr>
<tr>
<td>Smilax china</td>
<td>T₂SH + + + +</td>
<td></td>
</tr>
<tr>
<td>Sinningia japonica</td>
<td>T₂SH 2.2 2.2 2.2 +</td>
<td></td>
</tr>
<tr>
<td>Hydrangea luteovenosa</td>
<td>SH + + + +</td>
<td></td>
</tr>
<tr>
<td>Ilex crenata</td>
<td>SH + + 2 +</td>
<td></td>
</tr>
<tr>
<td>Viburnum erosum</td>
<td>SH + + + +</td>
<td></td>
</tr>
<tr>
<td>Rhododendron metternichii</td>
<td>T₁</td>
<td></td>
</tr>
<tr>
<td>Lycopus serrulatus</td>
<td>T₁</td>
<td></td>
</tr>
<tr>
<td>Cornus brachypoda</td>
<td>H + + + +</td>
<td></td>
</tr>
<tr>
<td>Viburnum ureticalatum</td>
<td>H + + + +</td>
<td></td>
</tr>
</tbody>
</table>

No. 19 *Lepisorus onoei T₁ +, Rhus trichocarpa H +, Vaccinium smallii v. glabrum H +, Schizophragma hydrangeoides H +, Asarum nankaiense H +*

No. 20 *Lindera erythrocarpa H +, Frazinia sieboldiana H +, Callicarpa mollis H +, Viola maximowicziana H +, Tripterospermum japonicum H +, Scutellaria maekawae H +, Mitchella undulata H +*

No. 21 *Lyonia ovalifolia v. elliptica T₂ +, Parabenzoin trilobum H +, Thelypteris japonica H +*

No. 85 *Euonymus fortunei v. radicans H +, Pylora japonica H +*

No. 86 *Chamaecyparis obtusa T₁ 1.1, Prunus jamasakura T₁ 1.1*
<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Differential species of plant</th>
<th>Differential species of variant</th>
<th>Percentage value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Quercus sp.</td>
<td>Q. robur L.</td>
<td>Q. petraea L.</td>
<td>10.0</td>
</tr>
<tr>
<td>2</td>
<td>Acer pseudoplatanus</td>
<td>A. platanoides var. negundo</td>
<td>A. circinatum var. lanceolatum</td>
<td>15.0</td>
</tr>
<tr>
<td>3</td>
<td>Fagus silvatica</td>
<td>F. sylvatica var. silvatica</td>
<td>F. sylvatica var. sylvatica</td>
<td>20.0</td>
</tr>
<tr>
<td>4</td>
<td>Fraxinus excelsior</td>
<td>F. excelsior var. excelsior</td>
<td>F. excelsior var. excelsior</td>
<td>25.0</td>
</tr>
<tr>
<td>5</td>
<td>Betula pendula</td>
<td>B. pendula var. pendula</td>
<td>B. pendula var. pendula</td>
<td>30.0</td>
</tr>
<tr>
<td>6</td>
<td>Carpinus betulus</td>
<td>C. betulus var. betulus</td>
<td>C. betulus var. betulus</td>
<td>35.0</td>
</tr>
<tr>
<td>7</td>
<td>Ulmus glabra</td>
<td>U. glabra var. glabra</td>
<td>U. glabra var. glabra</td>
<td>40.0</td>
</tr>
<tr>
<td>8</td>
<td>Carya ovata</td>
<td>C. ovata var. ovata</td>
<td>C. ovata var. ovata</td>
<td>45.0</td>
</tr>
<tr>
<td>9</td>
<td>Lithocarpus densiflorus</td>
<td>L. densiflorus var. densiflorus</td>
<td>L. densiflorus var. densiflorus</td>
<td>50.0</td>
</tr>
<tr>
<td>10</td>
<td>Aesculus hippocastanum</td>
<td>A. hippocastanum var. hippocastanum</td>
<td>A. hippocastanum var. hippocastanum</td>
<td>55.0</td>
</tr>
</tbody>
</table>

Note: Percentage values are estimated and subject to variation based on environmental factors.
Table 14. *Chamaecyparis obtusa* community
(Rhododendro-Chamaecyparidetum obtusae)

