Pollen Deposition Patterns in a Temperate Mixed Forest on Mt. Kuishi, Southwestern Japan: I. Pollen Production Rates of Quercus acuta and Effects of the Fall of the Male Catkins on Pollen Deposition

Nao MIYAKE1), Shingo ISHIKAWA1), Kunito NEHIRA2) and Nobukazu NAKAGOSHI2)

1) Department of Natural Environmental Science, Faculty of Science, Kochi University, Kochi, 780-8520 Japan
2) Department of Environmental Studies, Faculty of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, 739-8521 Japan

We investigated annual pollen production rates of Quercus acuta in 1997 and 1998, and examined effects of the fall of the male catkins on pollen deposition in a temperate mixed forest on Mt. Kuishi, southwestern Japan. Annual pollen production rates were based on the number of pollen grains per male catkin and annual production rates of male catkins. The annual pollen production rate (× 106 no. ha-1 yr-1) for sample tree A was 2.27 in 1997, but was only 0.04 in 1998. Similarly, the value for sample tree B was 1.78 in 1997, but only 0.06 in 1998. Although the annual pollen production rate for sample tree C was not measured in 1997, the value in 1998 was 2.35. The annual pollen production rates for sample trees A and B changed conspicuously from year to year. For sample tree A, the number of pollen grains remaining in anthers that fell with the male catkins was 6.40 × 104 no. m-2 yr-1, and the number of pollen grains adhering to the male catkins was 6.38 × 104 no. m-2 yr-1. The pollen grains that fell with the male catkins comprised less than 10% of the total pollen deposition to the forest floor, excluding litter deposition. However, this pollen influx during the flowering period should be considered a local or gravity component (CI) of pollen transfer in forest areas, because male catkins were deposited locally under the canopy of the source tree.

Key words: Male catkin, Pollen deposition, Production rate, Quercus acuta, Temperate mixed forest
はじめに

森林内での花粉学的研究所が意図するところは、花粉分析による林分レベルでの古植生の復元を通じて、群集の組成・構造の成因や動態、あるいは種多様性の維持や共存の機構を、それらと深く関わる多種多様な管理との関係をもとに解析することにある。したがって、林内の堆積花粉をもとに林分レベルでの植生動態を議論するには、まず林分の花粉生産量、林分内外への花粉飛散度及び林外からの飛来量、その運搬経路を含めて定量的に把握しておく必要がある。

加えて、森林域における花粉の形成から堆積にいたる一連のプロセスと花粉量の定量化は、湿地の泥炭や湖沼堆積物の花粉分析による古植生の復元に際しても、重要な情報を提供するものと考える。

森林の樹冠部からある試料採取地点へいたる花粉運搬の要素として、Cc（Canopy component）、Ct（Trunk space component）、Cw（Secondary or invased component）、Cl（Local or gravity component）及びCr（Rain component）の5つが知られている。Ccは樹冠に接した部分を通って、Ctは林内空間を通って、Cwは土壌表面の侵食、もしくは水系に運搬される要素を示す。Clは樹冠下に直接落下するか、植物器官（葉、枝など）に付着した花粉が植物器官そのものの落下、もしくは降雨による洗脱により堆積する要素である。CtはCcよりも高い高度で堆積される要素であるが、この花粉は主に雨源中に取り込まれ、その結果降下・堆積する。

各花粉の出現状態は堆積盆のサイズに応じ、大規模なものほどCrの重要性は増すが、樹冠の開けた森林域ではCl、Ctが堆積花粉の大部分を占めるとされる。

デンマークの針葉樹混交林では、トラップ中の花粉数と、そこから半径20mの円内に生育する樹木の樹冠面積との間に、有意な正の相関が認められた。

樹木の開花最盛期にヤナギ（Salix cinerea）の若枝を採取し、そこに付着する花粉を調査した研究では、枝1本から4万粒以上、葉のついた20本

Fig. 1. Index and location maps of the study sites. ST, Study plot. C, Sample tree C.
<table>
<thead>
<tr>
<th></th>
<th>Study Plot</th>
<th>Sample tree C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altitude (m)</td>
<td>1,100</td>
<td>1,000</td>
</tr>
<tr>
<td>Slope aspect</td>
<td>S38°E</td>
<td>S7°W</td>
</tr>
<tr>
<td>Inclination (°)</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Soil type</td>
<td>Brown forest soil (Bw)</td>
<td></td>
</tr>
<tr>
<td>Soil material</td>
<td>Chert</td>
<td></td>
</tr>
<tr>
<td>Annual mean temperature (℃)</td>
<td>10.3</td>
<td>10.9</td>
</tr>
<tr>
<td>Highest / lowest temperature (℃)</td>
<td>21.2 / -0.6</td>
<td>21.8 / 0.0</td>
</tr>
<tr>
<td>Annual precipitation (mm)</td>
<td>3,082</td>
<td></td>
</tr>
<tr>
<td>Warmth / coldness Index (℃・month)</td>
<td>63.8 / -14.1</td>
<td>70.4 / -11.9</td>
</tr>
</tbody>
</table>

