A graph theoretic approach to the UMP

高知大理学 伊藤宗彦 (Munehiko Ito)
静岡大教育 大田春雄 (Haruto Ohta)
静岡大学工学 小野 仁 (Jin Ono)

距離空間 (X,d) は、空間内の任意の異なる2点 a,b に対してその中点、すなわち d(a,c)=d(b,c) となる点、c が唯一つ存在する時、UMP (Unique Midset Property) を持つと言う。実数空間 R やその部分空間である有理数全体の空間 Q などは通常の距離で UMP を持つが、その補集合である無理数全体の空間 P はそのままで UMP を持たない。

そこで定義を次のように拡張する。位相空間 X は、その位相を変えない適当な距離 d が取れて (X,d) が UMP を持つ時、UMP を持つと言う。S' が埋め込まれるような空間が UMP を持たないことはすぐにわかりが、無理数全体の空間 P や Cantor Set C がどうなのかは、とたんに非自明となる。

我々は、最近これらの問題に対してグラフ理論の手法を用いて美しい結果を得た（参考文献（6））ので紹介する。

濃度 n が c(連続体濃度) 以下の離散空間では、距離関数は [1,2] 区間内の実数を適当に対応させば三角不等式は自動的に満たされるゆえ、UMP 問
題は頂点の集合の濃度が n の完全グラフ K_n の辺彩色問題に書き換えられる。すなわち単純グラフ G=(V(G),E(G)) が UMP を持つとは、辺の集合 E(G) からの写像 φ:E(G) → A が存在して性質（※）を満たす事である。

（※） V(G) 内の任意の異なる 2 点 a, b に対し
ac,bc ∈ E(G) かつ φ(a,c)=φ(b,c)
となる点 c が V(G) 内に唯一存在する。

濃度 n が c 以下の離散空間 D が UMP を持つ事と完全グラフ K_n が UMP を持つ事とは同値である。濃度 n に c 以下という条件が付くのは距離が実数への関数だからであって、グラフ理論の立場から見ればあまり本質的ではない。

濃度 n が有限の場合、n が奇数 (n=2k+1) なら平面 R^2 内の正 n 角形の各頂点の位置に n 個の点を配置すれば通常の距離で UMP を満たすことがすぐに示される。しかし、n が偶数 (n=2k) の場合 n=2,4 では UMP を持たず、6以上でも奇数の場合の正 n 角形に匹敵するきれいな配置はすぐには見つからない。当初我々は、すべての偶数で UMP を持たない事が示されると予想し、試行錯誤を繰り返したが、証明を試みる過程で UMP を持つ K_6 の辺の彩色方法を見つけた。その後、コンピュータを用いて K_8, K_{10} の彩色方法が見つかり、さらには、一般に 8 以上の偶数について彩色可能であることが証明された。

さて、彩色が可能となれば、それに必要な最小の色数が問題となる。グラフ G が UMP を持つ時、性質（※）を満たす写像 φ の値域と成りうる集合 A の濃度の最小値を ump(G) で表す。また、2,4 以外の自然数 n に対し
て、\(\text{ump}(n)=\text{ump}(K_n) \) と置く。

すべての自然数 \(k \) に対して \(\text{ump}(2k+1) \geq k, \text{ump}(2k) \geq k \) が成立する事がちょっとした推論で示される。したがって、\(n \) が奇数 (\(n=2k+1 \)) の場合、正 \(n \) 角形の頂点の配置が最良で \(\text{ump}(2k+1)=k \) となる事がわかる。

\begin{center}
\text{K}_6 を4色で塗る例}
\end{center}

\(2\pi/3 \) 回転する事により、第1色の辺は同じ色の辺に、第2色、第3色、第4色辺はそれぞれ第3色、第4色、第2色の辺に重なる。

我々の得た結果をまとめると以下の通りである。

定理 1. 濃度が \(n \) の離散空間 \(D \) が UMP を持つための必要十分条件は
\(n \neq 2,4 \) かつ \(n \leq c \) となる事である。