<table>
<thead>
<tr>
<th>Quadrat number</th>
<th>Number of species</th>
<th>Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Characteristic and differential species of association</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chamaecyparis obtusa</td>
<td>T1 S</td>
</tr>
<tr>
<td>Sciadopitys verticillata</td>
<td>T1T2</td>
</tr>
<tr>
<td>Rhododendron metternichii v. hondoense*</td>
<td>T2SH</td>
</tr>
<tr>
<td>Mezodium oligosorum</td>
<td>T2SH</td>
</tr>
<tr>
<td>Wikstroemia albiflora</td>
<td>S</td>
</tr>
<tr>
<td>Mecodium polyanthos</td>
<td>H</td>
</tr>
<tr>
<td>Tsuga sieboldii</td>
<td>T1T2SH</td>
</tr>
<tr>
<td>Pieris japonica</td>
<td>T2S</td>
</tr>
<tr>
<td>Ilex pedunculosa</td>
<td>T2S</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Elements of evergreen Quercus communities</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Symlocos myrtaeae</td>
<td>T2SH</td>
</tr>
<tr>
<td>Quercus salicina</td>
<td>T2S</td>
</tr>
<tr>
<td>Abies firma</td>
<td>T2S</td>
</tr>
<tr>
<td>Illicium religiosum</td>
<td>SH</td>
</tr>
<tr>
<td>Neoilex aciculata</td>
<td>S</td>
</tr>
<tr>
<td>Plagiogyria japonica</td>
<td>H</td>
</tr>
<tr>
<td>Cleyera japonica</td>
<td>T2S</td>
</tr>
<tr>
<td>Symlocos praefolia</td>
<td>T2</td>
</tr>
<tr>
<td>Ligustrum japonicum</td>
<td>S</td>
</tr>
<tr>
<td>Eurya japonica</td>
<td>S</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Companions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhododendron weyrichii</td>
<td>T2S</td>
</tr>
<tr>
<td>Vaccinium smallii v. glabrum*</td>
<td>SH</td>
</tr>
<tr>
<td>Viburnum urceolatum</td>
<td>SH</td>
</tr>
<tr>
<td>Ilex crenata</td>
<td>H</td>
</tr>
<tr>
<td>Rhiz trichocarpa</td>
<td>H</td>
</tr>
</tbody>
</table>

（７）ブナ林（第16表）

宇和島の気温から推定すれば*、滑床山地での海拔1000mでは、暖かさの指数が75～89*、寒さの指数は（-6）-（-13）となり、この高さ以上ではブナ林の出現は期待してよく、それとともにアカガシの生長ももちろん可能であり（吉良1949）、本来は冷温帯の極相があるべきところに暖温帯の要素がともに見られる状態になっている。気候的におかず条件にあたる箏山ではブナ林を欠いているが、ここではさきに述べたハリモミーアケボノツツジ林に代っている。

滑床山地のブナ－ササ型群落は、ブナ、コハチワカエデ、ヒメシャラ、シロモジ、ケクロモジ、タンサリワタギ、ミヤマソキシノブなどにより、ブナースタケ群団または広義のブナースタケ群集に属する西日本の太平洋型のブナ林の典型的な組成を示している。しかし、高月山のブ
Table 15. Picea polita-Rhododendron pentaphyllum community