の枝では190万粒に及ぶ花粉が検出された。枝についた花粉は、付近に生育する樹木の花粉で占められ、遠方の樹種の花粉出現率は著しく低い（10）。付着花粉の数は、降雨後著しく減少したとされる（11）。

林内における空中飛散花粉の追跡調査によると、樹木花粉の堆積パターンは、開花期間の長いピーク、開花直後に始まる樹冠上の付着花粉の再飛散、及びリター堆積による秋～冬期のピークの3つから構成されていた（12）。林内での花粉堆積は、トラップに最も近い樹木群の花粉生産とその樹冠の構造に大きく影響されるという。

（13）の研究は林内の花粉堆積におけるCl、Ctの重要性を示唆する。

一方で、森林の樹冠部を横断しての花粉移動は著しく（14）、その結果林床へ到達するCtの量は、Tauberの観察値（15）よりもずっと多いとされる（16）。林内の表層花粉と試料採取地点周辺の現存植物との対応関係から、堆積花粉の反映する植物の空間領域（ Relevant source area）は、試料採取地点から半径数十〜数百mの円内であることが明らかにされた（17）。しかし、この領域外から飛来する花粉量（Background花粉）は、全体の40〜50%に及ぶという（18）。

このように、森林域における花粉堆積の様式は、森林自体が花粉堆積の場であるため極めて複雑である。

この研究では、まず本調査地の優占種の一つであるアカガシの花粉堆積様式を明らかにするために、1997、1998年の開花期を通じて、1）アカガシの雄花序と花粉の産生速度、2）開花期を通じた枝花序の降落状態、及び3）落下枝花序に残存する花粉数の3点について調査したのでここに報告する。

方 法

調査地

調査地は、高知市の北東約10kmに位置する、高知県土佐郡土佐山谷の工石山（標高1,176m）である（Fig. 1）。工石山の標高1,000m付近から頂上では、アカガシ、ブナなどの広葉樹、ミミ、ツガ、ヒノキなどの温帯の針葉樹が混生する温帯混交林となっている（19）。地形は斜面で険嶮なチャートを主体とし、土壌は比較的深いところが多い（20）（Table 1）。

今回の調査は、1）工石山頂上から北東方向へのびる尾根に位置し、すでに詳細な植生調査と土壌の花粉分析がなされた調査ゾーン（ST：標高1,100m）（21）と2）登山口から調査ゾーンにいたる林道沿いの南向き斜面（調査木C：標高1,000m）を行った（Fig. 1）。調査ゾーンの平均傾斜は5°を、緩やかな斜面となっている。林冠部の高さは約12mで、林冠部の樹種密度は高く、特に調査木の付近は林冠部のうち閉鎖性の高い、雑草密度（no. / 0.06ha）と基底面積の占める割合は、アカガシ（16本、46.43%）が最も高く、その他にブナ、コハナチワカエデ、クマツなどの広葉樹が主要な構成種となっている。み、ヒノキ、ツガなどの温帯の針葉樹も混じっている（Table 2、Fig. 2）。林床にはツルシギミが多い。

調査木Cの周辺は、STと比較すると個体密度が低く、林冠のあった部分は低い。周囲に生育するアカガシ（4本 / 0.06ha）は少なく、調査木Cは主に混交している。またSTに比べると林床の植物は著しく低い。

調査木BとCについて、生長・栄養状態が樹幹を採取してその年輪数を数えたところ、樹幹はそれぞれ63年、68年であった（Table 3）。調査木Aは樹幹の中芯部が腐朽しているので正確な樹齢は不明である。
が，調査木 B, C の胸高直徑と樹齢から考えて，その
樹齢は150年を超えるものと推定される。

分析方法
1) 雄花序1個あたりの花粉数

雄花序1個あたりの花粉数の測定・算出の方法は，
清永(1977)にしたがった。

1997年5月17日と1998年5月9日に，調査プロッ
ト内のアカガシ2個体（試料木AとB）から，1998
年の5月5日に調査木Cから，成熟して花粉を放出
する直前の雄花序を，林冠部全体から任意に選んで採
取した。採取した雄花序について，雄花序1個あたり
の花粉数を数えた。次に実体顕微鏡を用いて，これら
の雄花序の中から任意に選んだ雄花について，雄花1
個あたりの花粉数を数えた。さらに，数えた雄花の中か
ら任意に選んだ雄花内の花粉の一部について，約1個あ
たりの花粉数を数えた。各々の個数は，基的に20
以上のサンプルを抽出して測定した。

以上の結果から，年ごとに試料木ごとの花1個あた
りの平均花粉数（p），雄花1個あたりの平均花粉数

Fig. 2. Crown projection diagram of the canopy trees in the study plot, and
locations of sample trees A and B. Shaded areas show the transects investig-
gated. This plot is part of the study stand explored by Miura et al. (1994),
Miyake & Nakagoshi (1998) and others. Abbreviations of species are listed in
Table 2.
Table 2. Species composition of the study plot, and DBH (diameter at breast height) class distribution and basal area of each species