定理 2. \(D \) を濃度が \(c \) 以下の離散空間とする。この時、\(D \) の可算個の直積空間 \(D \) は UMP を持つ。特に、Cantor Set \(C \) および無理数全体の空間 \(P \) は UMP を持つ。
次のump(n)に関して得た等式及び不等式を列挙する。
(1) ump(2k+1)=k, for each k≥0
(2) ump(6)=4, ump(8)=5, ump(10)=5,
(3) k≤ump(2k)≤2k-1, for each k≥4

定理の証明等は論文に譲って、ここではump(n)に関する等式(2)について考察して見る。初めは、コンピュータを用いてすべての場合をチェックする事でこれらの等式を得たのだが、その後、等式ump(6)=4は機械に頼らない証明が完成した。実際には3ページの例がK₆がUMPを持つ辺彩色方法の唯一の例である事が示される。以下でそれを示す。

K₆を幾つかの部分グラフに分け、同一の部分グラフの辺は同一の色で塗る事により、UMPを満たす塗り方ができたとする。この時、

主張1.部分グラフの内のどれかは、必ずサイクルを含む。

（証明）すべての部分グラフがサイクルを含まないと仮定すると、次数が3以上の頂点を含む部分グラフが必ず存在する。もしそうでないなら、各部分グラフで決まる中点の個数はその部分グラフの辺の個数より少なくなり、一方、全体では6個より2個を取り出す組み合わせの数。すなわちK₆の辺の個数だけの中点がのべで必要となるゆえ矛盾である。

辺ab,ac,adが同一の色（第1色）で塗られていると仮定して一般性を失わ
ない。2点a,bの中点は、サイクルを含まないと仮定から、c,d以外の頂点となる。その点をeと置く。同様にして、2点a,cの中点もb,dとは異ならなければならない。もし頂点eがa,cの中点なら、ae,be,ceの3辺が同一の色（サイクルを含まないという仮定から第2色）となり、2点b,cの中点としてaとeが取れる事になり、UMPを満たさない。よってa,cの中点はeとも異ならねばならない。acとbcが同一の色なら、サイクルabcができる。

\[\begin{array}{c}
\text{acとbcが同一の色} \\
\text{なら、サイクルabc} \\
\text{ができる。}
\end{array} \]

主張2.どの部分グラフもサイズ4のサイクルをふくまない。

（証明）サイズ4のサイクルabcdがあったと仮定する。この時、2点a,cの中点としてb,dの2点がとれ、UMPをみたさない。

\[\begin{array}{c}
2点a,dの中点
\end{array} \]

主張3.どの部分グラフもサイズ6のサイクルをふくまない。

（証明）サイズ6のサイクルabcdefがあったと仮定する。2点a,dの中点
は b, c, e, f のいずれかだが、b として一般性を失わない。すなわち、辺 bd はサイクル abcdef と同一の色となる。

この時、b, e の中点も自動的に d と定まる。

次に c, f の中点だが、主張 2 よりサイズ 4 のサイクルは含まれないゆえ、b, d は取れない。よって a または e となるが、a として一般性を失わない。この時、辺 ac もサイクル abcdef と同一の色となり、b, c の中点として a, d の 2 点が取れ、UMP を満たさない。

主張 4. どの部分グラフもサイズ 5 のサイクルをふくまない。

（証明）サイズ 5 のサイクル abcde があったと仮定する（第 1 色）。サイクルを構成する 5 点 a, b, c, d, e 中点がすべてその 5 点の内から取れる場合は、サイズ 4 のサイクルは作れないゆえ、隣接 2 点の中点はユニークに決まり、5 辺 ac, ce, eb, bd, da をサイクルの色とは異なる色で塗らねばならない（第 2 色）。そこで、残された f と他の 5 点との中点を考える。中点は a, b, c, d, e の 5 点のどのどれかだが、そのためには、f とその点を結ぶ辺を第 1 あるいは第 2 の色で塗る事になる。いずれの色で塗った場合もその点は f と他の二つの点の中点となる。つまり、f に接続す
る辺の色を決めることに \(f \) と偶数個の頂点との中点がきまる。\(f \) 以外には奇数個（5個）の頂点があり、UMP を満たすように続けて塗る事はできない。