<table>
<thead>
<tr>
<th>Quadrat number</th>
<th>89</th>
<th>90</th>
<th>91</th>
<th>92</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of species</td>
<td>26</td>
<td>29</td>
<td>25</td>
<td>22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Layer</th>
<th>T1</th>
<th>T2</th>
<th>T1S</th>
<th>T2S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Picea polita</td>
<td>3.3</td>
<td>4.4</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>Sciadopitys verticillata</td>
<td>T1T2</td>
<td>+</td>
<td>1.1</td>
<td>+</td>
</tr>
<tr>
<td>Meconidium oligosorum</td>
<td>T1S</td>
<td>+.2</td>
<td>+.2</td>
<td>+.2</td>
</tr>
<tr>
<td>Xiphopteris okuboi</td>
<td>S</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Ilex macropoda</td>
<td>T1T2</td>
<td>+</td>
<td>2.2</td>
<td>+</td>
</tr>
<tr>
<td>Benthamidia japonica</td>
<td>T1</td>
<td>+</td>
<td>2.2</td>
<td>+</td>
</tr>
<tr>
<td>Rhus ambiguia</td>
<td>T1</td>
<td>SH</td>
<td>1.2</td>
<td>+</td>
</tr>
<tr>
<td>Symphocalyx hydrangeoides</td>
<td>SH</td>
<td>+</td>
<td>1.1</td>
<td>+</td>
</tr>
<tr>
<td>Rhododendron pentaphyllum</td>
<td>Ti</td>
<td>TiT2</td>
<td>TiT2</td>
<td>TiT2</td>
</tr>
<tr>
<td>Symplocos coreana</td>
<td>TiS</td>
<td>TiT2</td>
<td>TiT2</td>
<td>TiT2</td>
</tr>
<tr>
<td>Pourthiaea villosa v. laevis</td>
<td>TiSH</td>
<td>TiT2</td>
<td>TiT2</td>
<td>TiT2</td>
</tr>
<tr>
<td>Clethra barbinervis</td>
<td>TiS</td>
<td>TiT2</td>
<td>TiT2</td>
<td>TiT2</td>
</tr>
<tr>
<td>Rhododendron weyrichii</td>
<td>TiSH</td>
<td>TiT2</td>
<td>TiT2</td>
<td>TiT2</td>
</tr>
<tr>
<td>Acer sieboldianum</td>
<td>TiSH</td>
<td>TiT2</td>
<td>TiT2</td>
<td>TiT2</td>
</tr>
<tr>
<td>Ilex cremata</td>
<td>TiSH</td>
<td>TiT2</td>
<td>TiT2</td>
<td>TiT2</td>
</tr>
<tr>
<td>Tritomodon cernua</td>
<td>TiSH</td>
<td>TiT2</td>
<td>TiT2</td>
<td>TiT2</td>
</tr>
<tr>
<td>Pieris japonica</td>
<td>TiSH</td>
<td>TiT2</td>
<td>TiT2</td>
<td>TiT2</td>
</tr>
<tr>
<td>Hydrangea laetevoluta</td>
<td>TiSH</td>
<td>TiT2</td>
<td>TiT2</td>
<td>TiT2</td>
</tr>
<tr>
<td>Abelia serrata v. buchwaldii</td>
<td>TiSH</td>
<td>TiT2</td>
<td>TiT2</td>
<td>TiT2</td>
</tr>
<tr>
<td>Sasa nipponica</td>
<td>HSH</td>
<td>HSH</td>
<td>HSH</td>
<td>HSH</td>
</tr>
<tr>
<td>Carex ozyandra</td>
<td>HSH</td>
<td>HSH</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Viola violacea</td>
<td>HSH</td>
<td>HSH</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Rubus palustris</td>
<td>HSH</td>
<td>HSH</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Euonymus oxyphylus</td>
<td>HSH</td>
<td>HSH</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Solidago virgaurea ssp. asiatica</td>
<td>HSH</td>
<td>HSH</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Viburnum erubus</td>
<td>HSH</td>
<td>HSH</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Disporum sessile</td>
<td>HSH</td>
<td>HSH</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Struthiopteris nponica</td>
<td>HSH</td>
<td>HSH</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

No. 89 Smilax china T2 +, 2, Illicium religiosum H +, Asarum sp. H +, Ainsliaea apiculata H +
No. 90 Neolitsea sericea H +, Acer rufinerve H +, Tripterospermum japonicum H +
No. 91 Chamaecyparis obtusa T2 +, Berberis thunbergii SH +, Symplocos myrtaea H +
No. 92 Euonymus alatus v. rotundatus T2 +, Ilex serrata S +, Pertya glabrescens H 1.2, Mischantis sinensis H 1.2, Arisaema sp. H +

ナーシャクナゲ型群落は、ブナーヒサ型群落とは異なったいじろしい組成的特徴をもっている。
この型の群落はむしろ地形的のもので、広範囲を占める例はあまり知られていない。ただ、九州から報告されたブナーヒサシーシャクナゲ群集（生野・羽田野 1961）とおなじ性質の群落とみなすことができる。

（8） 二次林（第17ー18表）

初めに述べたように、この地域で極極林の占める範囲はきわめて狭く、森林はスギおよびヒノキの経林を除くと、ほとんど二次林である。このうち、平地や丘陵地で最も多いのはやはりアカツ