<table>
<thead>
<tr>
<th>Species (Abbreviation)</th>
<th>No. of stems / 0.06ha</th>
<th>Basal area (m² / ha)</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 - 10</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>Evergreen species</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conifers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abies firma (Af)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Chamaecyparis obtusa (Co)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tsuga sieboldii (Ts)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Broad-leaved trees</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quercus acuta (Qa)</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Ilicium religiosum (Ir)</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Deciduous species</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Broad-leaved trees</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fagus crenata (Fc)</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Acer sieboldianum (As)</td>
<td>12</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Carpinus japonica (Cj)</td>
<td>2</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Clethra barbinervis (Cb)</td>
<td>3</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Carpinus thonoshii (Ct)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stewartia monadelpha (Sm)</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Lindera erythrocarpa (Le)</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Acer micranthum (Ami)</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Symlocos coreana (Sc)</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Styrax japonica (St)</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fraxinus lanuginosa (Fl)</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Betula grossa (Bg)</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Rhododendron weyrichii (Rw)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Euonymus oxyphyllus (Eo)</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Magnolia obvata (Mo)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enkianthus cernus (Ec)</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Others*</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>58</td>
<td>36</td>
<td>9</td>
</tr>
</tbody>
</table>

* *Acer mono (Amo) + Cephalotaxus harringtonia (Ch) + Neolitsea sericea (Ns) + Pourthiaea villosa (Pv).

Table 3. Dimensions of *Quercus acuta* sample trees

<table>
<thead>
<tr>
<th>Sample tree</th>
<th>DBH (cm)</th>
<th>Height (m)</th>
<th>Crown Area (m²)</th>
<th>Age (yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>67.2</td>
<td>10.4</td>
<td>22.1</td>
<td>150 <</td>
</tr>
<tr>
<td>B</td>
<td>27.0</td>
<td>8.0</td>
<td>10.3</td>
<td>63</td>
</tr>
<tr>
<td>C</td>
<td>28.3</td>
<td>6.5</td>
<td>15.2</td>
<td>69</td>
</tr>
</tbody>
</table>
Table 4. Number of pollen grains per anther, anthers per male flower and male flowers per male catkin, and number of pollen grains per male catkins estimated from these parameters

<table>
<thead>
<tr>
<th>Year</th>
<th>Sample</th>
<th>Mean number of pollen grains per anther (p)</th>
<th>Mean number of anthers</th>
<th>Mean number of male flowers per male catkin (f)</th>
<th>Number of pollen grains per male catkin ($P_c = p \cdot f$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>A</td>
<td>3631.85 (30, 1033-5883, 1267.06)</td>
<td>10.89 (27, 5-21, 4.01)</td>
<td>27.04 (23, 12-39, 7.92)</td>
<td>1069219.32</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>3270.93 (20, 897-5598, 1178.71)</td>
<td>12.86 (29, 4-24, 4.72)</td>
<td>22.88 (25, 9-34, 6.88)</td>
<td>963301.45</td>
</tr>
<tr>
<td>1998</td>
<td>A</td>
<td>2186.63 (16, 781-3708, 857.76)</td>
<td>10.48 (21, 5-16, 2.96)</td>
<td>20.14 (7, 7-31, 9.49)</td>
<td>461524.82</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>2880.88 (17, 864-4602, 1028.30)</td>
<td>13.50 (20, 6-21, 4.52)</td>
<td>19.11 (9, 14-26, 3.98)</td>
<td>691626.83</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>3762.95 (30, 1169-5891, 1297.76)</td>
<td>13.21 (34, 5-23, 4.17)</td>
<td>22.65 (20, 8-34, 6.21)</td>
<td>1125629.81</td>
</tr>
</tbody>
</table>

Values in parentheses indicate the number of samples, range and standard deviation in that order.

（a）及び雄花序1個あたりの平均雄花数（f）を求めた。さらにこれらのパラメータに基づいて、雄花序1個あたりの花粉数（$P_c = p \cdot a \cdot f$）を算出した。

2）開花期における雄花序の落下状態と生産速度
雄花序の生産速度は、一般に週年樹冠下に設置したリタートラップ中の雄花数をもとに計算される。しかし本調査地では、下層木が多いため、リタートラップを狭い空間内に直線的に配置することは困難であった。この研究では、雄花序の生産速度に加え、雄花序の落下状態を調べることが目的であるので、リタートラップによらず、林床に落下した雄花序を直接拾い上げた。

調査ブロックでは試料木AとB、それぞれの幹の根元から最も近い位置にあるアカガシ個体まで、1m幅のトランセクトを4本設置した（Fig. 2）。このトランセクトを1mごとに区切り、1m×1mの方形区に分割した。試料木Cでは、その根元から北に向かう5m幅のトランセクトを1本だけ設け、これを0.5m×0.5mの方形区に細分した。