よってサイクルの数が 5 のサイクル内の隣接する 2 点の内、少なくとも一組の中点は残された \(f \) となる。\(a,b \) の中点が \(f \) であるとして一般性を失わない。

主張 3 よりサイクル 6 のサイクルは存在しないゆえ、2 辺 \(af, bf \) はサイクルの色とは異なる色（第 2 色）で塗る事になる。\(b,c \) の中点を \(f \) とすると、

3 辺 \(af, bf, cf \) が第 2 色となり、\(a,c \) の中点が \(b \) と \(f \) の 2 点取れ、UMP を満たさない。よって、\(b,c \) の中点は \(e \) となる。

同様にして \(a,e \) の中点も \(c \) となる。

2 辺 \(af, bf \) と 3 辺 \(be, ce, ac \) が同一の色（第 2 色）の場合と異なる色の場合とに分けて考える。

同一の色の場合、サイクル 5 の異なる色のサイクルが存在する。2 点 \(f,d \) の中点として取り得るのは、\(a,b,c,e \) の 4 点だが、\(a \) として一般性を失わない。この時、\(a,f \) の中点として取り得るのは、\(c,d,e \) の 3 点だが、そのどれを取っても UMP がくずれてしまう。

次に、異なる色の場合を考える。2 点 \(c,d \) および \(d,e \) の中点を共にサイク
ル abcde 内に取る事はできないが、共に f とすれば c,e の中点が f と d の 2
点となりこれもできない。すなわち、一方の中点はサイクル内、もう一方
は f となる。c,d の中点を f, d,e の中点を b として一般性を失わない。

2 辺 af, bf と 2 辺 cf, df が同一の色だと
f,e が共に b,c の中点となる。よって、5 辺
ab, bc, cd, de, ea が第 1 色、2 辺 af, bf が第 2 色
4 辺 ac, ce, eb, bd が第 3 色、2 辺 cf, df が第 4
色となる。f,b の中点は e しか考えられず、
辺 ef は第 3 色となる。次に f,a の中点は d と
なるゆえ、辺 ad が第 4 色となり、f,d の中点
となる点が存在しない。よって、サイズ 5 のサイクルを含むような、UMP
を満たす K の彩色方法はない。

よって、残されたのはサイズ 3 のサイクルを含む場合のみである。3 辺
ab, bc, ca が同一の色（第 1 色）で塗られているとする。

主張 5：3 点 d, e, f の各々に対して、サイクル abc の 3 点に至る 3 本の辺の
内の 1 本のみが第 1 色の辺である。

（証明）da, db, dc の内の 2 本が第 1 色ならサイズ 4 のサイクルができるゆ
え、第 1 色の辺があるとすれば 1 本のみである。3 本共第 1 色でないなら、
d と a, b, c との中点は a, b, c, d とは異なる点となる。d, a の中点と d, b の中
点を共に \(e \) と仮定すると、\(a, b \) の中点として \(c \) と \(e \) の2点が取れ、UMPをみたさない。よって、\(d \) と \(a, b, c \) の中点はすべて異なるならならないが、残された点は \(e, f \) の2点のみである。よって、\(d, a, b, d, c \) の内1本は第1色となる。\(e, f \) についても同様である。

主張6.3点 \(d, e, f \) を端点とする第1色の辺のもう一方の端点はすべて異なる。

（証明）\(d, a, e, a \) が共に第1色であったと仮定する。この時、\(d, e \) が他の色なら2点 \(e, a \) の中点は共に \(f \) となり、\(d, e \) の中点が \(a \) と \(f \) の2点存在する事になり、UMPを満たさない。よって \(d, e \) も第1色となる。