林であるが、ほかに常緑広葉樹の萌芽林も少なくない、荒廃したアカツ林は下生にコンダまたはウラジロをもなうものが多く、オオツツ、メジツツ、ネジキ、カマツカ、ヤブムラサキなどの低木も多い。

萌芽林はスイの再生林のほか、海岸ぞいではヒメヒズミ、ハブツバキ、ヒサカ

キ、タイミンタチバナ、ネズミモチなどの灌木も見られ、またウバウメンガ林にもたやすくふれたように二次的なものが多い

く。丘陵ではアラカツ林になっているところがあり、低山地にはしばしばクリをもなったコナリまたはイヌシデ、アカシデなどの多いシデ林もある。

極相が人為的な影響をうけて荒れている社叢の一例として、城辺町の蒸気社をとりあげることができる。イヌマキ、カゴノキ、イヌノキなどの混生林には本来のすがたがなお残っているが、こ
Table 16. Fagus crenata community (Sasamopho-Fagetum crenata s. 1. and Fagus crenata-Rhododendron metternichii v. hondoense community)

<table>
<thead>
<tr>
<th>Quadrat number</th>
<th>103</th>
<th>104</th>
<th>105</th>
<th>106</th>
<th>107</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of species</td>
<td>Layer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>46</td>
<td>33</td>
<td>50</td>
<td>42</td>
<td></td>
</tr>
</tbody>
</table>

Characteristic and differential species of association and alliance

<table>
<thead>
<tr>
<th>Species</th>
<th>Quadrat</th>
<th>103</th>
<th>104</th>
<th>105</th>
<th>106</th>
<th>107</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fagus crenata</td>
<td>T S H</td>
<td>4.4</td>
<td>3</td>
<td>4</td>
<td>4.3</td>
<td>4.1</td>
</tr>
<tr>
<td>Acer sieboldianum</td>
<td>T S H</td>
<td>2.1</td>
<td>+</td>
<td>2</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Stenoptera monadelpha</td>
<td>T F</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Betula grossa</td>
<td>T F</td>
<td>2.1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Parthenocissus tricuspidata</td>
<td>T S H</td>
<td>1.2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1.2</td>
</tr>
<tr>
<td>Symposia coreana</td>
<td>T S H</td>
<td>2.2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Fraxinus velutina</td>
<td>T S H</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Acer argutum</td>
<td>T S H</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Bernhardia japonica</td>
<td>T S H</td>
<td>1</td>
<td>+</td>
<td>1</td>
<td>2</td>
<td>1.2</td>
</tr>
<tr>
<td>Rhododendron metternichii</td>
<td>T S H</td>
<td>1.2</td>
<td>+</td>
<td>1</td>
<td>2</td>
<td>+</td>
</tr>
<tr>
<td>Lepidoptera assurienis</td>
<td>T S H</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Fagus crenata</td>
<td>T S H</td>
<td>2.1</td>
<td>+</td>
<td>2</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Echinosorus ciliata</td>
<td>S H</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cephalotaxus harringtonia</td>
<td>S H</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Ilex macropoda</td>
<td>S H</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Ilex niphonica</td>
<td>S H</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Quercus serrata</td>
<td>S H</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Sasa nipponica</td>
<td>H</td>
<td>+</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Differential species

<table>
<thead>
<tr>
<th>Species</th>
<th>Quadrat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sasamopho purpurascens</td>
<td>S</td>
</tr>
<tr>
<td>Sasa nipponica</td>
<td>H</td>
</tr>
</tbody>
</table>