4～21日の間隔で、各方形区に落下した雄花序数を調べた。また拾い上げた雄花序の一部を、研究室に入れて帰りた。調査は開花直前から樹冠上の現生雄花序がほぼ消失するまで、すなわち1997年が5月17日～7月27日、1998年が5月5日～6月29日の期間に行った。

各調査木の雄花序生産速度は、以下の要領で計算した。他のリターと同様、雄花序の落下数は樹冠下で著しく多いが、樹冠の縁から外側に向かって少しずつ減少する。雄花序落下数の減少曲線はほぼ直線的に直線的に近づく距離までので方形区の雄花序は、試料木が生産したものを考えられる。したがって、試料木の樹冠下に落下した雄花序数のみでその生産速度を算出すると、過小とならない恐れがある。そこで樹冠の縁からその方形区までの雄花序数を、試料木の樹冠下の方形区の個数で割り、各方形区の雄花序落下数にたして合わせた。こうして算出された樹冠下の方形区あたりの雄花序落下数を試料木ごとに平均して、この値をもとに1haあたりの雄花序生産速度（M）を算出した。

冒頭で述べたように、この研究ではリタートラップによらず、林床に落下した雄花序を直接採集した。落下雄花序は、落下後すぐに土壤動物による分解にさらされるとみられる。しかし調査日の間隔が短いかことから、次の調査日までに完全に分解し、土壤表面から消失した雄花序はまずないと考えられる。強風、土壤表面流または土壤動物による落下雄花序の二次的運搬も考えられるが、ここではそれは少ないものとして考慮しなかった。

3）試料木の花粉生産速度
アカガシの雄花は尾状花粉を形成し、花粉のまわりに多数の雄花がつく。開花後、この雄花序は分解せずそのまま落下する。したがって、1haあたりの各試料木の花粉生産速度（P_c）は、雄花序あたりの平均花粉数（P_c）と雄花序生産速度（M）を掛けて推定した（$P_c = P_c \cdot M$）。

4）落下雄花序の著内に残存花粉数と現存雄花序（花を除く）中の付着花粉数
1997、1998年にそれぞれトランセクトAB（但し試料木Aの樹冠下のもの）で採取した雄花序を選び、まず著とそれ以外の部分に分離した。

分離させた著を任意に取り出して、その中の残存花粉数を数え、約1個あたりの平均残存花粉数（n）を求めた。さらに著1個あたりの平均残存花粉数（P_c；Table 4参照）を基本数として、約1個あたりの残存花粉数
アカガシの花粉堆積様式（1）

Fig. 3. Deposition patterns of male catkins that fell onto transects AB, A1, A2 and A3.

の割合（$R = r \cdot p^{-1} \times 100$）を算出した。

開花期前半では、落下した雄花序にも種々の経路から運搬された花粉が大量に付着するとみられる。そこで雌花序（薬以外）1個あたりの平均付着花粉数（Ad）は、薬内の花粉が充分飛散した時期（A：1997年7月5日と7月28日、C：1997年6月20日）に樹冠上の現生雌花序を直接採取し、そこに付着した花粉数（薬以外）を数えることにより求めた。雄花序に付着した花粉を、特に密密のある花軸から完全に洗い流すことは困難であったので、雄花序をKOH-アセト

リス処理にかけた。抽出した花粉は、70℃ グリセリンゼリーで1 mlに容量をあわせ、均一に攪拌した後、マクロビペットで0.02ml とし、スライドグラス上に滴下・封入した。プレパラート全面にわたってアカガシ亜属花粉をすべて読みとった。この結果をもとに Ad を算出した。

5）花粉トラップ内の堆積花粉数

1997年5月17日に観察木Aの樹冠下（T1）と樹

冠外（T2）に、リターが堆積せぬよう鉄板を加工

して開口部を覆った2ℓ ビーカー（内径13cm）を、

地上から50cm の高さに1個ずつ設置した（Fig. 2）。

この方法では、リーターフォールとは別の経路で運搬される花粉がすべて堆積することになる。

花粉トラップの交換は、ほぼ1ヶ月の間隔で翌年

1998年の4月まで行った。

花粉トラップ内の試料はまず遠心機を用いて濃縮し、

その後は4）で述べた現生雌花序の付着花粉の処理・
結果

1) 雄花序1個あたりの花粉数

各調査年における試料木ごとの薬1個あたりの平均花粉数（p）、雄花1個あたりの平均花粉数（a）及び雄花序1個あたりの平均雄花数（f）、さらにこれらのパラメータに基づいた雄花序1個あたりの平均花粉数（Pc）をTable 4に示す。

Fig. 5. Number of male catkins that fell onto transects throughout the flowering periods of 1997 and 1998. *At transect C, the number of male catkins per 50 cm × 50cm was counted.