次に、\(f \) と他の4点との中点だが、\(f, a \) の中点は \(b, c, d, e \) のどれを取っても本質的には同じゆえ、\(b \) とする。同時に \(f, c \) の中点も \(b \) と定まる。\(f, b \) の中点としては、\(d \) または \(e \) が可能である。この場合もどちらでも本質的な違いはないので \(e \) を中点とする。
\(f, e \) の中点としては \(c \) を取るしかなく、\(f, d \) の中点として取る点がない。
よって、da,ea,faの内、第1色の可能性のあるのは1本のみである。他の2点b,cについても同様である。

以上の考察により、K₆のUMPを満たす彩色方法については以下の場合、すなわち6辺ab,bc,ca,da,eb,fcが第1色で塗られた場合のみを考えれば良い事になる。この時、中点の決まっていない2点の組は、a,d b,e c,fと外側の3点d,e,fから作られる3組の計6組である。

a,dの中点はeまたはfだが、本質的な違いはないゆえここではeとする。

b,eの中点としては、dまたはfが考えられる。dと仮定すると、3辺ae,ed,deが第2色となる。つづけてc,fの中点だが、これもd,eのいずれでても良いゆえ、dとする。

2点b,cの中点を1個にするため、2辺cd,fdは第3色とする。2点e,fの中点はaしかない。

よって辺afは第2色となる。ところが、2点d,fの中点として取る点がない。ゆえに、b,eの中点はfでなければならない。
2点a,fの中点を1個のするため、2辺de,aeを第2色、2辺bf,efを第3色で塗る事にする。同様にして、
2点c,fの中点はdと決まり、2辺
cd,fdが第4色となる。
さて、外側の3点の中点だが、d,eの中点は
c,e,fはa,f,dはb
と1意的に決まり、3辺
ae,be,ceを各々第2色、第3色、第4色で塗って3ページの例となる。

ump(10)=5, については、不等式 k≤ump(2k) に k=5 を代入する事により、
5≤ump(10) が示され、コンピュータの例が5色で十分ゆえ証明自体はこれで完了する。しかし、コンピュータの例を詳細に検討すると次のような興味深い性質を持つことがわかる。

10個の頂点を中心が一致する。
二重の正5角形の頂点の位置に置き、
第1色を右図のように塗ると、
第2色はそれを2π/5だけ回転して
重なる辺にすれば良く、以下順に
2π/5だけ回転する事で第3色、
第4色、第5色を決めてゆけば、UMPを持つK_{10}の辺彩色がかなせいする。
さらに、2π/5だけ回転すると第5色の辺は第1色の辺にもどる。
この一般化が成功すれば、奇数の倍すなわち \(n=4k+2 \) について \(\text{ump}(4k+2) = 2k+1 \) が成立すると考えられる \((k \geq 2) \)。

\(\text{ump}(8)=5 \) についてのコンピュータの例からはこのようにきれいな性質はまだ見いだされていない。UMP を持つ塗り方もユニークではなく、\(K_k \) のような証明も場合の数が多すぎて困難と思われる。

12以上についてコンピュータでは \(K_{12} \) を12色で塗るので3時間ほどかかり限界のようだが、我々は \(K_{12}, K_{10}, K_{16}, K_{18} \) の各々を 8, 10, 11, 14 色で UMP を満たすように塗る例を持っている。予想に反し、数が大きくなると自由度が増すせいか、例は作りやすくなる。これらの経験から判断するのに、（3）の不等式 \(k \leq \text{ump}(2k) \leq 2k-1 \) はさらに精密に改良でき、\(k \) が大きくなれば、\(\text{ump}(2k) \) の値は \(k \) に近づくものと予想される。

参考文献