Companions

<table>
<thead>
<tr>
<th>Species</th>
<th>Quadrat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carpinus tschonoskii</td>
<td>T</td>
</tr>
<tr>
<td>Hydrangea petiolaris</td>
<td>T S H</td>
</tr>
<tr>
<td>Sapindus japonicus</td>
<td>T S H</td>
</tr>
<tr>
<td>Cryptandra porphyria</td>
<td>T S H</td>
</tr>
<tr>
<td>Magnolia stellata</td>
<td>T S H</td>
</tr>
<tr>
<td>Hedera hibernica</td>
<td>T S H</td>
</tr>
<tr>
<td>Rubus sectinis</td>
<td>T S H</td>
</tr>
<tr>
<td>Lamium muelleri</td>
<td>T S H</td>
</tr>
<tr>
<td>Clinopodium simplex</td>
<td>T S H</td>
</tr>
<tr>
<td>Brachypodium sylvaticum</td>
<td>T S H</td>
</tr>
<tr>
<td>Bromopsis heleni</td>
<td>T S H</td>
</tr>
<tr>
<td>Comandra grandiflora</td>
<td>T S H</td>
</tr>
<tr>
<td>Perilla rubra</td>
<td>T S H</td>
</tr>
<tr>
<td>Carex articulata</td>
<td>T S H</td>
</tr>
<tr>
<td>Ilex crenata</td>
<td>T S H</td>
</tr>
<tr>
<td>Dioscorea quilocarpa</td>
<td>T S H</td>
</tr>
</tbody>
</table>

Number

- Carpinus tschonoskii T 1.1
- Abies formosana SH +
- Carex isaniacae. papillaticulmis H +
- Smilax china H +
- Aplopus fortunei H +
- Dendromeus cylon H +
- Viola violacea H +
- Viola pycnogon H +
- Chamaele decumbens H +
- Lysimachia tanakae H +
- Lycorhiza leucobulbus H +
- Lonicera japonica H +
- Tetracera macroedra H +
- Ophiopogon japonicus H +
- Lomatium hybridum H +
- Uvularia grandiflora H +
- Uvularia grandiflora H +
- Arisaema tosase H +
- Goodyera velutina H +
- Goodyera mazimenescens H +
- Dendromeus cylon H +
- Aplopus fortunei H +
- Smilax china H +
表17. Actinodaphne lancifolia 社区とQuercus glauca 社区

<table>
<thead>
<tr>
<th>Quadrat number</th>
<th>46</th>
<th>47</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of species</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

層				
Quercus glauca	T1T2SH	2.2	5.5	
Podocarpus macrophyllum	T1	SH	2.1	+
Actinodaphne lancifolia	T1	3.2	+	
Ilex rotunda	T1	2.1	+	
Hedera rhombea	T1	H	+	+
Camellia japonica	T2SH	2.2	3.3	
Gardenia Jasminoides f. grandiflora	T2SH	+	1.2	
Daphniphyllum teijisannii	T2SH	1.1	+	
Neolitsea sericea	T2SH	+	+	
Distylium racemosum	T2SH	4.3	+	
Piper kadsura	T2SH	3.3	1.2	
Trachelospermum asiaticum	T2SH	2.2	2.3	
Anondendron affline	T2SH	+	1.2	
Ficus nipponica	T2SH	+.2	+.2	
Ficus erecta	SH	1.2	1.2	
Cinnamomum japonicum	SH	+	+	
Prunus tippeliana	SH	+	+	
Ilex integra	SH	+	+	
Eurya japonica	SH	+	+	
Elaeocarpus sylvestris v. ellipticus	SH	+	+	
Elaeagnus pungens	SH	+	+	
Ligustrum japonicum	SH	+	+	
Callicarpa japonica v. luxurians	S	+	+	
Cryptomeria japonica	SH	+	+	
Maesa japonica	S	+	+	
Ardisia pusilla	H	2.2	1.2	
Liriope spicata	H	2.2	1.2	
Pteris dispar	H	1.2	+.2	
Microlepia strigosa	H	1.2	+	
Ardisia japonica	H	+.2	+	
Machilus thunbergii	H	+	+	
Dryopteris pacifica	H	+	+	
Farfugium japonicum	H	+	+	
Carex ischnostachya	H	+	+	

No.47 Cinnamomum camphora T1 1.1, Symptococ glauca S +, Lemnophyllum microphyllum SH +, Dendropanax trifidus H +, Dacmacanthus indicus H +, Dryopteris erythrosora H +, Carex breviculmis H +, Cymbidium lancifolium H +

これに接したアラカンは組成的には共通のものが多く、あきらかに二次林と考えることができる。アウトウカズラ、ツルコウジ、コヤブランなどが林床に多く、この付近のもとの林はスタジイ、カゴノキ、ホルトノキなどの混生林であったことが推定される。