<table>
<thead>
<tr>
<th>Year</th>
<th>Sample tree</th>
<th>Production rate of male catkins ((M) \times 10^3 \text{ no. ha}^{-1} \cdot \text{yr}^{-1})</th>
<th>Production rate of pollen grains (P = M \cdot P_c) ((\times 10^3 \text{ no. ha}^{-1} \cdot \text{yr}^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>A</td>
<td>2.13 ± 0.88</td>
<td>2.27</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>1.85 ± 0.89</td>
<td>1.78</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>0.08 ± 0.05</td>
<td>0.04</td>
</tr>
<tr>
<td>1998</td>
<td>B</td>
<td>0.09 ± 0.05</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>2.09 ± 0.71</td>
<td>2.35</td>
</tr>
</tbody>
</table>

Pc, number of pollen grains per male catkins.
Table 6. Number of pollen grains remaining in an anther, and of pollen grains adhering to a male catkin, and percentage of remaining pollen grains per anther, calculated based on p^r.

<table>
<thead>
<tr>
<th>Year</th>
<th>Date</th>
<th>Sample tree</th>
<th>Mean number of pollen grains remaining in an anther (r)</th>
<th>Remaining pollen rate per anther (R = r \times 10^2 \times 100)</th>
<th>Mean number of pollen grains adhering to a male catkin (\text{Ad}) (× 10^\text{3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>June, 5</td>
<td>A</td>
<td>446.00 (40, 4 - 3934, 869.88)</td>
<td>12.28</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>June, 21</td>
<td></td>
<td>91.58 (43, 0 - 1064, 197.18)</td>
<td>2.52</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>July, 5</td>
<td></td>
<td>34.00 (35, 0 - 465, 88.36)</td>
<td>0.94</td>
<td>6.57 (8, 1.81 - 15.57, 4.67)</td>
</tr>
<tr>
<td></td>
<td>July, 28</td>
<td></td>
<td>5.65 (34, 0 - 29, 7.13)</td>
<td>0.16</td>
<td>2.85 (8, 0.69 - 8.67, 2.59)</td>
</tr>
<tr>
<td>1998</td>
<td>June, 15</td>
<td></td>
<td>496.07 (26, 27-2008, 584.10)</td>
<td>13.19</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>June, 6</td>
<td>C</td>
<td>114.64 (39, 0 - 1062, 189.18)</td>
<td>3.04</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>June, 20</td>
<td></td>
<td>10.03 (34, 0 - 56, 13.61)</td>
<td>0.27</td>
<td>1.71 (8, 0.41 - 5.71, 1.88)</td>
</tr>
</tbody>
</table>

*See Table 3. Values in parentheses are the same as those in Table 4. \(p \), mean number of pollen grains per anther.

Table 7. Annual pollen deposition (× 10^3 m^-2) of major tree taxa in May 1997 - April 1998

<table>
<thead>
<tr>
<th>Taxon</th>
<th>(T_1)</th>
<th>(T_2)</th>
<th>(T_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclobalanopsis</td>
<td>10.59</td>
<td>(29.45)</td>
<td>7.42</td>
</tr>
<tr>
<td>Fagus</td>
<td>4.54</td>
<td>(12.63)</td>
<td>6.61</td>
</tr>
<tr>
<td>Cryptomeria</td>
<td>3.82</td>
<td>(10.62)</td>
<td>5.67</td>
</tr>
<tr>
<td>Pinus</td>
<td>2.89</td>
<td>(8.04)</td>
<td>4.27</td>
</tr>
<tr>
<td>Caspinae</td>
<td>3.26</td>
<td>(9.07)</td>
<td>3.65</td>
</tr>
<tr>
<td>Fraxinus</td>
<td>3.54</td>
<td>(9.84)</td>
<td>2.74</td>
</tr>
<tr>
<td>Chamaecyparis</td>
<td>1.36</td>
<td>(3.78)</td>
<td>4.62</td>
</tr>
<tr>
<td>Betula</td>
<td>2.61</td>
<td>(7.26)</td>
<td>0.98</td>
</tr>
<tr>
<td>Acer</td>
<td>0.82</td>
<td>(2.28)</td>
<td>1.53</td>
</tr>
<tr>
<td>Abies</td>
<td>0.94</td>
<td>(2.61)</td>
<td>0.56</td>
</tr>
<tr>
<td>Tsuga</td>
<td>0.56</td>
<td>(1.56)</td>
<td>0.77</td>
</tr>
<tr>
<td>Others</td>
<td>1.03</td>
<td>(2.86)</td>
<td>1.71</td>
</tr>
<tr>
<td>Total</td>
<td>35.96</td>
<td>(100.00)</td>
<td>40.53</td>
</tr>
</tbody>
</table>

Values in parentheses represent percentage of total pollen deposition. \(T_1 \), inside canopy of sample tree A. \(T_2 \), outside canopy of sample tree A.

