On aperiodic tilings by the projection method

President
Kazushi Komatsu
Faculty of Science, Kochi Univ.

In 1982 quasi-crystals with icosahedral symmetry were discovered. (published in 1984). It had been axiomatic that the structure of a crystal was periodic, like a wallpaper pattern. Periodicity is another name for translational symmetry. Icosahedral symmetry is incompatible with translational symmetry and therefore quasi-crystals are not periodic. Most famous 2-dimensional mathematical model for a quasi-crystal is a Penrose tiling of the plane. In 1981 de Bruijn introduced projection methods to construct aperiodic tilings such as Penrose tilings.

We recall the definition of tilings by the projection method.

L: a lattice in \mathbb{R}^d with a basis $\{b_i| i = 1, 2, \cdots , d\}$.

E: a p-dimensional subspace of \mathbb{R}^d,

E^\perp: its orthogonal complement.

$\pi: \mathbb{R}^d \rightarrow E$, $\pi^\perp: \mathbb{R}^d \rightarrow E^\perp$: the orthogonal projections.

A: a Voronoi cell of L

For any $x \in \mathbb{R}^d$ we put

$$W_x = \pi^\perp(x) + \pi^\perp(A) = \{\pi^\perp(x) + u | u \in \pi^\perp(A)\}$$

$$\Lambda(x) = \pi((W_x \times E) \cap L).$$

The Voronoi cell of a point $v \in \Lambda(x)$

$$V(v) = \{u \in \mathbb{R}^n||v - u| \leq |y - u|, \text{for all } y \in \Lambda(x)\}.$$

$V(x)$: the Voronoi tiling induced by $\Lambda(x)$, which consists of the Voronoi cells of $\Lambda(x)$.

For a vertex v in $V(x)$

$$S(v) = \bigcup\{P \in V(x)|v \in P\}.$$

The tiling $T(x)$ given by the projection method is defined as the collection of tiles $\text{Conv} (S(v) \cap \Lambda(x))$, where $\text{Conv} (B)$ denotes the convex hull of a set B. Note that $\Lambda(x)$ is the set of the vertices of $T(x)$.

In order to state theorems we recall several definitions. The dual lattice \(L^* \) is defined by the set of vectors \(y \in \mathbb{R}^d \) such that \(\langle y, x \rangle \in \mathbb{Z} \) for all \(x \in L \), where \(\langle \ , \ \rangle \) denotes standard inner product. A lattice \(L \) is called integral if all its vectors satisfy that \(\langle x, y \rangle \in \mathbb{Z} \) for all \(x, y \in L \). The standard lattice is both integral and self dual.

For \(L = \mathbb{Z}^d \), C. Hillman characterized the number of periods of the tilings. He also constructed periods for given tilings.

One of Hillman’s results is extended to the case that \(L \) is integral.

Theorem. Let \(T(x) \) be the tiling by the projection method and assume that \(L \) is integral. Then, \(\text{rank} \ \ker (\pi^{|L}|) \) is equal to the dimension of the linear space of the periods of \(T(x) \).

For the general lattices Theorem is not true. We have the following example;
\(L \) : a lattice in \(\mathbb{R}^2 \) with a basis \(\{(1, \sqrt{2}), (1, -1)\} \),
\(E \) : the \(x \)-axis of \(\mathbb{R}^2 \).

In this case it is easy to see that all tilings in \(\mathbb{R}^1 \) obtained by the projection method are periodic and \(\text{rank} \ \ker (\pi^{|L}|) = 0 \).

The following property is analogous to classical uniform distribution of sequences.

Theorem (de Bruijn and Senechal, 1995)
Assume that \(\pi^{|L}| \) is dense in \(E^\perp \).
\(K_1, K_2 : (d - p) \)-dimensional cubes in \(E^\perp \)
\(J \subset E : a \ p \)-dimensional cube centered at the origin.
For any positive real number \(\lambda \), we set
\[P_1^\lambda = K_1 \times \lambda J, \quad P_2^\lambda = K_2 \times \lambda J. \]

Then,
\[\lim_{\lambda \to \infty} \frac{\text{card} \ P_1^\lambda \cap L}{\text{card} \ P_2^\lambda \cap L} = \frac{\text{Vol}(K_1)}{\text{Vol}(K_2)}. \]
A tiling space \(T(E) \) is defined by a space of tilings consisting of all translates by \(E = \mathbb{R}^p \) of the tilings \(T(x) \) for all \(x \in E^\perp \). Tiling spaces are topological dynamical systems, with a continuous \(\mathbb{R}^p \) translation action and a topology defined by a tiling metric on tilings of \(\mathbb{R}^p \).

Let \(\text{Orb}(T(x)) \) denote the orbit of \(T(x) \) in \(T(E) \) by the \(\mathbb{R}^p \) translation action and \(\text{span}(A) \) denote the \(\mathbb{R} \)-linear span of a set \(A \).

Uniform distribution of the projection method is closely related to the ergodicity of the tiling space.

Theorem

Let \(T(E) \) be the tiling by the projection method in terms of a \(p \)-dimensional subspace \(E \) of \(\mathbb{R}^d \) and \(p' : E^\perp \to \text{span}(L^* \cap E^\perp) \) be the orthogonal projection. Define \(p : L \to \text{span}(L^* \cap E^\perp) \) by \(p = p' \circ (\pi|_L) \). We take a basis \(x_1, \ldots, x_k \) of the direct summand \(K \) such that \(L = p^{-1}(\{0\}) \oplus K \). Then \(T(E) \) decomposes into a \(k \) parameter family of orbit closures \(\text{Orb}(T(t_1x_1 + \cdots + t_kx_k)) \) for \(t_1, \ldots, t_k \in \mathbb{R} \).

In particular, we obtain that \(k \) is equal to \(\text{rank } (L^* \cap E^\perp) \).

Note that \(\pi^\perp(L) \) is dense in \(E^\perp \) if and only if \(E^\perp \cap L^* = \{0\} \). A. Hof(1988) proved that \(E^\perp \cap L^* = \{0\} \) if and only if \(T(E) = \overline{\text{Orb}(T(0))} \). Assume that \(L \) is integral. Then we see that \(\text{rank } (L^* \cap E^\perp) = \text{rank } (L \cap E^\perp) = \text{rank } \ker (\pi|_L) \) because \(L \subset L^* \) and \(L^*/L \) is finite. The number of independent periods of the tiling space \(T(E^\perp) \) is equal to \(\text{rank } \ker (\pi|_L) \).

We immediately obtain the following theorem in the case that \(L \) is integral:

Theorem

Let \(T(E) \) (resp. \(T(E^\perp) \)) be the tiling space by the projection method in terms of a \(p \)-dimensional subspace \(E \) (resp. \((d-p) \)-dimensional subspace \(E^\perp \)) of \(\mathbb{R}^d \) and assume that \(L \) is an integral lattice. Then \(T(E) \) decomposes into a \(k \) parameter family of orbit closures, where \(k \) is equal to the number of independent periods of the tiling space \(T(E^\perp) \).