特殊な二次林としては、西海町鹿島のアオギリ林がある。この林が組成からホルトノキ林に近いものであることは、モクタチバナ、タイミンタチバナ、ホソバカナワライ、モロコシソウなどの存在からたしかである。しかし、二次林の要素としてカラスザンショウ、センダン、クマノミズキなどが見られ、林床にヒメウズ、ジロボウエンサク、トラノオソ、オニタビラコ、ミゾイチゴツナギなどが生じ、あきらかに人为的な影響がつよく加わっていることを示語っている。
Table 18. *Firmiana platanifolia* community

<table>
<thead>
<tr>
<th>Quadrat number</th>
<th>Number of species</th>
<th>Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>71</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Elements of secondary communities

<table>
<thead>
<tr>
<th>Species</th>
<th>Quadrat</th>
<th>Number of species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firmiana platanifolia</td>
<td>T1T2S</td>
<td>5.5</td>
</tr>
<tr>
<td>Glochidion obovatum</td>
<td>T1T2S</td>
<td>+</td>
</tr>
<tr>
<td>Fagura alatanhubei</td>
<td>T1</td>
<td>+</td>
</tr>
<tr>
<td>Melia azedarach</td>
<td>T1</td>
<td>+</td>
</tr>
<tr>
<td>Corus brachypoda</td>
<td>T1T2</td>
<td>1.2</td>
</tr>
<tr>
<td>Pinus thunbergii</td>
<td>T1T2</td>
<td>1.2</td>
</tr>
<tr>
<td>Ampelopsis brevipedunculata</td>
<td>T1T2</td>
<td>+</td>
</tr>
<tr>
<td>Parthenocissus tricuspidata</td>
<td>T1T2</td>
<td>+</td>
</tr>
</tbody>
</table>

Elements of climax communities

<table>
<thead>
<tr>
<th>Species</th>
<th>Quadrat</th>
<th>Number of species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rubus sieboldii</td>
<td>SH</td>
<td>3.3</td>
</tr>
<tr>
<td>Deutzia scabra</td>
<td>SH</td>
<td>2.2</td>
</tr>
<tr>
<td>Carex lenta et C. brunnea</td>
<td>H</td>
<td>2.2</td>
</tr>
<tr>
<td>Perilla frutescens v. hirtella</td>
<td>H</td>
<td>+</td>
</tr>
<tr>
<td>Aquilegia adoxoides</td>
<td>H</td>
<td>+</td>
</tr>
<tr>
<td>Corydalis decumbens</td>
<td>H</td>
<td>+</td>
</tr>
<tr>
<td>Galium pagonanthum</td>
<td>H</td>
<td>+</td>
</tr>
<tr>
<td>Youngia japonica</td>
<td>H</td>
<td>+</td>
</tr>
<tr>
<td>Poac acroleuca</td>
<td>H</td>
<td>+</td>
</tr>
<tr>
<td>Carex breviculmis</td>
<td>H</td>
<td>+</td>
</tr>
<tr>
<td>Viola grypoceras</td>
<td>H</td>
<td>+</td>
</tr>
<tr>
<td>Hydrocotyle silborpioides</td>
<td>H</td>
<td>+</td>
</tr>
<tr>
<td>Cirsium japonicum</td>
<td>H</td>
<td>+</td>
</tr>
</tbody>
</table>

No. 73 *Premna japonica* T2 +, *Lepisorus thunbergianus* T2 +

No. 74 *Zanthoxylum piperitum* T2 +, *Lysimachia japonica* f. *subsessilis* H +

(9) 暖温帯と冷温帯（第19巻）

この地域のウバメガシ林、タブ・ホルトノキ林、シイ林およびカシ林は、土地の極相であるウバメガシ林でいくらか標徴鍵が欠けている傾向はあるが、フオッケイ、イソノキ、モテノキ、シロダモ、ヤブツバキ、ヒサカキ、テイカカズラ、ヤブウジョンなどにより、暖温帯林としての組成のまとまりをもっている。これはヤブツバキ・クラスであり、スダジイ類群も従来はこの範囲の森林を含んでいると考えられている（鈴木 1952, 1966）。