2.2) 開花期における雄花序の落花状態

調査期間を通じて各形態区間に落下した雄花数、ならびに調査日ごとに落下した雄花数について、トランスセット別にまとめた図をそれぞれFig. 3. と 4. 5. に表す。

Figs. 3. と 4. に示すように、隣接するアガシ個体までの距離が短い B 1. を除き、1997 年に各トランスセットの各形態区間に落下した雄花数は、試料木の樹高の縦軸は極めて多く、調査木 A. B. とともに形態区約100 ～ 400 個に達した。しかし、雄花落花数は樹高の縦軸よりそれゆるして大きいために減少しており、雄花落花は立ち座するサイズに対応して増加していた。1998 年の調査では、調査木 A. B. のトランスセットの形態区落下数はわずかで、その堆積パターンは不明瞭であった。一方トランスセット C も、試料木 C の樹高の形態区で雄花落花数は多く（形態区あたり 20 ～ 80 個）、その樹高外でもごく少数であった。

1997 年のアガシの開花開始日は、調査ロットで 5 月 20 ～ 25 日の間であったのに対して、1998 年は開花の影響のためか 10 日前後早くなり、5 月 9 ～ 15 日の間であった。1998 年の調査木 C の開花開始日は 5 月 5 ～ 9 日の間で、調査ロットより 4. 5 日早かった。

Fig. 5. のように、雄花序の落花は開花後すぐに始まるが、開花後 10 日過ぎから急激に増加して、その後の 1 ケ月の間に全体の約 80 ～ 90% が林床に落下していた。開花後 2 ケ月での雄花落花数はどのトランスセットとも、著しく減少していた。

3.3) 各試料木の花粉生産速度

雄花序の生産速度 (M) と、この雄花序生産速度及び樹高を 1 本あたりの花粉数に基づいて算出した林分 1 ha あたりの花粉生産速度 (P) を Table 5 に示す。

1997 年の M (× 10^2 no. ha^-1 ¥ yr^-1) は、試料木 A. B でそれぞれ 2.13. 1.85 であったが、1998 年では双方とも前年の 1/20 程度に大きく減少した。1998
アガシの花粉堆積様式（１）

年の試料木CのMは、1997年の試料木Aとの差が示している。
1997年のP（×10^6 no. ha^-1・yr^-1）は、試料木
A、Bそれぞれ2.27、1.78で、1998年のPはそれ
ぞれ前の約1/60、1/30にまで著しく減少していた。
1998年の試料木CのPは2.35で、1997年の試
料木Aとはほぼ同じであった。

4）現生雄花序中の付着花粉数（芽を除く）と落下雄
花序の薬内の残存花粉数

試料木A（1997年）とC（1998年）における、落
下雄花序の薬内に残存する平均花粉数（r）、pをも
とに算出した残存花粉数の割合（R）及び開花期経過
後の現生雄花序（芽を除く）に付着した平均花粉数（A
d）をTable 6に示す。

rは、両調査年A、Cとも開花期初期には高く、
薬1個あたり450個程度で、RはA、Cとも12%程
度であった。また開花期初期に落下した雄花序のうち、
開花しきないまま脱落したものは2～5%程度認めら
れた。開花期中段でのRは、A、Cとも約3%であっ
た。開花期後期では、A、C双方ともRはいったん低
く、その結果Rも1%未満と低くなった。

Adは、試料木A（1997年）では雄花序の落下の
ピーキーが1975年6月28日に6.57×10^6、開花期の終
期の1978年6月20日で、1.7×10^6となった。

5）花粉トラップ内の通年堆積花粉数

花粉トラップ内の主な樹木の通年堆積花粉数を
Table 7に示す。

試料木Aの樹冠下、樹冠外に関わらず、堆積花粉
数はアガシ亜属が最も多く、それぞれ10.59×10^6
（全堆積花粉数の約29%）、7.42×10^6（約18%）個
であった。

考察

アガシの雄花序と花粉の生産速度

アガシの種における花粉生産速度については、清
永（1999）の東京都内の芝生林における1988～1992年の
5年間に及び追跡調査がある。林分単位で本研究と清
永（1999）の花粉生産速度の違いは細かく議論することは
難しいが、両者の雄花序及び花粉生産速度には、類似
した部分と異なった部分が認められた。以下にそのこ
とについて触れていきたい。

類似点として、薬1個あたりの平均花粉数（p）、
雄花1個あたりの平均花粉数（a）及び雄花序1個あた
りの平均雄花数（f）には、1998年の調查木A、Bを
除き、特に著しい相関が見られなかったことが挙げられる。
特にaには両者で大きな差異は認められなかった。
ただし、p値は我々の調査結果の多いが一致して低く、
そのため雄花序あたりの平均花粉数（Pe）はやや少
なく、1998年の調査木A、Bでは、aは清永（1999）
及び我々の1997年の結果と比べても大きな変動を示
さなかったが、pとfはともに大きく減少した。

一方、相関点として、まず花粉生産速度（×10^6
no. ha^-1・yr^-1）は、清永（1999）の5年間の平均値が
7.2であったのに対して、この研究では最も生産速度
の大きい1998年の調査木Cでさえ2.35と小さ
かったことが挙げられる。これは両者で雌花序の生産
速度に著しい差があったためである。

