Addendum to the paper: A Dual to the Equivariant Bordism

Yoshitada Kizu
Department of Mathematics, Faculty of Literature and Science

Let G be a compact Lie group and X a G-space. A G-drobism element of X is a triple (M, f, ϕ) such that M is a closed G-manifold with a smooth G-action $\phi : G \times M \to M$ and $f : X \to M$ is a G-map. Two G-drobism elements (M, f, ϕ) and (M', f', ϕ') are equivalent if there is a triple (Q, F, ϕ) such that

(1) Q is a compact smooth G-manifold with boundary, the boundary of Q, ∂Q being the disjoint union of M and M'.

(2) $F : X \times I \to Q$ is a G-map with $F \mid X \times 0 = f$, $F \mid X \times 1 = f'$.

(3) $\phi : G \times Q \to Q$ is a smooth G-action with $\phi \mid G \times M = \phi$, $\phi \mid G \times M' = \phi'$.

The set of equivalence classes of G-drobism elements of a G-space X is called the G-drobism set of G-space X and will be denoted (X, N^σ_θ). Under the product operation; $(M, f, \phi) \cdot (N, h, \lambda) = (M \times N, (f \times h) \Delta, \phi \times \lambda)$, where $\Delta : X \to X \times X$ is the diagonal map, the set (X, N^σ_θ) forms a semi-group. Let $m_\sigma(X)$ be a group associated with the semi-group (X, N^σ_θ).

We proved the following theorems ([2]).

Theorem 1 ([2]).

The contravariant functor $m_\sigma(-)$ defines an equivariant cohomology theory on the category of pairs with a G-action to the category of abelian groups ([1]).

Let G be a compact Lie group, X a G-space. If $(M, f, \phi) \in (X, N^\sigma_\theta)$, let $\lambda (M, f, \phi) \in KO_\sigma (X)$ be the class of the G-bundle $f^*\tau_M$, where τ_M denotes the tangent bundle on M. This map λ defines a homomorphism $\lambda : m_\sigma(X) \to KO_\sigma(X)$.

Theorem 2 ([2]).

If X is a compact closed G-manifold, then the natural transformation λ is an isomorphism.

Definition 3.

Let G be a compact Lie group and Y a G-space. A relative G-complex (X, Y) is a G-space X obtained inductively as follows:

Let $\overline{X}^{i-1} = Y$. Define \overline{X}^i to be the result of adjoining arbitrarily many G-cells of arbitrary type but dimension i to \overline{X}^{i-1}; we give \overline{X}^i the weak topology and the natural G-action.

Let $X = \cup \overline{X}^i$, with the weak topology. A G-complex X is a relative G-complex (X, ϕ), a G-subcomplex Y of a G-complex X is a G-complex such that (X, Y) is a relative G-complex.
Lemma 4 (Willson [3]).

Let G be a compact Lie group, let h^*_o and k^*_o be G-cohomology theories. Suppose $\lambda : h^*_o \rightarrow k^*_o$ is a natural transformation. Suppose for each n that $\lambda : h^n_o(pt) \rightarrow k^n_o(pt)$ is an isomorphism. Then λ is a natural equivalence and $h^n_o(X, Y) = k^n_o(X, Y)$ for any finite G-complex (X, Y).

Theorem 5.

Let G be a compact Lie group and X a finite G-complex. Then $\lambda : m_o(X) \rightarrow KO_o(X)$ is an isomorphism.

Proof. By Theorem 2 ((2)) for $X = pt$, the natural transformation $\lambda : m_o(pt) \rightarrow KO_o(pt)$ is an isomorphism, so Lemma 5 ((3)), $\lambda : m_o(X) \rightarrow KO_o(X)$ is an isomorphism.

Corollary 6 (Theorem 2).

Let G be a compact Lie group, X a compact smooth G-manifold. Then the natural transformation $\lambda : m_o(X) \rightarrow KO_o(X)$ is an isomorphism.

Proof. If G is a compact Lie group, then all compact smooth G-manifolds admit the structure of a finite G-complex ((4)).

References

(Manuscript received September 6, 1976)
(Published March 24, 1977)