この暖温帯林は垂直的にはスダジイ林の上限、森林ではシイ林とカシ林を境にして、上下で組成要
四国西南部の森林植生（山中）

森林のちがいかなりはっきりしている。すなわち下部ではスダジイ、コジイ、タブ、ピメウズリハ、クロガネモチ、モッコク、イヌピタ、タイマンダチバナ、センリョウ、イズセンリョウ、ツルコウジ、アリドウシ、ムベ、キブタ、ベニシダなどがあり、上部では代ってアカガシ、ウラジロガシ、オアオガ、シキミ、イヌガシ、ハイノキなどが多くなり、サカはこの境を中心にタブシイ林からカシ林に向かって生ずる。もちろん、この間には推移地帯があり、この地域では高さ400～600m内外を中心に、森林はシイとカシの混生林がそれであるが、少なくとも傾向としてタブシイ林とカシ林を区別することは可能である。シイとブナをともに欠く範囲が暖温帯の上部にあって、この地帯はカシ樹の主領域であり（山中 1969），したがってもし群集の区分が必要とすれば、スダジー群集を下部に残し、上部をウラジロシーサカ樹群集とするのが適当であろう。

ブナ林はブナミズナラ・クラス域の気候の極相であるが、ブナとアカガシの混生は推移帯にあたりことを示している。もちろん、地形と局地的気候のちがいに支配されることが多く、上部分布に実際に多少の変は生じても、この地域では滑面地帯の上部が推移帯の上限から冷温帯の下限にあたっていることは疑えない。

6. 保 護

四国西南地域は、自然景観もすぐれ、森林植生も暖温帯から冷温帯にわたって、極相のかたちをとどめているものが残っている。しかし、このような残存林の占める範囲は狭く、規模の小さいもののが点在するにすぎない。今までの調査の結果から、相続と組成を異にする森林の相互の比較と、その間の推移および環境との関係をほぼ知り得たが、これからもこの地域の植生については、なお不謬しい調査と研究を必要とし、問題にされることが多いと思われる。

この地域は今後さらに植生にも人手の加わることが予想され、現在残っている自然林の保存については、いっそうの配慮が望まれる。国定公園の管理には自然の保護が施され、整備に先行すべきであり、国定林野も利用と開発のみを考えるときではない。もちろん、今までにもそれが無視されていなかったわけではなく、足摺岬の天狗山国有林、弦場山国有林などが保護林として残されてきているが、こうした代表林分にとどまらず、保存の範囲をさらにひろげて考えることはできないかと思われる。今後の山、篠山などが、わずかに頂上付近のみを残して皆伐されたことは、自然保護と植生類型の研究上の立場からは、まことに惜しまれる。この点では、シイ林からブナ林までがひととおり残っている滑面山地は、国定公園の一部でもあり、現状の保護がとくに望まれる。

森林をまとまっていき、ウバメガシ林では足摺岬の山頂山国有林、余立山国有林、大堂海岸および弦場山国有林があり、タブ・ホルトノキ林では、足摺岬と西海町鹿島および大堂山国有林の一部、シイタブの混生林では佐賀町鹿島、スダジーとアカガシの混生林では足摺白山、西海町嵐山、カシ林では今の山および篠山、ブナ林は滑面山地がある。これらはほとんど国有林か社林で、保存の対象としては障害の少ないものであり、これ以外の森林も加えて、地域全体の植生の保護をとくに望みたい。加えて、そのほかの地方や森林でも、多少とも自然状態を残すものは、荒廃からももり回復につとめる必要があることはいうまでもないこと、公害と自然破壊の社会問題となっているいま、ゆくらい土地の開発と利用はつつしむべきであることを、あらためて強調しておきたい。

7. ま と め

四国の西南部では、自然植生の大破壊されているところが多いが、残存する極相林の調査からは、もともと暖温帯の常緑広葉樹林の占める範囲が広く、高地でわずかに冷温帯のブナ林が出現し、移
行地帯ではアカガシとブナの混生が見られることが明らかである。

海岸ぞいには土地的極相としてウバメガシ林がひろく見られるが、この林には二次的なものもあり、ともにウバメガシトベラ群集に含まれる。

暖温帯の気候的極相としてはタブ・ノルトノキ林、シイ林およびカン林がある。タブ林は足摺岬、沖の島などに、またノルトノキ林は西海岸ぞいに多く見られるが、組成からはともにタブホソバカサウラビ群集にまとめられる。シイ林にはスダジイ林とコジイ林があるが、スダジイは海岸よりでしばしばタブと混生し、低山地ではアカガシをともなう。低地のスダジイ林はスダジイタイミンタチバナ群集、コジイはコジイクロバビ群集であるが、組成から両者の区別の困難なものも多い。カン林の多くはウラジロガシイース群集であるが、山地ではおもにアカガシが優占し、谷ぞいでウラジロガシが多く、しばしばモミまたはツガをともなっている。