さらに、2年間の追跡をしながら1997年に対する1998
年の花粉生産速度の比率は、調査木A、Bそれぞれで
1/60、1/30となり、花粉生産速度には著しい変
動が認められたが、清永（1999）とは異なっていた。
清永（1999）では、花粉生産速度の値が最も大きかった
1988年（9.7）と最も小さかった翌年（5.0）の比率は
1/2程度である。花粉生産速度の著しい変動は、清
永（1999）の場合雌花序の生産速度の減少によって生じた
が、我々の調査では雄花序の生産速度の減少だけでなく、
雌花序1個あたりの花粉数の減少にも依存していた。

調査地の暖度指数（1999）をみると分かるように、我々
の調査地のアガシ林は垂直分布としてはその上限に
ある（Table 1）、高さが含め、分布域による植
物の繁殖に対する同化物の投資量・繁殖による分配
比の違いについて調べた研究は、花粉生産量だけでなく、
種子の結実量についても少ない。

種子の結実量についてであるが、ニュージーランドの
Nothofagus solandri林（1999）では、高標地域の林
分では低標地域に比較して、豊作の回数が少ないし、豊
作には大量結実と間欠的結実の少なくとも2つのステー
ジが認められた。結果として、種子結実量の豊作は高
標地域でより顕著になったとされる。その要因として、
気象条件が花芽形成、受粉等、繁殖に与える直接的な
影響の他に、同化活動の制限を介した間接的影響（豊
作に必要な投資量の実現のための年数）を挙げている。

酒井（1999）は、中高層帯のオオカミ松について、
その植生帯の下部・中部・上部で個体成長、成長と繁
殖の関係と雌雄への乾重分配比について調べている。
高橋高では若齢で繁殖が開始し、そのため樹高成長が遅遅したという (38)。雌雄への偏重配分比については、個体サイズが小さいほど雌比が高くなっており、高齢が高くなると共集全体で合計した雌比が高くなっ
た (38)。

これらの結果は、分布域の違い（例えば高橋高）により植物の成長、成長・繁殖の関係、同化産物の投資量・雌雄による配分比が変化することを示唆する。

本研究の目的 (39) の花粉生産速度の違いについては、我々には現在2年間のデータしかなく、また花粉生産から種子散布にいたるプロセスを追跡調査していないので、その詳細は今後のデータの蓄積を持って考察する必要がある。ただ、筆자는過去7年間続いてこの調査地で研究を続けてきたため、肉眼的観察ながらアカガシの雄花粉生産量に著しい年次変動が認められる
ことはほぼ間違いなし。本研究の結果は、調査地がアカガシの分布上界に近いことから生じる繁殖特性の変化に起因することを示唆するかもしれない。

種類の差による雌花序及び花粉の生産速度の違いについても、試料以外の樹幹の心材が腐朽し、樹勢が衰えていたため検討できず、後も今後の課題として残された。

アカガシの雄花序の落下と花粉堆積

雄花序の落下が、花粉堆積の遅れ経路として、重要である可能性はすでに指摘されている (39)。すなわち、雄花序中の花粉の多くは風により散播されるが、花序自体が花粉トラップとして機能し、大気中に飛散する花粉を付着させ、雄花序の脱落とともにその散布樹木の樹冠下に付着花粉を堆積させるものと推定されている。

Alnus glutinosa では、その開花最盛期において地上に落下した雄花序に1cm²あたり11.1万個の花
粉が付着していたという (38)。しかし、これが果たし
て開齢しないで髂内に残っていた花粉なのか、雄花序
に付着していた花粉なのか、その由来については記述
されていない。

この研究では、アカガシを対象として、その雄花序の
落下状態、雌花の袋内に残存する花粉数及び雄花序
に付着する花粉数をある程度定量化することができた。

Figs. 3 と 4 のように、各ランク別に落下した
雄花序数は、アカガシの樹冠下の方形区で著しく多く、その樹冠の縁から離れるほど急激に減少することか
ら、ほぼ樹冠のサイズに対応して雄花序は堆積していることが分かる。

雄花中の袋内に残存する花粉数の割合は、p を基本数
にしたとき、開花期の初期では試料 A, C ともに約 12% 程度となっていたが、袋内の花粉が完全に放出さ
れない状態で落下する花粉は比較的多かった。また
開花期の初期には、開齢しないで落下した雄花序も認
められるが、それは全雄花序落下数の 2 ～ 5 % 程度
であった。試料 B の場合、開花期初期、最も落下する
雄花序の多かった中間、及び開花期終期に対する
残存花粉数をそれぞれ 12%, 2.5%, 0.5%, 開花期初
期における未開齢雄花序の割合を 3% とするとき、残
存花粉数は（樹冠下的）方形区あたり年間 6.40 × 10^4
個となる。これは試料 B が生産した全花粉数（雄花序
1 個あたりの花粉数 × 年間雄花序落下数、
2.27 × 10^4 個の 2.5% に相当する。この研究では、
落下した雄花序中の残存花粉数について調査しなかっ
たが、雄花の脱落は少なくとも開花期中頃までは顕著
ではなかった。仮に多くの雄花が雄花序から落葉して
飛散しても、やはり散布樹木周辺に堆積すると思われる。

さらに、試料 B の雄花序に付着した花粉数を 3
千個として、（樹冠下的）方形区あたりの年間雄花序
落下数 212.64 を用いて計算すると、雄花序付着花粉
数は 6.38 × 10^5 個となる。これらの花粉は、密毛の
ある花粉と多数の雄花に付着していると思われる。

試料 B の樹冠下、樹冠外に設置した花粉トラッ
プ中での年間堆積花粉数は、アカガシ花粉だけで 1m²
あたりそれぞれ 10.59 × 10^5, 7.42 × 10^3 個に達した
（Table 8）。雄花序の落下による花粉数は、このアカ
ガシ樹冠下（1 m²あたり）の花粉数の約 1/14 にあ
たる。

このように、開齢しないで脱落する雄花序が少数な
がら存在すること、また雄花序に付着した花粉と雛花に
残存する花粉数は極めて多くであること、さらにその
雄花序のほとんどが自個体の樹冠下とその周辺に落下
することを考えると、開花期を通じての雄花序の落下
は、森林域での花粉運搬の一経路として考慮すべきと
思われる。ただし、雄花序の落下による花粉堆積は、
林床に到達する全花粉量（リターフールによる堆積
花粉を除く）に対する比率としては 10% に満たない
ため、花粉堆積全体に及ぼす影響はそれはほど大きいも
のではない。

その他植物器官に付着した花粉の季節的変動、林分
内外での主な樹木花粉の飛散動態についての調査結果
は、次稿以降で報告したい。
要約

高知県工石山の湿帯混交林において、アカガシの花粉堆積様式を明らかにするため、この研究ではまず、1) アカガシの雄花数の経年変化と花粉堆積速度。2) 雄花序の堆積花粉の障害層を測定する方法について考察した。堆積花粉の障害層の堆積速度（堆積花粉の存続速度×10^6 no. ha^{-1}·yr^{-1}）は、1997年試験区Aで10.69 ×10^3 (2.13), Bで9.62 ×10^1 (1.85)で、1998年 はそれぞれ4.62 ×10^1 (0.08), 6.92 ×10^1 (0.09), 調査区Cは11.26 ×10^1 (2.09)となり、両年で雄花 序数および花粉量の変動も観察された。これをもとにした花粉の堆積速度（×10^6 no. ha^{-1}·yr^{-1}）は、1997年（1998年）に試験区A、Bでそれぞれ2.27 (0.04), 1.78 (0.06), 1998年に調査区Cで2.35となった。1997年に対する1998年の花粉堆積速度の比は、調査区A、Bそれぞれで約1/60, 1/30となっており、花粉堆積速度には両年で著しい 差が認められた。調査区内の堆積花粉は、年間6.40 ×10^3 個·m^{-2}（全生産花粉量の2.8 %）で、雄花序域有する堆積花粉は、年間6.38 ×10^3 個·m^{-2} に達した。調査区の堆積花粉は、樹木に堆積する全花粉量（リターフォールによる堆積花粉を除く）に対する比率としては10%に満たなかった。このように開花期を通じての雄花序の堆積は、花粉堆積全体に及ぼす影響として それほど大きくはない。しかし雄花序が樹冠下に局地的堆積していたことから、森林内の花粉運搬の一 統路として考慮すべきと考えられる。

謝辞

この研究に際して、江藤宏治、川西基博氏をはじめ、高知大学理学部生物学の学生諸氏には現地調査でのご協力をいただいた。ここに深く感謝し、お礼申し上げる。

引用文献

（14）山中二男：高知県の植生と植物相。林野弘徳高 知支部，高知 pp.27-34 (1978).

（15）中澤保・門脇美智代・西村武二・永森道雄：工石山在野休養林の植物相と植物。高知大農演習林報 21, 89-121 (1994).
（16）経済企画庁：土地分類基本調査－地形・表層地質・土しぐ（高知)。pp.60 (1966)。
（18）山中三男・柳川佳史子・石川健吾：工石山の温带混交林における森林土壤の花粉分析学的研究。高知大理紀要（生物学）16/17, 45-56 (1996).
（19）三宅 尚・石川健吾・根平邦人・中越信和：土壌中における実験散布花粉の過去4年間における垂直分布の変化。高知大理紀要（生物学）19, 5-14 (1998).
（21）浦永丈太：アカガシ林における花粉生産速度。花粉誌 40, 117-121 (1994).
（26）酒井聡子・松井 淳・酒井聡樹・壁谷大介：オオシラビノの繁殖戦略：標高による性投資比の違い。第46回日本生態学会大会講演要旨集 p.201 (1999).