これらの暖温帯林は、今までスダジイ群団としてひとつにまとめられているが、シイ林とカン林の接触するところを境にして、つつの群団に区別することもできる。

暖温帯の上部から土地的極相としてヒノキツツジシャクナゲ群集のヒノキ林が見られ、また樫山頂上近くにはハリモミクアガノツツジ群落があるが、後者はむしろ冷温帯的な植生である。

冷温帯の気候的極相であるブナ林は、滑床山地にミヤコザサまたはスカセを林床にもつ林が見られるが、高月山にはホルンシャクナゲをともなうブナ林がある。

二次林としてはアカマツ林の占める面積が広いが、シイ、アラカシなど常緑広葉樹の萌芽林も多く、特殊なものとして西海町鹿島にアオギリ林がある。

この地域の森林については今後さらに研究を必要とし、また問題にされることも多いと思われ、自然保護の立場からも残存極相林の保存に注意しなければならない。

文 献

羽方雅彦・山中二男 1967：高知県鹿島の植生、高知学芸高校研究 No. 8, 69–77。
生野啓和・羽田治二男 1961：黒岳の森林植生、大分県黒岳生物調査報告 63–81。
今井 勉 1965：西日本におけるウバメガシ林の植物社会学的研究、日生協会誌 15, 160–170。
吉良俊夫 1949：日本の森林帯。
高知営林局 1939：高知営林局管内国有林植生調査報告書。
関口 武 1949：日本各地の気候帯、科学 19, 517。
鈴木時夫 1952：東亜の森林植被。

1966：日本の自然林の植物社会学体系の概観。森林立地 8, 1–12。
1958：暖帯の極相群落の連続性について、日林誌 40, 505–508。
1959：四国南部沿岸帯。北大燃料 20, 511–516。
1953：四国南西部の植物群落。四国南部沿岸帯。森林生態学会報 2, 156–161。
1953：四国南西部の植物群落。四国南部沿岸帯。森林生態学会報 2, 156–161。
1953：四国南西部の植物群落。四国南部沿岸帯。森林生態学会報 9, 1–6。
1966：シイノキについての問題と考察。高知大学教育学部研報 No. 18, 65–73。
1965：高知県横山の森林植生。高知大学学術研報 （自然科学） 17, 9–38。

山胁哲臣 1950：植物報告書。財団公益財団候補地学術調査報告書 34–64。

（昭和45年8月30日受理）
<table>
<thead>
<tr>
<th>Number</th>
<th>Altitude (m)</th>
<th>Number of species</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0-100</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>50-100</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>100-150</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>150-200</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>200-250</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>250-300</td>
<td>30</td>
</tr>
<tr>
<td>7</td>
<td>300-350</td>
<td>35</td>
</tr>
<tr>
<td>8</td>
<td>350-400</td>
<td>40</td>
</tr>
<tr>
<td>9</td>
<td>400-450</td>
<td>45</td>
</tr>
<tr>
<td>10</td>
<td>450-500</td>
<td>50</td>
</tr>
<tr>
<td>11</td>
<td>500-550</td>
<td>55</td>
</tr>
<tr>
<td>12</td>
<td>550-600</td>
<td>60</td>
</tr>
<tr>
<td>13</td>
<td>600-650</td>
<td>65</td>
</tr>
<tr>
<td>14</td>
<td>650-700</td>
<td>70</td>
</tr>
<tr>
<td>15</td>
<td>700-750</td>
<td>75</td>
</tr>
<tr>
<td>16</td>
<td>750-800</td>
<td>80</td>
</tr>
<tr>
<td>17</td>
<td>800-850</td>
<td>85</td>
</tr>
<tr>
<td>18</td>
<td>850-900</td>
<td>90</td>
</tr>
<tr>
<td>19</td>
<td>900-950</td>
<td>95</td>
</tr>
<tr>
<td>20</td>
<td>950-1000</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 10: Summary of species in the warm temperate region of southwestern Shikoku